Downloaded 10/10/21 10:19 AM UTC APRIL 2013 J I a N D K a N G 1279

Total Page:16

File Type:pdf, Size:1020Kb

Downloaded 10/10/21 10:19 AM UTC APRIL 2013 J I a N D K a N G 1279 1278 JOURNAL OF THE ATMOSPHERIC SCIENCES VOLUME 70 Double-Nested Dynamical Downscaling Experiments over the Tibetan Plateau and Their Projection of Climate Change under Two RCP Scenarios ZHENMING JI Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China SHICHANG KANG Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, and State Key Laboratory of Cryospheric Science, Chinese Academy of Sciences, Beijing, China (Manuscript received 30 May 2012, in final form 7 November 2012) ABSTRACT A high-resolution regional climate model is used to simulate climate change over the Tibetan Plateau (TP). The model is driven at the grid spacing of 10 km by nesting the outputs of 50-km-resolution simulations. The results show that the models can capture the spatial and temporal distributions of the surface air temperature over the TP. The so-called double-nested method has a higher horizontal resolution and represents more spatial details. For example, the temperature simulations from the double-nested method reflect the obser- vations better compared to the 50-km-resolution models. This is mainly due to the fact that topographical effects of complex terrains are detected better at higher resolution. Although both models can represent the basic patterns of precipitation, the simulated results are not as good as those of temperature. In the future, significant warming seems to develop over the TP under two representative concentration pathway (RCP) scenarios. Greater increases occur in December–February (DJF) compared with June–August (JJA). The increasing temperature trend is more pronounced over the Gangdese Mountains and over the Himalayas than in the central TP. The projection of precipitation shows the main increases in DJF. In JJA, it predicts de- creases or slight changes in the southern TP. The comparison between RCP8.5 and RCP4.5 scenarios shows a similar spatial distributions of temperature and precipitation, whereas the respective values of RCP8.5 are enhanced compared with those under RCP4.5. 1. Introduction Gangdise Mountains) and lakes (e.g., Nam Co, Qinhai Lake) are located in the TP. As the ‘‘water tower of Asia,’’ The Tibetan Plateau (TP), known as the ‘‘third pole,’’ the TP is also the cradle of the Yangtze, Yellow, Salween, displays the highest elevation and most complex surface Mekong, Brahmaputra, Indus, and Ganges Rivers. characteristics in the world. It is surrounded by the Mountains, glaciers, lakes, rivers, permafrost, and alpine Hengduan Mountains in the east, the Karakoram Moun- meadow coexist in the sensitive cryospheric environment. tains in the west, and the Himalaya Range, which sepa- As the ‘‘sensor’’ for global climate change (Schwalb rates South Asia and the TP in the south and the Kunlun et al. 2008), the temperature of the TP increased rapidly and Qilian Mountains in the north and northeast, re- (Kang et al. 2010) in recent decades. Warming could spectively. The altitude of the majority of these mountains lead to changes of agriculture (Qin 2002), ecology (Wu exceeds 6000 m. Many basins (e.g., Qaidam, Qiangtang et al. 2006; Klein et al. 2007), natural disasters (Yao Basins), valleys (e.g., Yalungtsangpo, Polungtsangpo 2010), hydrological processes, and water resources (Yao Canyons), mountains (e.g., Tanggula, Nyenchen Tanglha, et al. 2007, 2004; Ye et al. 2008). Many studies about the climate change of the TP have been based on observed data (Qin et al. 2006; Liu et al. 2006; You et al. 2010a,b). Corresponding author address: Zhenming Ji, Institute of Tibetan Plateau Research, Building 3, Courtyard 16, Lin Cui Road, However, the meteorological stations are scarce in the Chaoyang District, Beijing 100101, China. TP, especially in mountainous areas. This limits the re- E-mail: [email protected] search that has to be carried out. DOI: 10.1175/JAS-D-12-0155.1 Ó 2013 American Meteorological Society Unauthenticated | Downloaded 10/10/21 10:19 AM UTC APRIL 2013 J I A N D K A N G 1279 Previous studies had analyzed climate change in the et al. 1993a,b) and RegCM3 (Pal et al. 2007). The series TP using the results of the general circulation models of RegCMs were widely used to address research about (GCMs) (Xu et al. 2003). However, the performance of climate change (Gao et al. 2011, 2012; Shi et al. 2009, GCMs was not good enough because of the coarse res- 2011a,b; Ji and Kang 2013), extreme-events assessment olution (Gao et al. 2008) that makes it difficult to cap- (Gao et al. 2002; Shi et al. 2010), hydrology-resources ture details of the surface characteristics in the TP. On assessment (Wu et al. 2012), aerosols’ effects (Ji et al. the other hand, regional climate models (RCMs) can 2010, 2011; Zhang et al. 2009), land use changes (Gao compensate for the shortage of lower grid space from et al. 2007; Zhang et al. 2010), short-term climate pre- GCMs. Thus, the downscaling results of RCMs show diction (Ju and Lang 2011), and paleoclimate simula- more realistic climatological distribution compared with tions (Ju et al. 2007). the GCM outputs (Shi 2010). However, the errors, es- RegCM4 is based on the hydrostatic version of the pecially the cold bias between RCMs and observations, dynamical core of the fifth-generation Pennsylvania were still obvious in the TP (Zhang et al. 2005; Shi et al. State University (PSU)–National Center for Atmo- 2011b). spheric Research (NCAR) Mesoscale Model (MM5) Generally, the horizontal grid space of RCM is at 30– (Grell et al. 1994). Radiation transfer is computed using 60 km, which is largely determined by the GCM’s res- the radiative package of the NCAR Community Cli- olution (the ratio of RCM and GCM resolutions should mate Model 3 (CCM3; Kiehl et al. 1996), and the land be in the range of 3–5) (Gao et al. 2011). However, that surface processes are carried out with the Biosphere– resolution does not perform well over the regions of Atmosphere Transfer Scheme (BATS1e; Dickinson complex terrain. Thus, much finer results can be ob- et al. 1993). The nonlocal boundary scheme is repre- tained by the double-nested technique (Leung and Qian sented by Holtslag et al. (1990) while the ocean flux 2003). Im et al. (2006) used a one-way double-nested parameterization follows Zeng et al. (1998). Convective method to simulate the present climate over the Korea precipitation is using the mass flux scheme of Grell Peninsula at 20-km grid space. And Wu et al. (2012) (1993) with Arakawa and Schubert–type closure (Arakawa investigated the climate effects of Three Gorges reser- and Schubert 1974) assumption. voir using two double-nested simulations. But relatively Initial and lateral boundary conditions were obtained few results were conducted with small domains and from the global model Beijing Climate Center Climate short simulated periods. Until now, there are few results System Model, version 1.1 (BCC_CSM1.1). BCC_ at the 10-km resolution over the TP. CSM1.1 is one of the Chinese models in phase 5 of the In this paper, we used a double-nested dynamic down- Coupled Model Intercomparison Project (CMIP5) scaling method and conducted simulations at 10-km (Taylor et al. 2012). It is composed of the following resolution over the TP. First, the model capability is parts: the BCC_AGCM2.1 atmospheric model (Wu evaluated by comparing with observations. Then, the et al. 2010; Wu 2011), which is developed from the NCAR projection of climatic change is displayed under two Community Atmosphere Model version 3 (CAM3) representative concentration pathway (RCP) scenarios. (Collins et al. 2004); the BCC Atmosphere-Vegetation- The RCP4.5 pathway is a stabilization of radiative Interaction Model, version 1 (BCC_AVIM1) land sur- 2 forcing at 4.5 W m 2 in 2100 and it represents a low- face model (Ji 1995); the ocean and sea ice module of emission scenario. The RCP8.5 pathway stands for a high the Modular Ocean Model, version 4, with 40 vertical level of greenhouse gas (GHG) emissions scenario and levels (MOM4-L40) (Griffes et al. 2004); and the Sea 2 GHGs’ radiative forcing is near 8.5 W m 2 in the end of Ice Simulator (SIS) from the Geophysical Fluid Dy- the twenty-first century (Moss et al. 2008). This work namics Laboratory (GFDL). Horizontal resolution of represents an early high-resolution regional climate sim- BCC_AGCM2.1 is T42 (;280 km) and the vertical layers ulation over the TP that may contribute to better un- are 26. Previous evaluation of the model performance derstanding the impact of climate change and thus the shows good results in simulating the present temperature adaptation strategies for the local society. and precipitation (Wu et al. 2010; Zhang et al. 2011). Land use types are based on observed data within China (Liu et al. 2003) and satellite data of Global Land Cover 2. Model, data, and experimental design Characterization (GLCC) (Loveland et al. 2000) devel- The model employed is the Regional Climate Model, oped by the U.S. Geological Survey (USGS) outside China. version 4, (RegCM4) developed by the group of Earth The experiments are completed by two steps. First, we System Physics at Abdus Salam International Center for use a period of 150 yr (1950–2099; the first year is con- Theoretical Physics (Giorgi et al. 2012). RegCM4 is sidered as model spinup time) simulation (EXP1) over updated from the previous version of RegCM2 (Giorgi East Asia. In EXP1, the horizontal grid spacing is 50 km Unauthenticated | Downloaded 10/10/21 10:19 AM UTC 1280 JOURNAL OF THE ATMOSPHERIC SCIENCES VOLUME 70 TABLE 1.
Recommended publications
  • Glaciers in Xinjiang, China: Past Changes and Current Status
    water Article Glaciers in Xinjiang, China: Past Changes and Current Status Puyu Wang 1,2,3,*, Zhongqin Li 1,3,4, Hongliang Li 1,2, Zhengyong Zhang 3, Liping Xu 3 and Xiaoying Yue 1 1 State Key Laboratory of Cryosphere Science/Tianshan Glaciological Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; [email protected] (Z.L.); [email protected] (H.L.); [email protected] (X.Y.) 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 College of Sciences, Shihezi University, Shihezi 832000, China; [email protected] (Z.Z.); [email protected] (L.X.) 4 College of Geography and Environment Sciences, Northwest Normal University, Lanzhou 730070, China * Correspondence: [email protected] Received: 18 June 2020; Accepted: 11 August 2020; Published: 24 August 2020 Abstract: The Xinjiang Uyghur Autonomous Region of China is the largest arid region in Central Asia, and is heavily dependent on glacier melt in high mountains for water supplies. In this paper, glacier and climate changes in Xinjiang during the past decades were comprehensively discussed based on glacier inventory data, individual monitored glacier observations, recent publications, as well as meteorological records. The results show that glaciers have been in continuous mass loss and dimensional shrinkage since the 1960s, although there are spatial differences between mountains and sub-regions, and the significant temperature increase is the dominant controlling factor of glacier change. The mass loss of monitored glaciers in the Tien Shan has accelerated since the late 1990s, but has a slight slowing after 2010. Remote sensing results also show a more negative mass balance in the 2000s and mass loss slowing in the latest decade (2010s) in most regions.
    [Show full text]
  • Mineralogy and Geochemistry of Nephrite Jade from Yinggelike Deposit, Altyn Tagh (Xinjiang, NW China)
    minerals Article Mineralogy and Geochemistry of Nephrite Jade from Yinggelike Deposit, Altyn Tagh (Xinjiang, NW China) Ying Jiang 1, Guanghai Shi 1,* , Liguo Xu 2 and Xinling Li 3 1 State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China; [email protected] 2 Geological Museum of China, Beijing 100034, China; [email protected] 3 Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute, Xinjiang 830004, China; [email protected] * Correspondence: [email protected]; Tel.: +86-010-8232-1836 Received: 6 April 2020; Accepted: 6 May 2020; Published: 8 May 2020 Abstract: The historic Yinggelike nephrite jade deposit in the Altyn Tagh Mountains (Xinjiang, NW China) is renowned for its gem-quality nephrite with its characteristic light-yellow to greenish-yellow hue. Despite the extraordinary gemological quality and commercial significance of the Yinggelike nephrite, little work has been done on this nephrite deposit, due to its geographic remoteness and inaccessibility. This contribution presents the first systematic mineralogical and geochemical studies on the Yinggelike nephrite deposit. Electron probe microanalysis, X-ray fluorescence (XRF) spectrometry, inductively coupled plasma mass spectrometry (ICP-MS) and isotope ratio mass spectrometry were used to measure the mineralogy, bulk-rock chemistry and stable (O and H) isotopes characteristics of samples from Yinggelike. Field investigation shows that the Yinggelike nephrite orebody occurs in the dolomitic marble near the intruding granitoids. Petrographic studies and EMPA data indicate that the nephrite is mainly composed of fine-grained tremolite, with accessory pargasite, diopside, epidote, allanite, prehnite, andesine, titanite, zircon, and calcite. Geochemical studies show that all nephrite samples have low bulk-rock Fe/(Fe + Mg) values (0.02–0.05), as well as low Cr (0.81–34.68 ppm), Co (1.10–2.91 ppm), and Ni (0.52–20.15 ppm) contents.
    [Show full text]
  • Kinematics of Active Deformation Across the Western Kunlun Mountain Range (Xinjiang, China), and Potential Seismic Hazards Within the Southern Tarim Basin
    Downloaded from orbit.dtu.dk on: Oct 03, 2021 Kinematics of active deformation across the Western Kunlun mountain range (Xinjiang, China), and potential seismic hazards within the southern Tarim Basin Guilbaud, Christelle; Simoes, Martine; Barrier, Laurie; Laborde, Amandine; Van der Woerd, Jérôme; Li, Haibing; Tapponnier, Paul; Coudroy, Thomas; Murray, Andrew Sean Published in: Journal of Geophysical Research: Solid Earth Link to article, DOI: 10.1002/2017JB014069 Publication date: 2017 Document Version Peer reviewed version Link back to DTU Orbit Citation (APA): Guilbaud, C., Simoes, M., Barrier, L., Laborde, A., Van der Woerd, J., Li, H., Tapponnier, P., Coudroy, T., & Murray, A. S. (2017). Kinematics of active deformation across the Western Kunlun mountain range (Xinjiang, China), and potential seismic hazards within the southern Tarim Basin. Journal of Geophysical Research: Solid Earth, 122(12), 10,398-10,426. https://doi.org/10.1002/2017JB014069 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Impacts of Re-Vegetation on Surface Soil Moisture Over the Chinese Loess Plateau Based on Remote Sensing Datasets
    remote sensing Article Impacts of Re-Vegetation on Surface Soil Moisture over the Chinese Loess Plateau Based on Remote Sensing Datasets Qiao Jiao 1,†, Rui Li 1,2,3,*, Fei Wang 1,2,3,*,†, Xingmin Mu 1,2,3, Pengfei Li 2 and Chunchun An 2 1 College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; [email protected] (Q.J.); [email protected] (X.M.) 2 Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China; [email protected] (P.L.); [email protected] (C.A.) 3 Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China * Correspondence: [email protected] (R.L.); [email protected] (F.W.); Tel.: +86-29-8701-9829 (R.L. & F.W.); Fax: +86-29-8701-2210 (R.L. & F.W.) † These authors contributed equally to this work. Academic Editors: Angela Lausch, Marco Heurich, Nicolas Baghdadi and Prasad S. Thenkabail Received: 4 November 2015; Accepted: 15 February 2016; Published: 19 February 2016 Abstract: A large-scale re-vegetation supported by the Grain for Green Project (GGP) has greatly changed local eco-hydrological systems, with an impact on soil moisture conditions for the Chinese Loess Plateau. It is important to know how, exactly, re-vegetation influences soil moisture conditions, which not only crucially constrain growth and distribution of vegetation, and hence, further re-vegetation, but also determine the degree of soil desiccation and, thus, erosion risk in the region. In this study, three eco-environmental factors, which are Soil Water Index (SWI), the Normalized Difference Vegetation Index (NDVI), and precipitation, were used to investigate the response of soil moisture in the one-meter layer of top soil to the re-vegetation during the GGP.
    [Show full text]
  • A Study of Thermal History Since the Paleozoic in the Eastern Qaidam Basin, Northwest China
    A Study of Thermal History Since the Paleozoic in the Eastern Qaidam Basin, Northwest China WANG Li 1,2 , LI Zongxing 1,2*, LIU Chenglin3, PENG Bo1,2, FANG Xinxin 1,2, YUAN Guide4 1 The Key Laboratory of Shale Oil and Gas Geological Survey, Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing, China; 2 Institute of Geomechanics,Chinese academy of geological sciences,Beijing 100081, China 3 State Key Laboratory of Petroleum Resource and Prospecting, China University of Petroleum, Beijing 102249, China; 4 PetroChina Qinghai Oilfield Company, Branch of Petroleum Exploration, Dunhuang, Gansu 736202 Abstract: Qaidam Basin is the one of three major petroliferous basin in Northeastern Tibetan Plateau, which experienced multiphase superimposition and transformation. A study on thermal history not only plays an important role on analysis the tectonic origin of the Qaidam basin, revealing the forming mechanism and uplift history of Tibetan plateau, but also is available to provide scientific evidence on oil & gas resources appraising. Using balanced cross-sections technique, and combination of analysis of apatite fission track ages with modeling of fission track length distribution, it was infered that eastern Qaidam basin experienced significant tectonic movement in the early Jurassic movement (~200 Ma), which caused the carboniferous uplift and denudation, the geological movement in late Cretaceous, characterized by stretch in the early and the northeast-southwest extrusion in late; Himalayan movement in multi-stage development in the eastern Qaidam basin, Mainly divided into the early Himalayan movement (41.1~33.6 Ma) and the late Himalayan movement (9.6~7.1 Ma, 2.9~1.8 Ma), which large-scale orogeny caused pre-existing faults reactivated in late Himalayan movement.
    [Show full text]
  • DICTIONARY SUBJ1: Subject Headings
    PINYIN CONVERSION SPECIFICATIONS DICTIONARIES FOR SUBJECT HEADINGS DICTIONARY SUBJ-2: Subject headings (geographics) OCTOBER 1, 2000 *AY* = (in former heading) ayn or apostrophe or alif *AP* = (in revised heading) apostrophe *U* = the lower case letter u with umlaut *UU* = the capital letter u with umlaut *N* = the lower case letter n with tilde *E* = the lower case letter e with circumflex Instructions: Replace WG form with PY equivalent 1 Instructions 1.1_ Identify a subject string which should either be converted from Wade-Giles to pinyin, or should not be converted 2.1 Mark and pass these subject strings where appropriate 3.1 In the 651$a subfield, replace these WG forms with PY equivalents: [chronological subdivisions are covered by Dictionary CHRON] Ling Canal (Hsing-an hsien, China) / Ling Canal (Xing*AP*an Xian, China) Chung-nan-hai (Peking, China) / Zhongnan Hai (Beijing, China) Fu ling Site (Shen-yang shih, China) / Fu Ling Site (Shenyang, Liaoning Sheng, China) Fu ling Site (Shenyang, Liaoning Sheng, China) / Fu Ling Site (Shenyang, Liaoning Sheng, China) I Ho Y*U*an (Peking, China) / Yi He Yuan (Beijing, China) Hsin kang kang chan ch*AY*iao (Dairen, China) / Xin Gang Gang Zhan Qiao (Dalian, Liaoning Sheng, China) Lei-ku-tun Site (Sui-chou, China) / Leigudun Site (Suizhou, China) Lei-ku-tun Site (Suizhou, China) / Leigudun Site (Suizhou, China) 2 Lu-chou Ch*AY*ang-chiang ta ch*AY*iao (Lu-chou shih, China) / Luzhou Chang Jiang Da Qiao (Luzhou, Sichuan Sheng, China) Lu-chou Ch*AY*ang-chiang ta ch*AY*iao (Luzhou, Sichuan Sheng,
    [Show full text]
  • Quantifying Trends of Land Change in Qinghai-Tibet Plateau During 2001–2015
    remote sensing Article Quantifying Trends of Land Change in Qinghai-Tibet Plateau during 2001–2015 Chao Wang, Qiong Gao and Mei Yu * Department of Environmental Sciences, University of Puerto Rico, Rio Piedras, San Juan, PR 00936, USA; [email protected] (C.W.); [email protected] (Q.G.) * Correspondence: [email protected]; Tel.: +1-787-764-0000 Received: 1 September 2019; Accepted: 17 October 2019; Published: 20 October 2019 Abstract: The Qinghai-Tibet Plateau (QTP) is among the most sensitive ecosystems to changes in global climate and human activities, and quantifying its consequent change in land-cover land-use (LCLU) is vital for assessing the responses and feedbacks of alpine ecosystems to global climate changes. In this study, we first classified annual LCLU maps from 2001–2015 in QTP from MODIS satellite images, then analyzed the patterns of regional hotspots with significant land changes across QTP, and finally, associated these trends in land change with climate forcing and human activities. The pattern of land changes suggested that forests and closed shrublands experienced substantial expansions in the southeastern mountainous region during 2001–2015 with the expansion of massive meadow loss. Agricultural land abandonment and the conversion by conservation policies existed in QTP, and the newly-reclaimed agricultural land partially offset the loss with the resulting net change of 5.1%. Although the urban area only expanded 586 km2, mainly at the expense of agricultural − land, its rate of change was the largest (41.2%). Surface water exhibited a large expansion of 5866 km2 (10.2%) in the endorheic basins, while mountain glaciers retreated 8894 km2 ( 3.4%) mainly in the − southern and southeastern QTP.
    [Show full text]
  • Impact of Sedimentation History for As Distribution in Late Pleistocene-Holocene Sediments in the Hetao Basin, China
    Journal of Soils and Sediments https://doi.org/10.1007/s11368-020-02703-2 SEDIMENTS, SEC 2 • PHYSICAL AND BIOGEOCHEMICAL PROCESSES • RESEARCH ARTICLE Impact of sedimentation history for As distribution in Late Pleistocene-Holocene sediments in the Hetao Basin, China Hongyan Wang1 & Elisabeth Eiche1 & Huaming Guo 2,3 & Stefan Norra1 Received: 19 February 2020 /Accepted: 23 June 2020 # The Author(s) 2020 Abstract Purpose To understand the impact of geochemical sedimentation history for arsenic (As) distribution in the sediment profiles of the Hetao Basin, we (1) evaluated sediments provenance and variations of weathering intensities, (2) attempted to reconstruct the depositional environments, and (3) explored the As and Fe speciation in the sediments. Combining the information above, different sedimentation facies were distinguished in the vertical profiles. Methods Two sediments cores were drilled up to 80 m depth. Major and trace element compositions, including rare earth 13 elements (REE), were analyzed. Carbon isotope ratios (δ Corg) of embedded organic matter in the sediments were analyzed by isotope ratio mass spectrometry (IR-MS). Arsenic and Fe speciation of the sediments were determined by sequential extractions. Results and discussion The similar REE geochemistry of rocks from the Lang Mountains and sediments in the Hetao Basin 13 indicated that the sediments originated from the Lang Mountains. The C/N ratio (~ 4 to ~ 10) in combination with δ Corg (− 27‰ to −24‰) suggested that sediments were mainly deposited in aquatic environments. The unconfined aquifer equaled the lacustrine deposit with less intensive weathering during last glacial maximum (LGM). Here, the As content (average, 5.4 mg kg−1) was higher than in the aquifer sediments below (average, 3.6 mg kg−1).
    [Show full text]
  • Xining to Lhasa (Vice Versa)
    TRAIN : Qinghai Tibet Railways JOURNEY : Xining to Lhasa (vice versa) Journey Duration : Upto 2 Days Day to Day Itinerary Unlike trains to Tibet from other gateway cities, the trains from Xining depart several times a day, since all other Tibet trains will stop in Xining before reaching Lhasa. The departure time of Xining Lhasa trains ranges from 12:27 at noon to 21:27 in the evening, offering flexible choices for tourists. Among all the trains to Tibet, there are two trains directly originated from Xining , one numbered as No.Z6801 departing every other day, and the other as No.Z6811 scheduled to run within a seasonal period. Timetable of Direct Xining to Lhasa Train Train No. Z6801 is the only train that starts directly from Xining and ends in Lhasa. It departs every other day at 14:01 from Xining Railway Station and arrives in Lhasa at 11:20 on the next day. Besides, Train No. Z6811 which bounds for Shigatse can also take tourists to Lhasa from Xining. The train from Xining to Shigatse is a seasonal train departing every day. Timetable of Xining to Lhasa Train - No.Z6801 Station Arrival Departure Stop Time Days Distance Xining -- 14:01 -- Day 1 -- Delingha 18:03 18:09 6 min Day 1 521 km Golmud 20:53 21:18 25 min Day 1 830 km Amdo 05:54 05:58 4 min Day 2 1,524 km Nagchu 07:24 07:30 6 min Day 2 1,650 km Damxung 09:06 09:10 4 min Day 2 1,800 km Lhasa 11:20 -- -- Day 2 1,972 km Timetable of Xining to Lhasa Train - No.Z6811 Station Arrival Departure Stop Time Days Distance Xining -- 20:30 -- Day 1 -- Delingha 00:32 00:38 6 min Day 2 521 km Golmud 03:28 03:53 25 min Day 2 830 km Amdo 12:01 12:05 4 min Day 2 1,524 km Nagchu 13:39 13:45 6 min Day 2 1,650 km Damxung 15:39 15:47 8 min Day 2 1,800 km Lhasa 17:45 18:10 25 min Day 2 1,972 km Timetable of Direct Lhasa to Xining Train As the return trip back to mainland China, the train from Lhasa to Xining (No.
    [Show full text]
  • Download From
    Designation date: 07/12/2004 Ramsar Site no. 1441 Information Sheet on Ramsar Wetlands (RIS) – 2009-2012 version Available for download from http://www.ramsar.org/ris/key_ris_index.htm. Categories approved by Recommendation 4.7 (1990), as amended by Resolution VIII.13 of the 8th Conference of the Contracting Parties (2002) and Resolutions IX.1 Annex B, IX.6, IX.21 and IX. 22 of the 9th Conference of the Contracting Parties (2005). Notes for compilers: 1. The RIS should be completed in accordance with the attached Explanatory Notes and Guidelines for completing the Information Sheet on Ramsar Wetlands. Compilers are strongly advised to read this guidance before filling in the RIS. 2. Further information and guidance in support of Ramsar site designations are provided in the Strategic Framework and guidelines for the future development of the List of Wetlands of International Importance (Ramsar Wise Use Handbook 14, 3rd edition). A 4th edition of the Handbook is in preparation and will be available in 2009. 3. Once completed, the RIS (and accompanying map(s)) should be submitted to the Ramsar Secretariat. Compilers should provide an electronic (MS Word) copy of the RIS and, where possible, digital copies of all maps. 1. Name and address of the compiler of this form: FOR OFFICE USE ONLY. DD MM YY Name: Yuxiang Li Institution: Bureau of Liaoning Shuangtai Estuary National Nature Reserve Tel: +86-427-2287002 Designation date Site Reference Number Fax: +86-427-2287011 Address: Shiyou Street 121, Panjin City 124010, Liaoning Province, China. Email: [email protected] 2. Date this sheet was completed/updated: June 5, 2012 3.
    [Show full text]
  • Estimations of Undisturbed Ground Temperatures Using Numerical and Analytical Modeling
    ESTIMATIONS OF UNDISTURBED GROUND TEMPERATURES USING NUMERICAL AND ANALYTICAL MODELING By LU XING Bachelor of Arts/Science in Mechanical Engineering Huazhong University of Science & Technology Wuhan, China 2008 Master of Arts/Science in Mechanical Engineering Oklahoma State University Stillwater, OK, US 2010 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY December, 2014 ESTIMATIONS OF UNDISTURBED GROUND TEMPERATURES USING NUMERICAL AND ANALYTICAL MODELING Dissertation Approved: Dr. Jeffrey D. Spitler Dissertation Adviser Dr. Daniel E. Fisher Dr. Afshin J. Ghajar Dr. Richard A. Beier ii ACKNOWLEDGEMENTS I would like to thank my advisor, Dr. Jeffrey D. Spitler, who patiently guided me through the hard times and encouraged me to continue in every stage of this study until it was completed. I greatly appreciate all his efforts in making me a more qualified PhD, an independent researcher, a stronger and better person. Also, I would like to devote my sincere thanks to my parents, Hongda Xing and Chune Mei, who have been with me all the time. Their endless support, unconditional love and patience are the biggest reason for all the successes in my life. To all my good friends, colleagues in the US and in China, who talked to me and were with me during the difficult times. I would like to give many thanks to my committee members, Dr. Daniel E. Fisher, Dr. Afshin J. Ghajar and Dr. Richard A. Beier for their suggestions which helped me to improve my research and dissertation.
    [Show full text]
  • A 3585-Year Ring-Width Dating Chronology of Qilian Juniper from the Northeastern Qinghai-Tibetan Plateau
    IAWA Journal, Vol. 30 (4), 2009: 379–394 A 3585-YEAR RING-WIDTH DATING CHRONOLOGY OF QILIAN JUNIPER FROM THE NORTHEASTERN QINGHAI-TIBETAN PLATEAU Xuemei Shao1 *, Shuzhi Wang2, Haifeng Zhu1, Yan Xu1, Eryuan Liang3, Zhi-Yong Yin4, Xinguo Xu5 and Yongming Xiao5 SUMMARY This article documents the development of a precisely dated and well- replicated long regional tree-ring width dating chronology for Qilian juniper (Juniperus przewalskii Kom.) from the northeastern Qinghai- Tibetan Plateau. It involves specimens from 22 archeological sites, 24 living tree sites, and 5 standing snags sites in the eastern and northeastern Qaidam Basin, northwestern China. The specimens were cross-dated suc- cessfully among different groups of samples and among different sites. Based on a total of 1438 series from 713 trees, the chronology covers 3585 years and is the longest chronology by far in China. Comparisons with chronologies of the same tree species about 200 km apart suggest that this chronology can serve for dating purposes in a region larger than the study area. This study demonstrates the great potential of Qilian juniper for dendrochronological research. Key words: Northeastern Qinghai-Tibetan Plateau; Qilian juniper; den- drochronology; cross-dating; 3585-year chronology; archeological wood. INTRODUCTION One of the aims of dendrochronology is to construct long-term chronologies covering hundreds to thousands of years. These chronologies have major applications to climatic interpretations, radiocarbon analysis, and dating of past events (Lara & Villalba 1993; Scuderi 1993; Hughes & Graumlich 1996; Stahle et al. 1998, 2007; Grudd et al. 2002; Helama et al. 2002; Naurzbaev et al. 2002; Friedrich et al. 2004; Bhattacharyya & Shah 2009; Fang et al.
    [Show full text]