Modelling of pesticide transfer on the Vesle catchment (, )

Guigon E.1, Blanchoud, H.2, Schott C.3, Chevreuil M.2

1 Université Pierre et Marie Curie-Paris6, UMR Sisyphe, Paris, F-75005 France ; 2 Ecole Pratique des Hautes Etudes, UMR Sisyphe, Paris, F-75005 France ; 3 INRA – SAD, Mirecourt, F-88500 France [email protected]

Modelling of pesticide transfer on the Vesle catchment (Reims, France) Vesle catchment (Reims)

1. Vesle catchment (Reims) Reims

2. Objectives

3. Experimental studies

4. Phytodel Model

5. Results Nogent l’Abbesse a. Hydrology b. Atrazine c. Other herbicides • Situated in Northeast of Paris 6. Conclusion • 1480km2 7. Perspectives • Mainly agricultural activities : « Champagne » vineyard and cereal crops • Surface and groundwaters usually contaminated by pesticides • Research program AQUAL (fight against the diffuse pollution in rural area on the Vesle catchment)

1 Modelling of pesticide transfer on the Vesle catchment (Reims, France) Objectives

1. Vesle catchment (Reims)

2. Objectives

3. Experimental studies • Modelling transfer of all pesticides towards

4. Phytodel Model surface water in this catchment

5. Results a. Hydrology • Elaboration of a pesticide database (ASPPRO) b. Atrazine c. Other herbicides according to inquiries 6. Conclusion 7. Perspectives • Phytodel based on simplified transfer processes • Phytodel contains an atmospheric layer • Model Phytodel will be coupled to ©Sénèque 3 (GIS software based on ©Riverstrahler 4 model : biogeochemistry, hydrology).

Modelling of pesticide transfer on the Vesle catchment (Reims, France) Experimental studies 1. Vesle catchment (Reims)

2. Objectives 3. Experimental studies • Few databases exist in this basin 4. Phytodel Model (air contamination, Vesle chemical quality and flow) 5. Results a. Hydrology • Since 2004, field studies concerned: b. Atrazine c. Other molecules – Fallout and air contamination 6. Conclusion – Runoff on vineyard (laboratory experiments) 7. Perspectives – Infiltration in lysimeters (cubic box, 2m each side) with non disturbed soil • Pesticide uses have been investigated by enquiries (C. Schott, INRA-SAD Mirecourt) • Chamber of agriculture • Agricultural cooperatives • Agricultural experts

2 Modelling of pesticide transfer on the Vesle catchment (Reims, France) « Phytodel » Model 1. Vesle catchment (Reims) Vertical processes Horizontal transfer 2. Objectives 3. Experimental studies ATMOSPHERE Degradation 4. Phytodel Model Adsorption Washout 5. Results Volatilization a. Hydrology Rain Evapotranspiration b. Atrazine c. Other herbicides Pesticides

6. Conclusion SURFACE Runoff 7. Perspectives

SOIL Interflow River Infiltration

GROUNDWATER Groundwater Flow

Modelling of pesticide transfer on the Vesle catchment (Reims, Simplified processes for France) pesticide transfer 1. Vesle catchment (Reims) • Adsorption : 2. Objectives

3. Experimental studies Instantaneous equilibrium, CS = KOC * foc * CL 4. Phytodel Model • Degradation : 5. Results a. Hydrology b. Atrazine – Half-life in aerobic soil for the Surface and c. Other herbicides Soil layer (literature) 6. Conclusion – Half-life in anaerobic soil for Groundwater 7. Perspectives layer (literature) – Half-life in atmosphere (Aopwin of EPI-SUITE from U.S. Environmental Protection Agency) • Volatilization and Washout:

Henry’s law constant : CL / CG = R * T / H

3 Modelling of pesticide transfer on the Vesle catchment (Reims, Pesticide Database France) • According cultures, the catchment is divided in 6 homogeneous areas 1. Vesle catchment (Reims) • For each area, we know the percentage of each crop

2. Objectives • For each crop, – Pesticides amount used according to treatment proceedings 3. Experimental studies – Application period for each use 4. Phytodel Model

5. Results a. Hydrology b. Atrazine c. Other molecules

6. Conclusion

7. Perspectives

Vignoble (60%) Vignoble (7%) + grandes cultures (cf. zone 4) grandes cultures (Betterave, luzerne : 10% ; Colza, pois : 8-9% ; Pdt : 5%) grandes cultures (Betterave, luzerne : 14-15% ; Colza, pois : 5%) grandes cultures (luzerne : 13%; Betterave, colza : 9-10%, pois : 7%) grandes cultures (Betterave : 14% ; luzerne : 11% ; colza, pois : 5-6% ; Pdt : 4% ; maïs : 2,5%)

Modelling of pesticide transfer on the Vesle catchment (Reims, Hydrology France) Flow (m3.s-1) 2001 Flow at Puisieulx (603km²) Flow at Saint Brice Courcelles (762km²) 1. Vesle catchment 20 Simulated flow (m3/s) (708km²) (Reims) 18 2. Objectives 16 14 3. Experimental studies 12 4. Phytodel Model 10 5. Results 8 a. Hydrology b. Atrazine 6 c. Other herbicides 4 6. Conclusion 2

7. Perspectives 0 1Jan. 31 Feb. 61 Mar. 91A 121pr. May 151Jun. 181 Jul. 211Aug 241Sep. 271Oct. 301 Nov 331 Dec 361 • The hydrology of the Vesle River is complex and depends on: – Water exchange with the Canal – Groundwater system : karst

4 Modelling of pesticide transfer on the Vesle catchment (Reims, Atrazine France) •River 1. Vesle catchment (Reims) Simulated concentrations are in good agreement with observed data (July 2001, atrazine : 0.06µg.L-1) 2. Objectives

3. Experimental studies River concentration 4. Phytodel Model Atrazine 2001 (µg.L-1) 5. Results 0,16 a. Hydrology b. Atrazine 0,14 c. Other herbicides 0,0006 Appl.period 0,12 0,0005 6. Conclusion 0,0004 0,10 7. Perspectives 0,0003 0,08 0,0002 Measured 0,0001 0.06µg.L-1 0,06 0,0000 Jan. Feb Mar. Apr. May 1 22 43 64 85 106 127 148 0,04

0,02

0,00 1Jan. 22 Feb. 43 64 Mar. 85 106Apr. 127 May 148Jun. 169 190 Jul. 211Aug 232 253Sep. 274Oct. 295Nov 316 337 Dec 358

Modelling of pesticide transfer on the Vesle catchment (Reims, Air concentration Atrazine France) -3 2001 (ng.m ) 0,25 1. Vesle catchment Appl.period (Reims) 0,20 2. Objectives

3. Experimental studies 0,15 4. Phytodel Model

5. Results 0,10 a. Hydrology b. Atrazine c. Other herbicides 0,05 6. Conclusion

7. Perspectives 0,00 1Jan. 22 Feb. 43 64 Mar. 85A 106pr. 127 May 148Jun. 169 190 Jul. 211Aug 232 253Sep. 274Oct. 295 Nov. 316 337 Dec 358 • Atmosphere – Simulated air concentrations seem good Measures in air phase in an agricultural area: La Ferté sous Jouarre in 1992-1993 : range 0.03 to 2ng.m-3 (Chevreuil et al., 1996)

5 Modelling of pesticide transfer on the Vesle Rainfall Atrazine catchment (Reims, concentration 2001 France) (ng.L-1) 1800 Appl.period 1. Vesle catchment 1600 (Reims) 1400 2. Objectives 1200 3. Experimental studies 1000 4. Phytodel Model 800 5. Results a. Hydrology 600 b. Atrazine c. Other herbicides 400

6. Conclusion 200

7. Perspectives 0 1Jan. 22 Feb 43 64 Mar. 85A 106pr. 127 May 148Jun. 169 190 Jul. 211Aug 232 253Sep 274Oct. 295 Nov 316 337 Dec 358

• Atmosphere – Simulated rainfall concentrations correspond to concentration measured in close area Eclaron during the week of May 5th, 2000 : atrazine ~1000ng.L-1 (Blanchoud et al., 2002)

Modelling of pesticide transfer on the Vesle catchment (Reims, France) Other herbicides

1. Vesle catchment (Reims) • Model was tested with alachlor, diuron,

2. Objectives oryzalin, dichlobenil, terbuthylazine

3. Experimental studies River concentration Diuron (µg.L-1) 2001 4. Phytodel Model 0,030 5. Results Appl.period a. Hydrology 0,025 b. Atrazine 0,020 c. Other herbicides

0,015 6. Conclusion River concentration Terbuthylazine 2001 (µg.L-1) Appl.period 0,010 7. Perspectives 0,004 0,003 0,005

0,003 0,000 Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec 1 22 43 64 85 106 127 148 169 190 211 232 253 274 295 316 337 358 0,002

0,002 In July 2001, Diuron

0,001 and terbuthylazine was

0,001 not found in Vesle River (LQ = 0.05µg.L-1) 0,000 1Jan. 21 41 Feb. 61 Mar. 81 101 Apr. 121 May 141 161Jun. 181 Jul. 201 221Aug 241Sep. 261 281Oct. 301 Nov 321 341 Dec 361

6 Air concentration Rainfall Modelling of pesticide Diuron Diuron (ng.m-3) 2001 concentration (ng.L- 2001 transfer on the Vesle 1) catchment (Reims, 6,0E-04 Appl.period 300 Appl.period France) 5,0E-04 250

4,0E-04 200 1. Vesle catchment (Reims) 3,0E-04 150

2. Objectives 2,0E-04 100

3. Experimental studies 1,0E-04 50

0,0E+00 0 Jan. Feb Mar. Apr. May Jun. Jul. Aug Sep. Oct. NovJan. DecFeb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 4. Phytodel Model 1 22 43 64 85 106 127 148 169 190 211 232 253 274 2951 316 22 337 43 358 64 85 106 127 148 169 190 211 232 253 274 295 316 337 358 Air concentration Terbuthylazine Rainfall Terbuthylazine 5. Results (ng.m-3) Appl.period concentration2001 (ng.L- 1) Appl.period 2001 6 a. Hydrology 4000 b. Atrazine 3500 c. Other herbicides 5 3000 4 6. Conclusion 2500

3 2000 7. Perspectives 2 1500 1000 1 500

0 0 Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 1 20 39 58 77 96 115 134 153 172 191 210 229 248 267 286 305 3241Jan. 343 21 362 41Feb. 61 Mar. 81 101Apr. 121 May 141 161Jun. 181 Jul. 201 221Aug 241Sep. 261 281Oct. 301 Nov 321 341 Dec 361 • Overestimation of air and rainfall concentrations for molecule more volatile than atrazine : => introduce a exchange layer between surface and atmospheric compartment

Modelling of pesticide transfer on the Vesle catchment (Reims, France) Conclusion

1. Vesle catchment In 2001, (Reims) • Hydrology : general trend 2. Objectives

3. Experimental studies • For atrazine, the results are in good agreement with measurements 4. Phytodel Model • For molecules more volatile than atrazine, 5. Results a. Hydrology overestimation of air and rainfall concentrations: b. Atrazine c. Other herbicides – introduce a exchange layer for transfer between surface and air compartment 6. Conclusion

7. Perspectives • For molecules not detected in river, simulated concentrations below the limit of quantification Phytodel • can be used to identify pesticides for measure campaigns, • can be used as a risk assessment tool by determining the occurrence of all pesticides

7 Modelling of pesticide transfer on the Vesle catchment (Reims, France) Perspectives

1. Vesle catchment (Reims) • Short term:

2. Objectives – Processes

3. Experimental studies • Non equilibrium adsorption / desorption • Volatilization : exchange layer 4. Phytodel Model – Spatial distribution 5. Results a. Hydrology • Divide the catchment into 16 underbasins b. Atrazine c. Other herbicides – Calibration

6. Conclusion • Period from 2002 to 2005

7. Perpectives • Long term: – Atmosphere : • horizontal transport – Scale : • extension to Marne river, and finally to river system

Modelling of pesticide transfer on the Vesle catchment (Reims, France)

Guigon E.1, Blanchoud, H.2, Schott C.3, Chevreuil M.2

1 Université Pierre et Marie Curie-Paris6, UMR Sisyphe, Paris, F-75005 France ; 2 Ecole Pratique des Hautes Etudes, UMR Sisyphe, Paris, F-75005 France ; 3 INRA – SAD, Mirecourt, F-88500 France [email protected]

8 Mont de Berru Nogent l’Abbesse Sacy Taissy Sillery La Vesle

Bouy

La Marne

Montagne de Reims Fagnières

COMMUNES CODE_USM 2 SUCCESSION NO_COMM 51044 NO_SUCCESSION 5 NOM_COMM BEAUMONT / VESLE CODE_USM 2 CULT_SUCC ANNEE_DEB 1985 NO_SUCCESSION ANNEE_FIN 1990 5 NO_ORDRE 1 UNITE DE SIMULATION POURC_USM 5 % CODE_CULTURE 300 CODE_USM 2 JOUR_DEB_SEMIS 21/04 JOUR_FIN_SEMIS NOM_USM VALLEE ALLUVIALE 30/04 TYPE_PRATIQUE JOUR_DEB_RECOLTE 15/09 JOUR_FIN_RECOLTE 15/11 NO_SUCCESSION 5 RENDEMENT 80 qx ACTION_PHYTO NO_ORDRE 1 CODE_ACTION 1 NO_PRATIQUE 12 NOM_ACTION DESHERBANT 50% POURC_PRATIQUE CULTURES CODE_ACTION 1 CODE_CULTURE 300 SPECIALITE_COMM NOM_CULTURE Maïs grain CODE_SPE_COMM 58 PASSAGE NOM_SPE_COMM TAZASTOMP C UNITE_SPE_COMM kg NO_SUCCESSION 5 NO_ORDRE 1 CODE_MA 11 STADE_CULTURAL NO_PRATIQUE 12 CCT_MA 10 % NO_PASSAGE 21 CODE_STADE_CULT 2 CODE_AJUVANT 0 JOUR_DEB 21/04 NOM_STADE_CULT POSTSEMI PRELEVEE JOUR_FIN 07/05 CODE_STADE_CULT 2 ADJUVANT MATIERE_ACTIVE CODE_SPE_COMM 58 TYPE_TRAITEMENT CODE_ADJUVANT 0 CODE_MA 11 DOSE_SPE_COMM 4 CODE_TYPE_TRAITT 2 NOM_ADJUVANT AUCUN NOM_MA ATRAZINE CODE_TYPE_TRAITT 2 NOM_TYPE_TRAITT TRAITEMENT GENERALISE

Structure géographique de la base Données générales sur l ’agriculture

Table de codes ou de données générales Données sur les pratiques phytosanitaires

9 River concentration Atrazine River concentration Alachlore -1 (µg.L ) (µg.L-1) 0,16 0,00030

For 2001, river 0,14 0,0006 0,00025 0,0005 concentration 0,12 0,0004 0,00020 0,10 0,0003 0,08 0,0002 0,00015 0,0001 0,06 0,0000 0,00010 0,04 1Jan. 22 Feb 43 64 Mar. 85 106Apr. 127 May 148 0,00005 0,02

0,00 0,00000 Jan. Feb Mar. Apr. May Jun. Jul. Aug Sep. Oct. Nov. Dec 1Jan. 22 Feb. 43 64 Mar. 85A 106pr. 127 May 148Jun. 169 190 Jul. 211Aug. 232 253Sep. 274Oct. 295 Nov. 316 337 Dec. 358 1 22 43 64 85 106 127 148 169 190 211 232 253 274 295 316 337 358

River concentration River concentration Dichlobenil (µg.L-1) Diuron (µg.L-1) 0,0012 0,030

0,0010 0,025

0,0008 0,020

0,0006 0,015

0,0004 0,010

0,0002 0,005

0,0000 0,000 Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 1 22 43 64 85 106 127 148 169 190 211 232 253 274 295 316 337 358 1 22 43 64 85 106 127 148 169 190 211 232 253 274 295 316 337 358

River concentration Oryzalin River concentration Terbuthylazine (µg.L-1) (µg.L-1) 0,0035 0,004

0,0030 0,003

0,0025 0,003

0,0020 0,002

0,0015 0,002

0,0010 0,001

0,0005 0,001

0,0000 0,000 Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 1Jan. 21 Feb. 41 61 Mar. 81 101Apr. 121 May 141 161Jun. 181 Jul. 201 221Aug. 241Sep. 261 281Oct. 301 Nov. 321 341 Dec. 361 1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321 341 361

Air concentration Atrazine Air concentration Alachlore (ng.m-3) (ng.m-3) For 2001, air 0,25 0,25 concentration 0,20 0,20 0,15 0,15

0,10 0,10

0,05 0,05

0,00 0,00 Jun. Jul. Sep. 1Jan. 22 Feb. 43 64 Mar. 85A 106pr. 127 May 148Jun. 169 190 Jul. 211Aug 232 253Sep. 274Oct. 295 Nov. 316 337 Dec 358 1Jan. 22 Feb. 43 64 Mar. 85 106Apr. 127 May 148 169 190 211A 232ug 253 274Oct. 295 316Nov. 337 Dec 358

Air concentration Air concentration Dichlobenil (ng.m-3) Diuron (ng.m-3) 2000 6,0E-04 1800 5,0E-04 1600

1400 4,0E-04 1200 1000 3,0E-04 800 2,0E-04 600 400 1,0E-04 200 0 0,0E+00 Jan. Feb. Mar. Apr. May Jun. Jul. Aug Sep. Oct. Nov. Dec. Jan. Feb Mar. Apr. May Jun. Jul. Aug Sep Oct. Nov Dec 1 22 43 64 85 106 127 148 169 190 211 232 253 274 295 316 337 358 1 22 43 64 85 106 127 148 169 190 211 232 253 274 295 316 337 358

Air concentration Oryzalin Air concentration Terbuthylazine (ng.m-3) (ng.m-3) 0,8 6

0,7 5 0,6 4 0,5

0,4 3

0,3 2 0,2 1 0,1

0,0 0 Jun. Jul. Sep. 1Jan. 21 Feb.41 61 Mar. 81 101Apr. 121 May 141 161Jun. 181 Jul. 201 221Aug 241Sep. 261 281Oct. 301 Nov. 321 341 Dec. 361 1Jan. 20 39Feb. 58 Mar. 77 96Apr. 115 May 134 153 172 191 210A 229ug. 248 267 286Oct. 305 Nov. 324 343 Dec. 362

10 Rainfall Rainfall Atrazine Alachlore concentration concentration (ng.L-1) (ng.L-1) For 2001, 1800 80 1600 70 1400 rainfall 60 1200 50 concentration 1000 40 800 30 600 400 20 200 10

0 0 Jan. Feb Mar. Apr. May Jun. Jul. Aug Sep. Oct. Nov. Dec 1Jan. 22 Feb 43 64 Mar. 85A 106pr. 127 May 148Jun. 169 190 Jul. 211Aug 232 253Sep 274Oct. 295 Nov 316 337 Dec 358 1 22 43 64 85 106 127 148 169 190 211 232 253 274 295 316 337 358

Rainfall Rainfall Dichlobenil concentration concentration Diuron (ng.L-1) (ng.L-1) 16000 300

14000 250 12000 200 10000

8000 150

6000 100 4000 50 2000

0 0 Jan. Feb Mar. Apr. May Jun. Jul. Aug Sep Oct. Nov Dec Jan. Feb Mar. Apr. May Jun. Jul. Aug Sep Oct. Nov Dec 1 22 43 64 85 106 127 148 169 190 211 232 253 274 295 316 337 358 1 22 43 64 85 106 127 148 169 190 211 232 253 274 295 316 337 358

Rainfall Rainfall Oryzalin Terbuthylazine concentration concentration (ng.L-1) (ng.L-1) 1200 4000

3500 1000 3000 800 2500

600 2000

1500 400 1000 200 500

0 0 Jan. Feb Mar. Apr. May Jun Jul. Aug Sep Oct. Nov Dec 1 22 43 64 85 106 127 148 169 190 211 232 253 274 295 316 337 358 1Jan. 22 Feb 43 64 Mar. 85 106Apr. 127 May 148Jun. 169 190 Jul. 211A 232ug 253Sep 274Oct. 295 Nov316 337 Dec 358

11