19 DBSCAN Revisited, Revisited: Why and How You Should (Still)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Curse of Dimensionality for TSK Fuzzy Neural Networks
Curse of Dimensionality for TSK Fuzzy Neural Networks: Explanation and Solutions Yuqi Cui, Dongrui Wu and Yifan Xu School of Artificial Intelligence and Automation Huazhong University of Science and Technology Wuhan, China yqcui, drwu, yfxu @hust.edu.cn { } Abstract—Takagi-Sugeno-Kang (TSK) fuzzy system with usually use distance based approaches to compute membership Gaussian membership functions (MFs) is one of the most widely grades, so when it comes to high-dimensional datasets, the used fuzzy systems in machine learning. However, it usually fuzzy partitions may collapse. For instance, FCM is known has difficulty handling high-dimensional datasets. This paper explores why TSK fuzzy systems with Gaussian MFs may fail to have trouble handling high-dimensional datasets, because on high-dimensional inputs. After transforming defuzzification the membership grades of different clusters become similar, to an equivalent form of softmax function, we find that the poor leading all centers to move to the center of the gravity [18]. performance is due to the saturation of softmax. We show that Most previous works used feature selection or dimensional- two defuzzification operations, LogTSK and HTSK, the latter of ity reduction to cope with high-dimensionality. Model-agnostic which is first proposed in this paper, can avoid the saturation. Experimental results on datasets with various dimensionalities feature selection or dimensionality reduction algorithms, such validated our analysis and demonstrated the effectiveness of as Relief [19] and principal component analysis (PCA) [20], LogTSK and HTSK. [21], can filter the features before feeding them into TSK Index Terms—Mini-batch gradient descent, fuzzy neural net- models. Neural networks pre-trained on large datasets can also work, high-dimensional TSK fuzzy system, HTSK, LogTSK be used as feature extractor to generate high-level features with low dimensionality [22], [23]. -
Lecture 04 Linear Structures Sort
Algorithmics (6EAP) MTAT.03.238 Linear structures, sorting, searching, etc Jaak Vilo 2018 Fall Jaak Vilo 1 Big-Oh notation classes Class Informal Intuition Analogy f(n) ∈ ο ( g(n) ) f is dominated by g Strictly below < f(n) ∈ O( g(n) ) Bounded from above Upper bound ≤ f(n) ∈ Θ( g(n) ) Bounded from “equal to” = above and below f(n) ∈ Ω( g(n) ) Bounded from below Lower bound ≥ f(n) ∈ ω( g(n) ) f dominates g Strictly above > Conclusions • Algorithm complexity deals with the behavior in the long-term – worst case -- typical – average case -- quite hard – best case -- bogus, cheating • In practice, long-term sometimes not necessary – E.g. for sorting 20 elements, you dont need fancy algorithms… Linear, sequential, ordered, list … Memory, disk, tape etc – is an ordered sequentially addressed media. Physical ordered list ~ array • Memory /address/ – Garbage collection • Files (character/byte list/lines in text file,…) • Disk – Disk fragmentation Linear data structures: Arrays • Array • Hashed array tree • Bidirectional map • Heightmap • Bit array • Lookup table • Bit field • Matrix • Bitboard • Parallel array • Bitmap • Sorted array • Circular buffer • Sparse array • Control table • Sparse matrix • Image • Iliffe vector • Dynamic array • Variable-length array • Gap buffer Linear data structures: Lists • Doubly linked list • Array list • Xor linked list • Linked list • Zipper • Self-organizing list • Doubly connected edge • Skip list list • Unrolled linked list • Difference list • VList Lists: Array 0 1 size MAX_SIZE-1 3 6 7 5 2 L = int[MAX_SIZE] -
Enhancement of DBSCAN Algorithm and Transparency Clustering Of
IJRECE VOL. 5 ISSUE 4 OCT.-DEC. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE) Enhancement of DBSCAN Algorithm and Transparency Clustering of Large Datasets Kumari Silky1, Nitin Sharma2 1Research Scholar, 2Assistant Professor Institute of Engineering Technology, Alwar, Rajasthan, India Abstract: The data mining is the technique which can extract process of dividing the data into similar objects groups. A level useful information from the raw data. The clustering is the of simplification is achieved in case of less number of clusters technique of data mining which can group similar and dissimilar involved. But because of less number of clusters some of the type of information. The density based clustering is the type of fine details have been lost. With the use or help of clusters the clustering which can cluster data according to the density. The data is modeled. According to the machine learning view, the DBSCAN is the algorithm of density based clustering in which clusters search in a unsupervised manner and it is also as the EPS value is calculated which define radius of the cluster. The hidden patterns. The system that comes as an outcome defines a Euclidian distance will be calculated using neural networks data concept [3]. The clustering mechanism does not have only which calculate similarity in the more effective manner. The one step it can be analyzed from the definition of clustering. proposed algorithm is implemented in MATLAB and results are Apart from partitional and hierarchical clustering algorithms analyzed in terms of accuracy, execution time. number of new techniques has been evolved for the purpose of clustering of data. -
Comparison of Dimensionality Reduction Techniques on Audio Signals
Comparison of Dimensionality Reduction Techniques on Audio Signals Tamás Pál, Dániel T. Várkonyi Eötvös Loránd University, Faculty of Informatics, Department of Data Science and Engineering, Telekom Innovation Laboratories, Budapest, Hungary {evwolcheim, varkonyid}@inf.elte.hu WWW home page: http://t-labs.elte.hu Abstract: Analysis of audio signals is widely used and this work: car horn, dog bark, engine idling, gun shot, and very effective technique in several domains like health- street music [5]. care, transportation, and agriculture. In a general process Related work is presented in Section 2, basic mathe- the output of the feature extraction method results in huge matical notation used is described in Section 3, while the number of relevant features which may be difficult to pro- different methods of the pipeline are briefly presented in cess. The number of features heavily correlates with the Section 4. Section 5 contains data about the evaluation complexity of the following machine learning method. Di- methodology, Section 6 presents the results and conclu- mensionality reduction methods have been used success- sions are formulated in Section 7. fully in recent times in machine learning to reduce com- The goal of this paper is to find a combination of feature plexity and memory usage and improve speed of following extraction and dimensionality reduction methods which ML algorithms. This paper attempts to compare the state can be most efficiently applied to audio data visualization of the art dimensionality reduction techniques as a build- in 2D and preserve inter-class relations the most. ing block of the general process and analyze the usability of these methods in visualizing large audio datasets. -
DBSCAN++: Towards Fast and Scalable Density Clustering
DBSCAN++: Towards fast and scalable density clustering Jennifer Jang 1 Heinrich Jiang 2 Abstract 2, it quickly starts to exhibit quadratic behavior in high di- mensions and/or when n becomes large. In fact, we show in DBSCAN is a classical density-based clustering Figure1 that even with a simple mixture of 3-dimensional procedure with tremendous practical relevance. Gaussians, DBSCAN already starts to show quadratic be- However, DBSCAN implicitly needs to compute havior. the empirical density for each sample point, lead- ing to a quadratic worst-case time complexity, The quadratic runtime for these density-based procedures which is too slow on large datasets. We propose can be seen from the fact that they implicitly must compute DBSCAN++, a simple modification of DBSCAN density estimates for each data point, which is linear time which only requires computing the densities for a in the worst case for each query. In the case of DBSCAN, chosen subset of points. We show empirically that, such queries are proximity-based. There has been much compared to traditional DBSCAN, DBSCAN++ work done in using space-partitioning data structures such can provide not only competitive performance but as KD-Trees (Bentley, 1975) and Cover Trees (Beygelzimer also added robustness in the bandwidth hyperpa- et al., 2006) to improve query times, but these structures are rameter while taking a fraction of the runtime. all still linear in the worst-case. Another line of work that We also present statistical consistency guarantees has had practical success is in approximate nearest neigh- showing the trade-off between computational cost bor methods (e.g. -
Optimal Grid-Clustering : Towards Breaking the Curse of Dimensionality in High-Dimensional Clustering
Optimal Grid-Clustering: Towards Breaking the Curse of Dimensionality in High-Dimensional Clustering Alexander Hinneburg Daniel A. Keim [email protected] [email protected] Institute of Computer Science, UniversityofHalle Kurt-Mothes-Str.1, 06120 Halle (Saale), Germany Abstract 1 Intro duction Because of the fast technological progress, the amount Many applications require the clustering of large amounts of data which is stored in databases increases very fast. of high-dimensional data. Most clustering algorithms, This is true for traditional relational databases but however, do not work e ectively and eciently in high- also for databases of complex 2D and 3D multimedia dimensional space, which is due to the so-called "curse of data such as image, CAD, geographic, and molecular dimensionality". In addition, the high-dimensional data biology data. It is obvious that relational databases often contains a signi cant amount of noise which causes can be seen as high-dimensional databases (the at- additional e ectiveness problems. In this pap er, we review tributes corresp ond to the dimensions of the data set), and compare the existing algorithms for clustering high- butitisalsotrueformultimedia data which - for an dimensional data and show the impact of the curse of di- ecient retrieval - is usually transformed into high- mensionality on their e ectiveness and eciency.Thecom- dimensional feature vectors such as color histograms parison reveals that condensation-based approaches (such [SH94], shap e descriptors [Jag91, MG95], Fourier vec- as BIRCH or STING) are the most promising candidates tors [WW80], and text descriptors [Kuk92]. In many for achieving the necessary eciency, but it also shows of the mentioned applications, the databases are very that basically all condensation-based approaches havese- large and consist of millions of data ob jects with sev- vere weaknesses with resp ect to their e ectiveness in high- eral tens to a few hundreds of dimensions. -
Density-Based Clustering of Static and Dynamic Functional MRI Connectivity
Rangaprakash et al. Brain Inf. (2020) 7:19 https://doi.org/10.1186/s40708-020-00120-2 Brain Informatics RESEARCH Open Access Density-based clustering of static and dynamic functional MRI connectivity features obtained from subjects with cognitive impairment D. Rangaprakash1,2,3, Toluwanimi Odemuyiwa4, D. Narayana Dutt5, Gopikrishna Deshpande6,7,8,9,10,11,12,13* and Alzheimer’s Disease Neuroimaging Initiative Abstract Various machine-learning classifcation techniques have been employed previously to classify brain states in healthy and disease populations using functional magnetic resonance imaging (fMRI). These methods generally use super- vised classifers that are sensitive to outliers and require labeling of training data to generate a predictive model. Density-based clustering, which overcomes these issues, is a popular unsupervised learning approach whose util- ity for high-dimensional neuroimaging data has not been previously evaluated. Its advantages include insensitivity to outliers and ability to work with unlabeled data. Unlike the popular k-means clustering, the number of clusters need not be specifed. In this study, we compare the performance of two popular density-based clustering methods, DBSCAN and OPTICS, in accurately identifying individuals with three stages of cognitive impairment, including Alzhei- mer’s disease. We used static and dynamic functional connectivity features for clustering, which captures the strength and temporal variation of brain connectivity respectively. To assess the robustness of clustering to noise/outliers, we propose a novel method called recursive-clustering using additive-noise (R-CLAN). Results demonstrated that both clustering algorithms were efective, although OPTICS with dynamic connectivity features outperformed in terms of cluster purity (95.46%) and robustness to noise/outliers. -
Effect of Distance Measures on Partitional Clustering Algorithms
Sesham Anand et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (6) , 2015, 5308-5312 Effect of Distance measures on Partitional Clustering Algorithms using Transportation Data Sesham Anand#1, P Padmanabham*2, A Govardhan#3 #1Dept of CSE,M.V.S.R Engg College, Hyderabad, India *2Director, Bharath Group of Institutions, BIET, Hyderabad, India #3Dept of CSE, SIT, JNTU Hyderabad, India Abstract— Similarity/dissimilarity measures in clustering research of algorithms, with an emphasis on unsupervised algorithms play an important role in grouping data and methods in cluster analysis and outlier detection[1]. High finding out how well the data differ with each other. The performance is achieved by using many data index importance of clustering algorithms in transportation data has structures such as the R*-trees.ELKI is designed to be easy been illustrated in previous research. This paper compares the to extend for researchers in data mining particularly in effect of different distance/similarity measures on a partitional clustering algorithm kmedoid(PAM) using transportation clustering domain. ELKI provides a large collection of dataset. A recently developed data mining open source highly parameterizable algorithms, in order to allow easy software ELKI has been used and results illustrated. and fair evaluation and benchmarking of algorithms[1]. Data mining research usually leads to many algorithms Keywords— clustering, transportation Data, partitional for similar kind of tasks. If a comparison is to be made algorithms, cluster validity, distance measures between these algorithms.In ELKI, data mining algorithms and data management tasks are separated and allow for an I. INTRODUCTION independent evaluation. -
Outlier Detection in Graphs: a Study on the Impact of Multiple Graph Models
Computer Science and Information Systems 16(2):565–595 https://doi.org/10.2298/CSIS181001010C Outlier Detection in Graphs: A Study on the Impact of Multiple Graph Models Guilherme Oliveira Campos1;2, Edre´ Moreira1, Wagner Meira Jr.1, and Arthur Zimek2 1 Federal University of Minas Gerais Belo Horizonte, Minas Gerais, Brazil fgocampos,edre,[email protected] 2 University of Southern Denmark Odense, Denmark [email protected] Abstract. Several previous works proposed techniques to detect outliers in graph data. Usually, some complex dataset is modeled as a graph and a technique for de- tecting outliers in graphs is applied. The impact of the graph model on the outlier detection capabilities of any method has been ignored. Here we assess the impact of the graph model on the outlier detection performance and the gains that may be achieved by using multiple graph models and combining the results obtained by these models. We show that assessing the similarity between graphs may be a guid- ance to determine effective combinations, as less similar graphs are complementary with respect to outlier information they provide and lead to better outlier detection. Keywords: outlier detection, multiple graph models, ensemble. 1. Introduction Outlier detection is a challenging problem, since the concept of outlier is problem-de- pendent and it is hard to capture the relevant dimensions in a single metric. The inherent subjectivity related to this task just intensifies its degree of difficulty. The increasing com- plexity of the datasets as well as the fact that we are deriving new datasets through the integration of existing ones is creating even more complex datasets. -
High Dimensional Geometry, Curse of Dimensionality, Dimension Reduction Lecturer: Pravesh Kothari Scribe:Sanjeev Arora
princeton univ. F'16 cos 521: Advanced Algorithm Design Lecture 9: High Dimensional Geometry, Curse of Dimensionality, Dimension Reduction Lecturer: Pravesh Kothari Scribe:Sanjeev Arora High-dimensional vectors are ubiquitous in applications (gene expression data, set of movies watched by Netflix customer, etc.) and this lecture seeks to introduce high dimen- sional geometry. We encounter the so-called curse of dimensionality which refers to the fact that algorithms are simply harder to design in high dimensions and often have a running time exponential in the dimension. We also encounter the blessings of dimensionality, which allows us to reason about higher dimensional geometry using tools like Chernoff bounds. We also show the possibility of dimension reduction | it is sometimes possible to reduce the dimension of a dataset, for some purposes. d P 2 1=2 Notation: For a vector x 2 < its `2-norm is jxj2 = ( i xi ) and the `1-norm is P jxj1 = i jxij. For any two vectors x; y their Euclidean distance refers to jx − yj2 and Manhattan distance refers to jx − yj1. High dimensional geometry is inherently different from low-dimensional geometry. Example 1 Consider how many almost orthogonal unit vectors we can have in space, such that all pairwise angles lie between 88 degrees and 92 degrees. In <2 the answer is 2. In <3 it is 3. (Prove these to yourself.) In <d the answer is exp(cd) where c > 0 is some constant. Rd# R2# R3# Figure 1: Number of almost-orthogonal vectors in <2; <3; <d Example 2 Another example is the ratio of the the volume of the unit sphere to its cir- cumscribing cube (i.e. -
Cover Trees for Nearest Neighbor
Cover Trees for Nearest Neighbor Alina Beygelzimer [email protected] IBM Thomas J. Watson Research Center, Hawthorne, NY 10532 Sham Kakade [email protected] TTI-Chicago, 1427 E 60th Street, Chicago, IL 60637 John Langford [email protected] TTI-Chicago, 1427 E 60th Street, Chicago, IL 60637 Abstract The basic nearest neighbor problem is as follows: We present a tree data structure for fast Given a set S of n points in some metric space (X, d), nearest neighbor operations in general n- the problem is to preprocess S so that given a query point metric spaces (where the data set con- point p ∈ X, one can efficiently find a point q ∈ S sists of n points). The data structure re- which minimizes d(p, q). quires O(n) space regardless of the met- ric’s structure yet maintains all performance Context. For general metrics, finding (or even ap- properties of a navigating net [KL04a]. If proximating) the nearest neighbor of a point requires the point set has a bounded expansion con- Ω(n) time. The classical example is a uniform met- stant c, which is a measure of the intrinsic ric where every pair of points is near the same dis- dimensionality (as defined in [KR02]), the tance, so there is no structure to take advantage of. cover tree data structure can be constructed However, the metrics of practical interest typically do in O c6n log n time. Furthermore, nearest have some structure which can be exploited to yield neighbor queries require time only logarith- significant computational speedups. -
Clustering for High Dimensional Data: Density Based Subspace Clustering Algorithms
International Journal of Computer Applications (0975 – 8887) Volume 63– No.20, February 2013 Clustering for High Dimensional Data: Density based Subspace Clustering Algorithms Sunita Jahirabadkar Parag Kulkarni Department of Computer Engineering & I.T., Department of Computer Engineering & I.T., College of Engineering, Pune, India College of Engineering, Pune, India ABSTRACT hiding clusters in noisy data. Then, common approach is to Finding clusters in high dimensional data is a challenging task as reduce the dimensionality of the data, of course, without losing the high dimensional data comprises hundreds of attributes. important information. Subspace clustering is an evolving methodology which, instead Fundamental techniques to eliminate such irrelevant dimensions of finding clusters in the entire feature space, it aims at finding can be considered as Feature selection or Feature clusters in various overlapping or non-overlapping subspaces of Transformation techniques [5]. Feature transformation methods the high dimensional dataset. Density based subspace clustering such as aggregation, dimensionality reduction etc. project the algorithms treat clusters as the dense regions compared to noise higher dimensional data onto a smaller space while preserving or border regions. Many momentous density based subspace the distance between the original data objects. The commonly clustering algorithms exist in the literature. Each of them is used methods are Principal Component Analysis [6, 7], Singular characterized by different characteristics caused by different Value Decomposition [8] etc. The major limitation of feature assumptions, input parameters or by the use of different transformation approaches is, they do not actually remove any of techniques etc. Hence it is quite unfeasible for the future the attributes and hence the information from the not-so-useful developers to compare all these algorithms using one common dimensions is preserved, making the clusters less meaningful.