Elucidating the Constitutional Genetic Basis of Multiple Primary Tumours

Total Page:16

File Type:pdf, Size:1020Kb

Elucidating the Constitutional Genetic Basis of Multiple Primary Tumours Elucidating the constitutional genetic basis of multiple primary tumours James William Whitworth Gonville and Caius College February 2019 This dissertation is submitted for the degree of Doctor of Philosophy Preface This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except as declared in the Preface and specified in the text. It is not substantially the same as any that I have submitted, or, is being concurrently submitted for a degree or diploma or other qualification at the University of Cambridge or any other University or similar institution except as declared in the Preface and specified in the text. I further state that no substantial part of my dissertation has already been submitted, or, is being concurrently submitted for any such degree, diploma or other qualification at the University of Cambridge or any other University or similar institution except as declared in the Preface and specified in the text It does not exceed the prescribed word limit for the relevant Degree Committee. Acknowledgments I would like to extend my sincere thanks to the following people. To my supervisor, Eamonn Maher, for his mentorship over a time period longer than the programme of study outlined in this thesis. I am also grateful to Marc Tischkowitz, my second supervisor, for his encouragement and input. To my colleagues past and present in the Academic Department of Medical Genetics for their insights, collaboration, advice, and camaraderie over the past few years. In particular Ruth Casey, Graeme Clark, France Docquier, Ellie Fewings, Benoit Lang-Leung, Ezequiel Martin, Eguzkine Ochoa, Faye Rodger, Phil Smith and Hannah West. To the team at the NIHR BioResource Rare Diseases project, data from which forms the basis of this thesis. I have worked most closely with Sophie Ashford, Chris Penkett and Kathy Stirrups but there are scores of individual contributors. To the recruitment teams at genetics centres across the UK and beyond, who make a large contribution to medical genetic research. To the Gonville and Caius Middle Combination Room for being a great community full of interesting people and enlightening conversations. Most of all, to my wife, Beth, for her loving enthusiasm, support and great times during the years of this PhD programme. List of acronyms used ACC Adrenocortical carcinoma ACMG American College of Medical Genetics AML Acute myeloid leukaemia AUC Area under curve (of receiver operator characteristic) AVL Antoni van Leeuwenhoek (hospital) BHD Birt Hogg Dubé (syndrome) CADD Combined Annotation Dependent Depletion (score) CATGO Cambridge Translational Genomics Laboratory CCDS Consensus Coding Sequence CNS Central nervous system CPG Cancer predisposition gene CRUK Cancer Research United Kingdom CT Computerised tomography ctDNA Circulating tumour deoxyribonucleic acid DSB Double stranded break EA East Anglia (registry) eQTL Expression quantitative trait loci ExAC Exome aggregation consortium FFPE Formalin fixed paraffin embedded GIST Gastrointestinal stromal tumour GO Gene Ontology (term) GTEx Genotype-Tissue Expression (project) GWAS Genome wide association study HGMD Human Gene Mutation Database HGNC HUGO Gene Nomenclature Committee HLRCC Hereditary leiomyomatosis and renal cell carcinoma IARC International Agency for Research on Cancer ICD-O-3 International Classification of Diseases for Oncology (3rd edition) IGV Integrative Genomics Viewer IHC Immunohistochemistry LDL Low density lipoprotein LFS Li Fraumeni syndrome LOH Loss of heterozygosity MEN2 Multiple endocrine neoplasia type 2 MINAS Multilocus inherited neoplasia alleles syndrome MLPA Multiple ligation-dependent probe amplification MMR Mismatch repair Multiple Primary Malignant Tumours (tag as used in NIHR Bioresource - Rare MPMT Diseases project data) MPNT Malignant peripheral nerve sheath tumour MPT Multiple primary tumours MRI Magnetic resonance imaging MSI Microsatellite instability MTS Multiple tumour score NGS Next generation sequencing NMSC Non-melanoma skin cancer P/LP Pathogenic/likely pathogenic (variant) PAF Population attributable fraction PARP Poly ADP-ribose polymerase PCR Plymerase chain reaction RCC Renal cell carcinoma ROC Receiver operator characteristic SIR Standardised incidence ratio SNP Single nucleotide polymorphism SNV Single nucleotide variant SO Sequence Ontology (term) SPEED Specialist Pathology Evaluating Exomes in Diagnostics (study) SV Structural variant TCGA The Cancer Genome Atlas TCP Tru-sight cancer panel (assay) TSG Tumour suppressor gene UCNE Ultraconserved non-coding elements (database) UCSC University of California Santa Cruz (genome browser) UM Uveal melanoma VAF Variant allele fraction VCF Variant call format (file) VEP Variant Effect Predictor VHL Von-Hippel Lindau VUS Variant of uncertain significance WES Whole exome sequencing WGS Whole genome sequencing XP Xeroderma pigmentosum Contents Chapter 1 – Introductory chapter ....................................................................................................... 1 1.1 - Cancer as a genetic disease ............................................................................................................. 2 1.1.1 - Oncogenes, tumour suppressor genes and cancer predisposition ............................................ 2 1.2 - The development of DNA sequencing techniques ......................................................................... 5 1.3 - Identifying cancer predisposition genes ......................................................................................... 9 1.4 - Risks associated with variants in cancer predisposition genes ..................................................... 11 1.5 - Cancer predisposition genes and their contribution to cancer burden .......................................... 12 1.6 - Mendelian conditions due to variants in cancer predisposition genes .......................................... 13 1.6.1 - Tumour spectrum associated with cancer predisposition genes ............................................ 14 1.6.2 - Penetrance of cancer predisposition gene variants ................................................................ 16 1.7 - Impact of next generation sequencing on cancer predisposition gene variant identification in the clinic ...................................................................................................................................................... 17 1.8 - Clinical utility of cancer predisposition variant identification ..................................................... 18 1.8.1 - Information as therapy ........................................................................................................... 19 1.8.2 - Clinical surveillance .............................................................................................................. 20 1.8.3 - Prophylactic surgery .............................................................................................................. 21 1.8.4 - Pharmacological management ............................................................................................... 22 1.9 - Multiple Primary Tumours ........................................................................................................... 22 1.9.1 - Multiple primary tumours in the general population ............................................................. 22 1.9.2 - Aetiology of multiple primary tumours ................................................................................. 23 Chapter 2 – Methods applicable to multiple sections ...................................................................... 28 2.1 - Study participants ......................................................................................................................... 29 2.2 - Tumour labelling and classification .............................................................................................. 29 2.3 - DNA samples ................................................................................................................................ 30 2.4 - Sequencing.................................................................................................................................... 30 2.4.1 - Whole genome sequencing and bioinformatic processing of sequencing output .................. 31 2.4.2 - Gene panel sequencing and bioinformatic processing of sequencing output ........................ 34 Chapter 3 – Multiple primary tumours in referral and registry-based series .............................. 37 3.1 – Introduction .................................................................................................................................. 38 3.2 - Methods ........................................................................................................................................ 38 3.2.1 - Collection and analysis of registry data ................................................................................. 38 3.2.2 - Ascertainment and description of a multiple primary tumour series ..................................... 39 3.2.3 - Comparison of Multiple Primary Tumour series with a population series ............................ 40 3.3 - Results .......................................................................................................................................... 40 3.3.1 - Registry and treatment centre series ...................................................................................... 40 3.3.2 - Multiple Primary Tumour
Recommended publications
  • Oxidative Stress-Induced Chromosome Breaks Within
    Tan et al. Human Genomics (2018) 12:29 https://doi.org/10.1186/s40246-018-0160-8 PRIMARY RESEARCH Open Access Oxidative stress-induced chromosome breaks within the ABL gene: a model for chromosome rearrangement in nasopharyngeal carcinoma Sang-Nee Tan1, Sai-Peng Sim1* and Alan Soo-Beng Khoo2 Abstract Background: The mechanism underlying chromosome rearrangement in nasopharyngeal carcinoma (NPC) remains elusive. It is known that most of the aetiological factors of NPC trigger oxidative stress. Oxidative stress is a potent apoptotic inducer. During apoptosis, chromatin cleavage and DNA fragmentation occur. However, cells may undergo DNA repair and survive apoptosis. Non-homologous end joining (NHEJ) pathway has been known as the primary DNA repair system in human cells. The NHEJ process may repair DNA ends without any homology, although region of microhomology (a few nucleotides) is usually utilised by this DNA repair system. Cells that evade apoptosis via erroneous DNA repair may carry chromosomal aberration. Apoptotic nuclease was found to be associated with nuclear matrix during apoptosis. Matrix association region/scaffold attachment region (MAR/SAR) is the binding site of the chromosomal DNA loop structure to the nuclear matrix. When apoptotic nuclease is associated with nuclear matrix during apoptosis, it potentially cleaves at MAR/SAR. Cells that survive apoptosis via compromised DNA repair may carry chromosome rearrangement contributing to NPC tumourigenesis. The Abelson murine leukaemia (ABL) gene at 9q34 was targeted in this study as 9q34 is a common region of loss in NPC. This study aimed to identify the chromosome breakages and/or rearrangements in the ABL gene in cells undergoing oxidative stress-induced apoptosis.
    [Show full text]
  • A Genome-Wide Association Study of a Coronary Artery Disease Risk Variant
    Journal of Human Genetics (2013) 58, 120–126 & 2013 The Japan Society of Human Genetics All rights reserved 1434-5161/13 www.nature.com/jhg ORIGINAL ARTICLE A genome-wide association study of a coronary artery diseaseriskvariant Ji-Young Lee1,16, Bok-Soo Lee2,16, Dong-Jik Shin3,16, Kyung Woo Park4,16, Young-Ah Shin1, Kwang Joong Kim1, Lyong Heo1, Ji Young Lee1, Yun Kyoung Kim1, Young Jin Kim1, Chang Bum Hong1, Sang-Hak Lee3, Dankyu Yoon5, Hyo Jung Ku2, Il-Young Oh4, Bong-Jo Kim1, Juyoung Lee1, Seon-Joo Park1, Jimin Kim1, Hye-kyung Kawk1, Jong-Eun Lee6, Hye-kyung Park1, Jae-Eun Lee1, Hye-young Nam1, Hyun-young Park7, Chol Shin8, Mitsuhiro Yokota9, Hiroyuki Asano10, Masahiro Nakatochi11, Tatsuaki Matsubara12, Hidetoshi Kitajima13, Ken Yamamoto13, Hyung-Lae Kim14, Bok-Ghee Han1, Myeong-Chan Cho15, Yangsoo Jang3,17, Hyo-Soo Kim4,17, Jeong Euy Park2,17 and Jong-Young Lee1,17 Although over 30 common genetic susceptibility loci have been identified to be independently associated with coronary artery disease (CAD) risk through genome-wide association studies (GWAS), genetic risk variants reported to date explain only a small fraction of heritability. To identify novel susceptibility variants for CAD and confirm those previously identified in European population, GWAS and a replication study were performed in the Koreans and Japanese. In the discovery stage, we genotyped 2123 cases and 3591 controls with 521 786 SNPs using the Affymetrix SNP Array 6.0 chips in Korean. In the replication, direct genotyping was performed using 3052 cases and 4976 controls from the KItaNagoya Genome study of Japan with 14 selected SNPs.
    [Show full text]
  • Systems and Chemical Biology Approaches to Study Cell Function and Response to Toxins
    Dissertation submitted to the Combined Faculties for the Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences Presented by MSc. Yingying Jiang born in Shandong, China Oral-examination: Systems and chemical biology approaches to study cell function and response to toxins Referees: Prof. Dr. Rob Russell Prof. Dr. Stefan Wölfl CONTRIBUTIONS The chapter III of this thesis was submitted for publishing under the title “Drug mechanism predominates over toxicity mechanisms in drug induced gene expression” by Yingying Jiang, Tobias C. Fuchs, Kristina Erdeljan, Bojana Lazerevic, Philip Hewitt, Gordana Apic & Robert B. Russell. For chapter III, text phrases, selected tables, figures are based on this submitted manuscript that has been originally written by myself. i ABSTRACT Toxicity is one of the main causes of failure during drug discovery, and of withdrawal once drugs reached the market. Prediction of potential toxicities in the early stage of drug development has thus become of great interest to reduce such costly failures. Since toxicity results from chemical perturbation of biological systems, we combined biological and chemical strategies to help understand and ultimately predict drug toxicities. First, we proposed a systematic strategy to predict and understand the mechanistic interpretation of drug toxicities based on chemical fragments. Fragments frequently found in chemicals with certain toxicities were defined as structural alerts for use in prediction. Some of the predictions were supported with mechanistic interpretation by integrating fragment- chemical, chemical-protein, protein-protein interactions and gene expression data. Next, we systematically deciphered the mechanisms of drug actions and toxicities by analyzing the associations of drugs’ chemical features, biological features and their gene expression profiles from the TG-GATEs database.
    [Show full text]
  • Manual Annotation and Analysis of the Defensin Gene Cluster in the C57BL
    BMC Genomics BioMed Central Research article Open Access Manual annotation and analysis of the defensin gene cluster in the C57BL/6J mouse reference genome Clara Amid*†1, Linda M Rehaume*†2, Kelly L Brown2,3, James GR Gilbert1, Gordon Dougan1, Robert EW Hancock2 and Jennifer L Harrow1 Address: 1Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK, 2University of British Columbia, Centre for Microbial Disease & Immunity Research, 2259 Lower Mall, Vancouver, BC, V6T 1Z4, Canada and 3Department of Rheumatology and Inflammation Research, Göteborg University, Guldhedsgatan 10, S-413 46 Göteborg, Sweden Email: Clara Amid* - [email protected]; Linda M Rehaume* - [email protected]; Kelly L Brown - [email protected]; James GR Gilbert - [email protected]; Gordon Dougan - [email protected]; Robert EW Hancock - [email protected]; Jennifer L Harrow - [email protected] * Corresponding authors †Equal contributors Published: 15 December 2009 Received: 15 May 2009 Accepted: 15 December 2009 BMC Genomics 2009, 10:606 doi:10.1186/1471-2164-10-606 This article is available from: http://www.biomedcentral.com/1471-2164/10/606 © 2009 Amid et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Host defense peptides are a critical component of the innate immune system. Human alpha- and beta-defensin genes are subject to copy number variation (CNV) and historically the organization of mouse alpha-defensin genes has been poorly defined.
    [Show full text]
  • Genome-Wide Association Analysis on Coronary Artery Disease in Type 1 Diabetes Suggests Beta-Defensin 127 As a Novel Risk Locus
    Genome-wide association analysis on coronary artery disease in type 1 diabetes suggests beta-defensin 127 as a novel risk locus Antikainen, A., Sandholm, N., Tregouet, D-A., Charmet, R., McKnight, A., Ahluwalia, T. V. S., Syreeni, A., Valo, E., Forsblom, C., Gordin, D., Harjutsalo, V., Hadjadj, S., Maxwell, P., Rossing, P., & Groop, P-H. (2020). Genome-wide association analysis on coronary artery disease in type 1 diabetes suggests beta-defensin 127 as a novel risk locus. Cardiovascular Research. https://doi.org/10.1093/cvr/cvaa045 Published in: Cardiovascular Research Document Version: Peer reviewed version Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights Copyright 2020 OUP. This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:01. Oct.
    [Show full text]
  • Datasheet Blank Template
    SAN TA C RUZ BI OTEC HNOL OG Y, INC . HHIPL1 (N-14): sc-247140 BACKGROUND APPLICATIONS Hedgehog (Hh) signaling proteins are critical for growth and tissue pattern - HHIPL1 (N-14) is recommended for detection of HHIPL1 of human origin ing during development. Patched (Ptc), a putative 12 transmembrane recep - by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), tor, binds to Sonic hedgehog and is suspected to be a negative regulator of immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and Hh signaling. A family member of patched, designated patched 2, has been solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000); non found to be co-expressed with Sonic hedgehog. Smoothened (Smo), a seven cross-reactive with HHIPL2. transmembrane receptor, is complexed with patched in many tissues and Suitable for use as control antibody for HHIPL1 siRNA (h): sc-92168, HHIPL1 is believed to be an essential component in the Hh signaling pathway. Hhip shRNA Plasmid (h): sc-92168-SH and HHIPL1 shRNA (h) Lentiviral Particles: (hedgehog-interacting protein) is able to bind to and may be a tran scriptional sc-92168-V. target of all Hh proteins. Binding of Hhip to Hh proteins attenuates Hedgehog signaling. HHIPL1 (hedgehog-interacting protein-like protein 1), also known Molecular Weight of HHIPL1 isoforms 1/2: 88/68 kDa. as HHIP2, is a 782 amino acid secreted protein that contains a HHIP domain and is expressed in trabecular bone. There are two isoforms of HHIPL1 that RECOMMENDED SECONDARY REAGENTS are produced as a result of alternative splicing events.
    [Show full text]
  • Defensin Genes
    Edinburgh Research Explorer Novel phenotype of mouse spermatozoa following deletion of nine -defensin genes Citation for published version: Dorin, JR 2015, 'Novel phenotype of mouse spermatozoa following deletion of nine -defensin genes', Asian journal of andrology, vol. 17, no. 5, pp. 716-719. https://doi.org/10.4103/1008-682X.159712 Digital Object Identifier (DOI): 10.4103/1008-682X.159712 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Asian journal of andrology Publisher Rights Statement: Copyright : © Asian Journal of Andrology This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial- ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 01. Oct. 2021 Asian Journal of Andrology (2015) 17, 716–719 © 2015 AJA, SIMM & SJTU.
    [Show full text]
  • Downloaded from [266]
    Patterns of DNA methylation on the human X chromosome and use in analyzing X-chromosome inactivation by Allison Marie Cotton B.Sc., The University of Guelph, 2005 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate Studies (Medical Genetics) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) January 2012 © Allison Marie Cotton, 2012 Abstract The process of X-chromosome inactivation achieves dosage compensation between mammalian males and females. In females one X chromosome is transcriptionally silenced through a variety of epigenetic modifications including DNA methylation. Most X-linked genes are subject to X-chromosome inactivation and only expressed from the active X chromosome. On the inactive X chromosome, the CpG island promoters of genes subject to X-chromosome inactivation are methylated in their promoter regions, while genes which escape from X- chromosome inactivation have unmethylated CpG island promoters on both the active and inactive X chromosomes. The first objective of this thesis was to determine if the DNA methylation of CpG island promoters could be used to accurately predict X chromosome inactivation status. The second objective was to use DNA methylation to predict X-chromosome inactivation status in a variety of tissues. A comparison of blood, muscle, kidney and neural tissues revealed tissue-specific X-chromosome inactivation, in which 12% of genes escaped from X-chromosome inactivation in some, but not all, tissues. X-linked DNA methylation analysis of placental tissues predicted four times higher escape from X-chromosome inactivation than in any other tissue. Despite the hypomethylation of repetitive elements on both the X chromosome and the autosomes, no changes were detected in the frequency or intensity of placental Cot-1 holes.
    [Show full text]
  • Role of Amylase in Ovarian Cancer Mai Mohamed University of South Florida, [email protected]
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School July 2017 Role of Amylase in Ovarian Cancer Mai Mohamed University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the Pathology Commons Scholar Commons Citation Mohamed, Mai, "Role of Amylase in Ovarian Cancer" (2017). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/6907 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Role of Amylase in Ovarian Cancer by Mai Mohamed A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Pathology and Cell Biology Morsani College of Medicine University of South Florida Major Professor: Patricia Kruk, Ph.D. Paula C. Bickford, Ph.D. Meera Nanjundan, Ph.D. Marzenna Wiranowska, Ph.D. Lauri Wright, Ph.D. Date of Approval: June 29, 2017 Keywords: ovarian cancer, amylase, computational analyses, glycocalyx, cellular invasion Copyright © 2017, Mai Mohamed Dedication This dissertation is dedicated to my parents, Ahmed and Fatma, who have always stressed the importance of education, and, throughout my education, have been my strongest source of encouragement and support. They always believed in me and I am eternally grateful to them. I would also like to thank my brothers, Mohamed and Hussien, and my sister, Mariam. I would also like to thank my husband, Ahmed.
    [Show full text]
  • Antimicrobial Peptides: Agents of Border Protection for Companion Animals
    DOI: 10.1111/j.1365-3164.2012.01037.x Antimicrobial peptides: agents of border protection for companion animals Brian C. Leonard*, Verena K. Affolter† and Charles L. Bevins* *Department of Microbiology and Immunology, UC Davis School of Medicine, Davis, CA 95616, USA †Department of Veterinary Pathology, Microbiology and Immunology, UC Davis School of Veterinary Medicine, Davis, CA 95616, USA Correspondence: Charles L. Bevins, Department of Microbiology and Immunology, UC Davis School of Medicine, Davis, CA 95616, USA. E-mail: [email protected] Over the past 20 years, there have been significant inroads into understanding the roles of antimicrobial peptides in homeostatic functions and their involvement in disease pathogenesis. In addition to direct antimicrobial activ- ity, these peptides participate in many cellular functions, including chemotaxis, wound healing and even determi- nation of canine coat colour. Various biological and genetic approaches have helped to elucidate the role of antimicrobial peptides with respect to innate immunity and host defense. Associations of antimicrobial peptides with various skin diseases, including psoriasis, rosacea and atopic dermati- tis, have been documented in humans. In the longer term, therapeutic modulation of antimicrobial peptide expression may provide effective new treatments for disease. This review highlights current knowledge about antimicrobial peptides of the skin and circulating leukocytes, with particular focus on relevance to physiology and disease in companion animals. 8 Introduction cal barrier. Indeed, epidermal keratinocytes are equipped with pathogen recognition receptors and can detect and Antimicrobial peptides (AMPs) are naturally occurring respond to potential invaders.8 This response helps to antimicrobials found throughout nature. In mammals, initiate a co-ordinated inflammatory response, which AMPs are expressed by both epithelial cells and phago- includes recruitment of leukocytes.
    [Show full text]
  • Clinical Validation of the Tempus Xt Next-Generation Targeted Oncology Sequencing Assay
    www.oncotarget.com Oncotarget, 2019, Vol. 10, (No. 24), pp: 2384-2396 Research Paper Clinical validation of the tempus xT next-generation targeted oncology sequencing assay Nike Beaubier1, Robert Tell1, Denise Lau1, Jerod R. Parsons1, Stephen Bush1, Jason Perera1, Shelly Sorrells1, Timothy Baker1, Alan Chang1, Jackson Michuda1, Catherine Iguartua1, Shelley MacNeil1, Kaanan Shah1, Philip Ellis1, Kimberly Yeatts1, Brett Mahon1, Timothy Taxter1, Martin Bontrager1, Aly Khan1, Robert Huether1, Eric Lefkofsky1 and Kevin P. White1 1Tempus Labs Inc., Chicago, IL 60654, USA Correspondence to: Nike Beaubier, email: [email protected] Kevin P. White, email: [email protected] Keywords: tumor profiling, next-generation sequencing assay validation Received: August 03, 2018 Accepted: February 03, 2019 Published: March 22, 2019 Copyright: Beaubier et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT We developed and clinically validated a hybrid capture next generation sequencing assay to detect somatic alterations and microsatellite instability in solid tumors and hematologic malignancies. This targeted oncology assay utilizes tumor- normal matched samples for highly accurate somatic alteration calling and whole transcriptome RNA sequencing for unbiased identification of gene fusion events. The assay was validated with a combination of clinical specimens and cell lines, and recorded a sensitivity of 99.1% for single nucleotide variants, 98.1% for indels, 99.9% for gene rearrangements, 98.4% for copy number variations, and 99.9% for microsatellite instability detection. This assay presents a wide array of data for clinical management and clinical trial enrollment while conserving limited tissue.
    [Show full text]
  • University of Groningen Development of Bioinformatic Tools And
    University of Groningen Development of bioinformatic tools and application of novel statistical methods in genome- wide analysis van der Most, Peter Johannes IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2017 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): van der Most, P. J. (2017). Development of bioinformatic tools and application of novel statistical methods in genome-wide analysis. University of Groningen. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 07-10-2021 Chapter 8 Genome-wide survival meta-analysis of age at first cannabis use Camelia C.
    [Show full text]