Quantitative Proteomic Analysis of Cerebrospinal Fluid from Patients
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Neuronal Pentraxin 2: a Synapse-Derived CSF Biomarker in Genetic Frontotemporal Dementia
J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp-2019-322493 on 9 April 2020. Downloaded from Neurodegeneration ORIGINAL RESEARCH Neuronal pentraxin 2: a synapse- derived CSF biomarker in genetic frontotemporal dementia Emma L van der Ende ,1 Meifang Xiao,2 Desheng Xu,2 Jackie M Poos ,1 Jessica L Panman,1,3 Lize C Jiskoot ,1,4 Lieke H Meeter,1 Elise GP Dopper,1 Janne M Papma,1 Carolin Heller ,5 Rhian Convery ,4 Katrina Moore,4 Martina Bocchetta ,4 Mollie Neason,4 Georgia Peakman,4 David M Cash,4 Charlotte E Teunissen,6 Caroline Graff,7,8 Matthis Synofzik,9,10 Fermin Moreno,11 Elizabeth Finger ,12 Raquel Sánchez- Valle,13 Rik Vandenberghe,14 Robert Laforce Jr,15 Mario Masellis,16 Maria Carmela Tartaglia,17 James B Rowe ,18 Christopher R Butler,19 Simon Ducharme,20 Alex Gerhard,21,22 Adrian Danek,23 Johannes Levin,23,24,25 Yolande AL Pijnenburg,26 Markus Otto ,27 Barbara Borroni ,28 Fabrizio Tagliavini,29 Alexandre de Mendonca,30 Isabel Santana,31 Daniela Galimberti,32,33 Harro Seelaar,1 Jonathan D Rohrer,4 Paul F Worley,2,34 John C van Swieten ,1 on behalf of the Genetic Frontotemporal Dementia Initiative (GENFI) ► Additional material is ABSTRACT INTRODUCTION published online only. To view Introduction Synapse dysfunction is emerging as an Frontotemporal dementia (FTD), a common form please visit the journal online (http:// dx. doi. org/ 10. 1136/ early pathological event in frontotemporal dementia of early-onset dementia, has an autosomal dominant jnnp- 2019- 322493). (FTD), however biomarkers are lacking. We aimed inheritance in 20%–30% of patients, most often to investigate the value of cerebrospinal fluid (CSF) due to mutations in granulin (GRN), chromosome For numbered affiliations see neuronal pentraxins (NPTXs), a family of proteins 9 open reading frame 72 (C9orf72) or microtubule- end of article. -
Identification of Two Novel Biomarkers of Rectal Carcinoma Progression and Prognosis Via Co-Expression Network Analysis
www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 41), pp: 69594-69609 Research Paper Identification of two novel biomarkers of rectal carcinoma progression and prognosis via co-expression network analysis Min Sun1,*, Taojiao Sun2,*, Zhongshi He3 and Bin Xiong1 1Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Wuhan 430071, P.R. China 2Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China 3Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, P.R. China *These authors have contributed equally to this work Correspondence to: Bin Xiong, email: [email protected] Keywords: rectal cancer, The Cancer Genome Atlas, weighted gene co-expression network analysis, prognosis, disease progression Received: March 06, 2017 Accepted: May 22, 2017 Published: June 27, 2017 Copyright: Sun et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT mRNA expression profiles provide important insights on a diversity of biological processes involved in rectal carcinoma (RC). Our aim was to comprehensively map complex interactions between the mRNA expression patterns and the clinical traits of RC. We employed the integrated analysis of five microarray datasets and The Cancer Genome Atlas rectal adenocarcinoma database to identify 2118 consensual differentially expressed genes (DEGs) in RC and adjacent normal tissue samples, and then applied weighted gene co-expression network analysis to parse DEGs and eight clinical traits in 66 eligible RC samples. -
1 UST College of Science Department of Biological Sciences
UST College of Science Department of Biological Sciences 1 Pharmacogenomics of Myofascial Pain Syndrome An Undergraduate Thesis Submitted to the Department of Biological Sciences College of Science University of Santo Tomas In Partial Fulfillment of the Requirements for the Degree of Bachelor of Science in Biology Jose Marie V. Lazaga Marc Llandro C. Fernandez May 2021 UST College of Science Department of Biological Sciences 2 PANEL APPROVAL SHEET This undergraduate research manuscript entitled: Pharmacogenomics of Myofascial Pain Syndrome prepared and submitted by Jose Marie V. Lazaga and Marc Llandro C. Fernandez, was checked and has complied with the revisions and suggestions requested by panel members after thorough evaluation. This final version of the manuscript is hereby approved and accepted for submission in partial fulfillment of the requirements for the degree of Bachelor of Science in Biology. Noted by: Asst. Prof. Marilyn G. Rimando, PhD Research adviser, Bio/MicroSem 602-603 Approved by: Bio/MicroSem 603 panel member Bio/MicroSem 603 panel member Date: Date: UST College of Science Department of Biological Sciences 3 DECLARATION OF ORIGINALITY We hereby affirm that this submission is our own work and that, to the best of our knowledge and belief, it contains no material previously published or written by another person nor material to which a substantial extent has been accepted for award of any other degree or diploma of a university or other institute of higher learning, except where due acknowledgement is made in the text. We also declare that the intellectual content of this undergraduate research is the product of our work, even though we may have received assistance from others on style, presentation, and language expression. -
Downloaded from Genomic Data Common Website (GDC at Accessed on 2019)
G C A T T A C G G C A T genes Article Molecular Pathways Associated with Kallikrein 6 Overexpression in Colorectal Cancer Ritu Pandey 1,2,*, Muhan Zhou 3, Yuliang Chen 3, Dalila Darmoul 4 , Conner C. Kisiel 2, Valentine N. Nfonsam 5 and Natalia A. Ignatenko 1,2 1 Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA; [email protected] 2 University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA; [email protected] 3 Bioinformatics Shared Resource, University of Arizona Cancer Center, Tucson, AZ 85724, USA; [email protected] (M.Z.); [email protected] (Y.C.) 4 Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Lariboisière Hospital, 75010 Paris, France; [email protected] 5 Department of Surgery, Section of Surgical Oncology, University of Arizona, Tucson, AZ 85724, USA; [email protected] * Correspondence: [email protected] Abstract: Colorectal cancer (CRC) remains one of the leading causes of cancer-related death world- wide. The high mortality of CRC is related to its ability to metastasize to distant organs. The kallikrein-related peptidase Kallikrein 6 (KLK6) is overexpressed in CRC and contributes to cancer cell invasion and metastasis. The goal of this study was to identify KLK6-associated markers for the CRC prognosis and treatment. Tumor Samples from the CRC patients with significantly elevated Citation: Pandey, R.; Zhou, M.; Chen, KLK6 transcript levels were identified in the RNA-Seq data from Cancer Genome Atlas (TCGA) Y.; Darmoul, D.; Kisiel, C.C.; and their expression profiles were evaluated using Gene Ontology (GO), Phenotype and Reactome Nfonsam, V.N.; Ignatenko, N.A. -
TOOLS and RESOURCES: a Mammalian Enhancer Trap
1 TOOLS AND RESOURCES: 2 3 A Mammalian Enhancer trap Resource for Discovering and Manipulating Neuronal Cell Types. 4 Running title 5 Cell Type Specific Enhancer Trap in Mouse Brain 6 7 Yasuyuki Shima1, Ken Sugino2, Chris Hempel1,3, Masami Shima1, Praveen Taneja1, James B. 8 Bullis1, Sonam Mehta1,, Carlos Lois4, and Sacha B. Nelson1,5 9 10 1. Department of Biology and National Center for Behavioral Genomics, Brandeis 11 University, Waltham, MA 02454-9110 12 2. Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive 13 Ashburn, VA 20147 14 3. Current address: Galenea Corporation, 50-C Audubon Rd. Wakefield, MA 01880 15 4. California Institute of Technology, Division of Biology and Biological 16 Engineering Beckman Institute MC 139-74 1200 East California Blvd Pasadena CA 17 91125 18 5. Corresponding author 19 1 20 ABSTRACT 21 There is a continuing need for driver strains to enable cell type-specific manipulation in the 22 nervous system. Each cell type expresses a unique set of genes, and recapitulating expression of 23 marker genes by BAC transgenesis or knock-in has generated useful transgenic mouse lines. 24 However since genes are often expressed in many cell types, many of these lines have relatively 25 broad expression patterns. We report an alternative transgenic approach capturing distal 26 enhancers for more focused expression. We identified an enhancer trap probe often producing 27 restricted reporter expression and developed efficient enhancer trap screening with the PiggyBac 28 transposon. We established more than 200 lines and found many lines that label small subsets of 29 neurons in brain substructures, including known and novel cell types. -
Kallikrein 13: a New Player in Coronaviral Infections
bioRxiv preprint doi: https://doi.org/10.1101/2020.03.01.971499; this version posted March 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Kallikrein 13: a new player in coronaviral infections. 2 3 Aleksandra Milewska1,2, Katherine Falkowski2, Magdalena Kalinska3, Ewa Bielecka3, 4 Antonina Naskalska1, Pawel Mak4, Adam Lesner5, Marek Ochman6, Maciej Urlik6, Jan 5 Potempa2,7, Tomasz Kantyka3,8, Krzysztof Pyrc1,* 6 7 1 Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian 8 University, Gronostajowa 7a, 30-387 Krakow, Poland. 9 2 Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, 10 Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland. 11 3 Laboratory of Proteolysis and Post-translational Modification of Proteins, Malopolska 12 Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, 13 Poland. 14 4 Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and 15 Biotechnology, Jagiellonian University, Gronostajowa 7 St., 30-387, Krakow, Poland. 16 5 University of Gdansk, Faculty of Chemistry, Wita Stwosza 63, 80-308 Gdansk, Poland. 17 6 Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Medical 18 University of Silesia in Katowice, Silesian Centre for Heart Diseases, Zabrze, Poland. 19 7 Centre for Oral Health and Systemic Diseases, University of Louisville School of Dentistry, 20 Louisville, KY 40202, USA. 21 8 Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 22 5020 Bergen, Norway 23 24 25 26 27 28 29 30 31 * Correspondence should be addressed to Krzysztof Pyrc ([email protected]), Virogenetics 32 Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, 33 Gronostajowa 7, 30-387 Krakow, Poland; Phone number: +48 12 664 61 21; www: 34 http://virogenetics.info/. -
Human Lectins, Their Carbohydrate Affinities and Where to Find Them
biomolecules Review Human Lectins, Their Carbohydrate Affinities and Where to Review HumanFind Them Lectins, Their Carbohydrate Affinities and Where to FindCláudia ThemD. Raposo 1,*, André B. Canelas 2 and M. Teresa Barros 1 1, 2 1 Cláudia D. Raposo * , Andr1 é LAQVB. Canelas‐Requimte,and Department M. Teresa of Chemistry, Barros NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829‐516 Caparica, Portugal; [email protected] 12 GlanbiaLAQV-Requimte,‐AgriChemWhey, Department Lisheen of Chemistry, Mine, Killoran, NOVA Moyne, School E41 of ScienceR622 Co. and Tipperary, Technology, Ireland; canelas‐ [email protected] NOVA de Lisboa, 2829-516 Caparica, Portugal; [email protected] 2* Correspondence:Glanbia-AgriChemWhey, [email protected]; Lisheen Mine, Tel.: Killoran, +351‐212948550 Moyne, E41 R622 Tipperary, Ireland; [email protected] * Correspondence: [email protected]; Tel.: +351-212948550 Abstract: Lectins are a class of proteins responsible for several biological roles such as cell‐cell in‐ Abstract:teractions,Lectins signaling are pathways, a class of and proteins several responsible innate immune for several responses biological against roles pathogens. such as Since cell-cell lec‐ interactions,tins are able signalingto bind to pathways, carbohydrates, and several they can innate be a immuneviable target responses for targeted against drug pathogens. delivery Since sys‐ lectinstems. In are fact, able several to bind lectins to carbohydrates, were approved they by canFood be and a viable Drug targetAdministration for targeted for drugthat purpose. delivery systems.Information In fact, about several specific lectins carbohydrate were approved recognition by Food by andlectin Drug receptors Administration was gathered for that herein, purpose. plus Informationthe specific organs about specific where those carbohydrate lectins can recognition be found by within lectin the receptors human was body. -
Aberrant Human Tissue Kallikrein Levels in the Stratum Corneum and Serum of Patients with Psoriasis: Dependence on Phenotype, Severity and Therapy N
CLINICAL AND LABORATORY INVESTIGATIONS DOI 10.1111/j.1365-2133.2006.07743.x Aberrant human tissue kallikrein levels in the stratum corneum and serum of patients with psoriasis: dependence on phenotype, severity and therapy N. Komatsu,* à K. Saijoh,§ C. Kuk,* F. Shirasaki,à K. Takeharaà and E.P. Diamandis* *Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5G 1L5, Canada àDepartment of Dermatology and §Department of Hygiene, Graduate School of Medical Science, School of Medicine, Kanazawa University, Kanazawa, Japan Summary Correspondence Background Human tissue kallikreins (KLKs) are a family of 15 trypsin-like or Eleftherios P. Diamandis. chymotrypsin-like secreted serine proteases (KLK1–KLK15). Multiple KLKs have E-mail: [email protected] been quantitatively identified in normal stratum corneum (SC) and sweat as can- didate desquamation-related proteases. Accepted for publication 7 November 2006 Objectives To quantify KLK5, KLK6, KLK7, KLK8, KLK10, KLK11, KLK13 and KLK14 in the SC and serum of patients with psoriasis, and their variation Key words between lesional and nonlesional areas and with phenotype, therapy and severity. diagnostic marker, human kallikreins, psoriasis, The overall SC serine protease activities were also measured. serine proteases, stratum corneum, therapy Methods Enzyme-linked immunosorbent assays and enzymatic assays were used. Conflicts of interest Results The lesional SC of psoriasis generally contained significantly higher levels None declared. of all KLKs. KLK6, KLK10 and KLK13 levels were significantly elevated even in the nonlesional SC. The overall trypsin-like, plasmin-like and furin-like activities were significantly elevated in the lesional SC. -
Human Tissue Kallikrein Expression in the Stratum Corneum and Serum of Atopic Dermatitis Patients
DOI:10.1111/j.1600-0625.2007.00562.x www.blackwellpublishing.com/EXD Original Article Human tissue kallikrein expression in the stratum corneum and serum of atopic dermatitis patients Nahoko Komatsu1,2,3,4, Kiyofumi Saijoh4, Cynthia Kuk1, Amber C. Liu1, Saba Khan1, Fumiaki Shirasaki3, Kazuhiko Takehara3 and Eleftherios P. Diamandis1,2 1Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada; 2Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; 3Department of Dermatology, Graduate School of Medical Science, School of Medicine, Kanazawa University, Kanazawa, Japan; 4Department of Hygiene, Graduate School of Medical Science, School of Medicine, Kanazawa University, Kanazawa, Japan Correspondence: Eleftherios P. Diamandis, MD, PhD, FRCPC, Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada, Tel.: +1 416 586 8443, Fax: +1 416 586 8628, e-mail: [email protected] Accepted for publication 9 March 2007 Abstract: Human tissue kallikreins are a family of 15 trypsin- or differ significantly. In the serum of AD patients, KLK8 was chymotrypsin-like secreted serine proteases (KLK1–KLK15). Many significantly elevated and KLK5 and KLK11 were significantly KLKs have been identified in normal stratum corneum (SC) and decreased. However, their serum levels were not modified by sweat, and are candidate desquamation-related proteases. We corticosteroid topical agents. The alterations of KLK levels in the report quantification by enzyme-linked immunosorbent assay SC of AD were more pronounced than those in the serum. KLK7 (ELISA) of KLK5, KLK6, KLK7, KLK8, KLK10, KLK11, KLK13 and in the serum was significantly correlated with eosinophil counts in KLK14 in the SC and serum of atopic dermatitis (AD) patients by the blood of AD patients, while KLK5, KLK8 and KLK11 were ELISA, and examine their variation with clinical phenotype, significantly correlated with LDH in the serum. -
Loss of MAGEL2 in Prader-Willi Syndrome Leads to Decreased Secretory Granule and Neuropeptide Production
Loss of MAGEL2 in Prader-Willi syndrome leads to decreased secretory granule and neuropeptide production Helen Chen, … , Lawrence T. Reiter, Patrick Ryan Potts JCI Insight. 2020;5(17):e138576. https://doi.org/10.1172/jci.insight.138576. Research Article Cell biology Neuroscience Graphical abstract Find the latest version: https://jci.me/138576/pdf RESEARCH ARTICLE Loss of MAGEL2 in Prader-Willi syndrome leads to decreased secretory granule and neuropeptide production Helen Chen,1 A. Kaitlyn Victor,2 Jonathon Klein,1 Klementina Fon Tacer,1 Derek J.C. Tai,3,4,5 Celine de Esch,3,4,5 Alexander Nuttle,3,4,5 Jamshid Temirov,1 Lisa C. Burnett,6,7 Michael Rosenbaum,7 Yiying Zhang,7 Li Ding,8 James J. Moresco,9 Jolene K. Diedrich,9 John R. Yates III,9 Heather S. Tillman,10 Rudolph L. Leibel,7 Michael E. Talkowski,3,4,5 Daniel D. Billadeau,8 Lawrence T. Reiter,2 and Patrick Ryan Potts1 1Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA. 2Department of Neurology, Department of Pediatrics, and Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA. 3Center for Genomic Medicine, Department of Neurology, Department of Pathology, and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA. 4Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA. 5Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts, USA. 6Levo Therapeutics, Inc., Skokie, Illinois, USA. 7Division of Molecular Genetics, Department of Pediatrics, and Naomi Berrie Diabetes Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA. -
Explorative Bioinformatic Analysis of Cardiomyocytes in 2D &3D in Vitro Culture System
EXPLORATIVE BIOINFORMATIC ANALYSIS OF CARDIOMYOCYTES IN 2D &3D IN VITRO CULTURE SYSTEM VERSION 2 Master Degree Project in Bioscience One years Level, 60 ECTS Sruthy Janardanan [email protected] Supervisor: Jane Synnergren [email protected] Examiner: Sanja Jurcevic [email protected] Abstract The in vitro cell culture models of human pluripotent stem cells (hPSC)-derived cardiomyocytes (CMs) have gained a predominant value in the field of drug discovery and is considered an attractive tool for cardiovascular disease modellings. However, despite several reports of different protocols for the hPSC-differentiation into CMs, the development of an efficient, controlled and reproducible 3D differentiation remains challenging. The main aim of this research study was to understand the changes in the gene expression as an impact of spatial orientation of hPSC-derived CMs in 2D(two-dimensional) and 3D(three-dimensional) culture conditions and to identify the topologically important Hub and Hub-Bottleneck proteins using centrality measures to gain new knowledge for standardizing the pre-clinical models for the regeneration of CMs. The above-mentioned aim was achieved through an extensive bioinformatic analysis on the list of differentially expressed genes (DEGs) identified from RNA-sequencing (RNA-Seq). Functional annotation analysis of the DEGs from both 2D and 3D was performed using Cytoscape plug-in ClueGO. Followed by the topological analysis of the protein-protein interaction network (PPIN) using two centrality parameters; Degree and Betweeness in Cytoscape plug-in CenTiScaPe. The results obtained revealed that compared to 2D, DEGs in 3D are primarily associated with cell signalling suggesting the interaction between cells as an impact of the 3D microenvironment and topological analysis revealed 32 and 39 proteins as Hub and Hub-Bottleneck proteins, respectively in 3D indicating the possibility of utilizing those identified genes and their corresponding proteins as cardiac disease biomarkers in future by further research. -
Download, Or Email Articles for Individual Use
Florida State University Libraries Faculty Publications The Department of Biomedical Sciences 2010 Functional Intersection of the Kallikrein- Related Peptidases (KLKs) and Thrombostasis Axis Michael Blaber, Hyesook Yoon, Maria Juliano, Isobel Scarisbrick, and Sachiko Blaber Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] Article in press - uncorrected proof Biol. Chem., Vol. 391, pp. 311–320, April 2010 • Copyright ᮊ by Walter de Gruyter • Berlin • New York. DOI 10.1515/BC.2010.024 Review Functional intersection of the kallikrein-related peptidases (KLKs) and thrombostasis axis Michael Blaber1,*, Hyesook Yoon1, Maria A. locus (Gan et al., 2000; Harvey et al., 2000; Yousef et al., Juliano2, Isobel A. Scarisbrick3 and Sachiko I. 2000), as well as the adoption of a commonly accepted Blaber1 nomenclature (Lundwall et al., 2006), resolved these two fundamental issues. The vast body of work has associated 1 Department of Biomedical Sciences, Florida State several cancer pathologies with differential regulation or University, Tallahassee, FL 32306-4300, USA expression of individual members of the KLK family, and 2 Department of Biophysics, Escola Paulista de Medicina, has served to elevate the importance of the KLKs in serious Universidade Federal de Sao Paulo, Rua Tres de Maio 100, human disease and their diagnosis (Diamandis et al., 2000; 04044-20 Sao Paulo, Brazil Diamandis and Yousef, 2001; Yousef and Diamandis, 2001, 3 Program for Molecular Neuroscience and Departments of 2003;