AN INTRODUCTION to COBORDISM THEORY Contents 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
HE WANG Abstract. a Mini-Course on Rational Homotopy Theory
RATIONAL HOMOTOPY THEORY HE WANG Abstract. A mini-course on rational homotopy theory. Contents 1. Introduction 2 2. Elementary homotopy theory 3 3. Spectral sequences 8 4. Postnikov towers and rational homotopy theory 16 5. Commutative differential graded algebras 21 6. Minimal models 25 7. Fundamental groups 34 References 36 2010 Mathematics Subject Classification. Primary 55P62 . 1 2 HE WANG 1. Introduction One of the goals of topology is to classify the topological spaces up to some equiva- lence relations, e.g., homeomorphic equivalence and homotopy equivalence (for algebraic topology). In algebraic topology, most of the time we will restrict to spaces which are homotopy equivalent to CW complexes. We have learned several algebraic invariants such as fundamental groups, homology groups, cohomology groups and cohomology rings. Using these algebraic invariants, we can seperate two non-homotopy equivalent spaces. Another powerful algebraic invariants are the higher homotopy groups. Whitehead the- orem shows that the functor of homotopy theory are power enough to determine when two CW complex are homotopy equivalent. A rational coefficient version of the homotopy theory has its own techniques and advan- tages: 1. fruitful algebraic structures. 2. easy to calculate. RATIONAL HOMOTOPY THEORY 3 2. Elementary homotopy theory 2.1. Higher homotopy groups. Let X be a connected CW-complex with a base point x0. Recall that the fundamental group π1(X; x0) = [(I;@I); (X; x0)] is the set of homotopy classes of maps from pair (I;@I) to (X; x0) with the product defined by composition of paths. Similarly, for each n ≥ 2, the higher homotopy group n n πn(X; x0) = [(I ;@I ); (X; x0)] n n is the set of homotopy classes of maps from pair (I ;@I ) to (X; x0) with the product defined by composition. -
An Introduction to Complex Algebraic Geometry with Emphasis on The
AN INTRODUCTION TO COMPLEX ALGEBRAIC GEOMETRY WITH EMPHASIS ON THE THEORY OF SURFACES By Chris Peters Mathematisch Instituut der Rijksuniversiteit Leiden and Institut Fourier Grenoble i Preface These notes are based on courses given in the fall of 1992 at the University of Leiden and in the spring of 1993 at the University of Grenoble. These courses were meant to elucidate the Mori point of view on classification theory of algebraic surfaces as briefly alluded to in [P]. The material presented here consists of a more or less self-contained advanced course in complex algebraic geometry presupposing only some familiarity with the theory of algebraic curves or Riemann surfaces. But the goal, as in the lectures, is to understand the Enriques classification of surfaces from the point of view of Mori-theory. In my opininion any serious student in algebraic geometry should be acquainted as soon as possible with the yoga of coherent sheaves and so, after recalling the basic concepts in algebraic geometry, I have treated sheaves and their cohomology theory. This part culminated in Serre’s theorems about coherent sheaves on projective space. Having mastered these tools, the student can really start with surface theory, in particular with intersection theory of divisors on surfaces. The treatment given is algebraic, but the relation with the topological intersection theory is commented on briefly. A fuller discussion can be found in Appendix 2. Intersection theory then is applied immediately to rational surfaces. A basic tool from the modern point of view is Mori’s rationality theorem. The treatment for surfaces is elementary and I borrowed it from [Wi]. -
Generalized Rudin–Shapiro Sequences
ACTA ARITHMETICA LX.1 (1991) Generalized Rudin–Shapiro sequences by Jean-Paul Allouche (Talence) and Pierre Liardet* (Marseille) 1. Introduction 1.1. The Rudin–Shapiro sequence was introduced independently by these two authors ([21] and [24]) and can be defined by u(n) εn = (−1) , where u(n) counts the number of 11’s in the binary expansion of the integer n (see [5]). This sequence has the following property: X 2iπnθ 1/2 (1) ∀ N ≥ 0, sup εne ≤ CN , θ∈R n<N where one can take C = 2 + 21/2 (see [22] for improvements of this value). The order of magnitude of the left hand term in (1), as N goes to infin- 1/2 ity, is exactly N ; indeed, for each sequence (an) with values ±1 one has 1/2 X 2iπn(·) X 2iπn(·) N = ane ≤ ane , 2 ∞ n<N n<N where k k2 denotes the quadratic norm and k k∞ the supremum norm. Note that for almost every√ sequence (an) of ±1’s the supremum norm of the above sum is bounded by N Log N (see [23]). The inequality (1) has been generalized in [2] (see also [3]): X 2iπxu(n) 0 α(x) (2) sup f(n)e ≤ C N , f∈M2 n<N where M2 is the set of 2-multiplicative sequences with modulus 1. The * Research partially supported by the D.R.E.T. under contract 901636/A000/DRET/ DS/SR 2 J.-P. Allouche and P. Liardet exponent α(x) is explicitly given and satisfies ∀ x 1/2 ≤ α(x) ≤ 1 , ∀ x 6∈ Z α(x) < 1 , ∀ x ∈ Z + 1/2 α(x) = 1/2 . -
Fibonacci, Kronecker and Hilbert NKS 2007
Fibonacci, Kronecker and Hilbert NKS 2007 Klaus Sutner Carnegie Mellon University www.cs.cmu.edu/∼sutner NKS’07 1 Overview • Fibonacci, Kronecker and Hilbert ??? • Logic and Decidability • Additive Cellular Automata • A Knuth Question • Some Questions NKS’07 2 Hilbert NKS’07 3 Entscheidungsproblem The Entscheidungsproblem is solved when one knows a procedure by which one can decide in a finite number of operations whether a given logical expression is generally valid or is satisfiable. The solution of the Entscheidungsproblem is of fundamental importance for the theory of all fields, the theorems of which are at all capable of logical development from finitely many axioms. D. Hilbert, W. Ackermann Grundzuge¨ der theoretischen Logik, 1928 NKS’07 4 Model Checking The Entscheidungsproblem for the 21. Century. Shift to computer science, even commercial applications. Fix some suitable logic L and collection of structures A. Find efficient algorithms to determine A |= ϕ for any structure A ∈ A and sentence ϕ in L. Variants: fix ϕ, fix A. NKS’07 5 CA as Structures Discrete dynamical systems, minimalist description: Aρ = hC, i where C ⊆ ΣZ is the space of configurations of the system and is the “next configuration” relation induced by the local map ρ. Use standard first order logic (either relational or functional) to describe properties of the system. NKS’07 6 Some Formulae ∀ x ∃ y (y x) ∀ x, y, z (x z ∧ y z ⇒ x = y) ∀ x ∃ y, z (y x ∧ z x ∧ ∀ u (u x ⇒ u = y ∨ u = z)) There is no computability requirement for configurations, in x y both x and y may be complicated. -
Formal Groups, Witt Vectors and Free Probability
Formal Groups, Witt vectors and Free Probability Roland Friedrich and John McKay December 6, 2019 Abstract We establish a link between free probability theory and Witt vectors, via the theory of formal groups. We derive an exponential isomorphism which expresses Voiculescu's free multiplicative convolution as a function of the free additive convolution . Subsequently we continue our previous discussion of the relation between complex cobordism and free probability. We show that the generic nth free cumulant corresponds to the cobordism class of the (n 1)-dimensional complex projective space. This permits us to relate several probability distributions− from random matrix theory to known genera, and to build a dictionary. Finally, we discuss aspects of free probability and the asymptotic representation theory of the symmetric group from a conformal field theoretic perspective and show that every distribution with mean zero is embeddable into the Universal Grassmannian of Sato-Segal-Wilson. MSC 2010: 46L54, 55N22, 57R77, Keywords: Free probability and free operator algebras, formal group laws, Witt vectors, complex cobordism (U- and SU-cobordism), non-crossing partitions, conformal field theory. Contents 1 Introduction 2 2 Free probability and formal group laws4 2.1 Generalised free probability . .4 arXiv:1204.6522v3 [math.OA] 5 Dec 2019 2.2 The Lie group Aut( )....................................5 O 2.3 Formal group laws . .6 2.4 The R- and S-transform . .7 2.5 Free cumulants . 11 3 Witt vectors and Hopf algebras 12 3.1 The affine group schemes . 12 3.2 Witt vectors, λ-rings and necklace algebras . 15 3.3 The induced ring structure . -
The Relation of Cobordism to K-Theories
The Relation of Cobordism to K-Theories PhD student seminar winter term 2006/07 November 7, 2006 In the current winter term 2006/07 we want to learn something about the different flavours of cobordism theory - about its geometric constructions and highly algebraic calculations using spectral sequences. Further we want to learn the modern language of Thom spectra and survey some levels in the tower of the following Thom spectra MO MSO MSpin : : : Mfeg: After that there should be time for various special topics: we could calculate the homology or homotopy of Thom spectra, have a look at the theorem of Hartori-Stong, care about d-,e- and f-invariants, look at K-, KO- and MU-orientations and last but not least prove some theorems of Conner-Floyd type: ∼ MU∗X ⊗MU∗ K∗ = K∗X: Unfortunately, there is not a single book that covers all of this stuff or at least a main part of it. But on the other hand it is not a big problem to use several books at a time. As a motivating introduction I highly recommend the slides of Neil Strickland. The 9 slides contain a lot of pictures, it is fun reading them! • November 2nd, 2006: Talk 1 by Marc Siegmund: This should be an introduction to bordism, tell us the G geometric constructions and mention the ring structure of Ω∗ . You might take the books of Switzer (chapter 12) and Br¨oker/tom Dieck (chapter 2). Talk 2 by Julia Singer: The Pontrjagin-Thom construction should be given in detail. Have a look at the books of Hirsch, Switzer (chapter 12) or Br¨oker/tom Dieck (chapter 3). -
Classification on the Grassmannians
GEOMETRIC FRAMEWORK SOME EMPIRICAL RESULTS COMPRESSION ON G(k, n) CONCLUSIONS Classification on the Grassmannians: Theory and Applications Jen-Mei Chang Department of Mathematics and Statistics California State University, Long Beach [email protected] AMS Fall Western Section Meeting Special Session on Metric and Riemannian Methods in Shape Analysis October 9, 2010 at UCLA GEOMETRIC FRAMEWORK SOME EMPIRICAL RESULTS COMPRESSION ON G(k, n) CONCLUSIONS Outline 1 Geometric Framework Evolution of Classification Paradigms Grassmann Framework Grassmann Separability 2 Some Empirical Results Illumination Illumination + Low Resolutions 3 Compression on G(k, n) Motivations, Definitions, and Algorithms Karcher Compression for Face Recognition GEOMETRIC FRAMEWORK SOME EMPIRICAL RESULTS COMPRESSION ON G(k, n) CONCLUSIONS Architectures Historically Currently single-to-single subspace-to-subspace )2( )3( )1( d ( P,x ) d ( P,x ) d(P,x ) ... P G , , … , x )1( x )2( x( N) single-to-many many-to-many Image Set 1 … … G … … p * P , Grassmann Manifold Image Set 2 * X )1( X )2( … X ( N) q Project Eigenfaces GEOMETRIC FRAMEWORK SOME EMPIRICAL RESULTS COMPRESSION ON G(k, n) CONCLUSIONS Some Approaches • Single-to-Single 1 Euclidean distance of feature points. 2 Correlation. • Single-to-Many 1 Subspace method [Oja, 1983]. 2 Eigenfaces (a.k.a. Principal Component Analysis, KL-transform) [Sirovich & Kirby, 1987], [Turk & Pentland, 1991]. 3 Linear/Fisher Discriminate Analysis, Fisherfaces [Belhumeur et al., 1997]. 4 Kernel PCA [Yang et al., 2000]. GEOMETRIC FRAMEWORK SOME EMPIRICAL RESULTS COMPRESSION ON G(k, n) CONCLUSIONS Some Approaches • Many-to-Many 1 Tangent Space and Tangent Distance - Tangent Distance [Simard et al., 2001], Joint Manifold Distance [Fitzgibbon & Zisserman, 2003], Subspace Distance [Chang, 2004]. -
Arxiv:1711.05949V2 [Math.RT] 27 May 2018 Mials, One Obtains a Sum Whose Summands Are Rational Functions in Ti
RESIDUES FORMULAS FOR THE PUSH-FORWARD IN K-THEORY, THE CASE OF G2=P . ANDRZEJ WEBER AND MAGDALENA ZIELENKIEWICZ Abstract. We study residue formulas for push-forward in the equivariant K-theory of homogeneous spaces. For the classical Grassmannian the residue formula can be obtained from the cohomological formula by a substitution. We also give another proof using sym- plectic reduction and the method involving the localization theorem of Jeffrey–Kirwan. We review formulas for other classical groups, and we derive them from the formulas for the classical Grassmannian. Next we consider the homogeneous spaces for the exceptional group G2. One of them, G2=P2 corresponding to the shorter root, embeds in the Grass- mannian Gr(2; 7). We find its fundamental class in the equivariant K-theory KT(Gr(2; 7)). This allows to derive a residue formula for the push-forward. It has significantly different character comparing to the classical groups case. The factor involving the fundamen- tal class of G2=P2 depends on the equivariant variables. To perform computations more efficiently we apply the basis of K-theory consisting of Grothendieck polynomials. The residue formula for push-forward remains valid for the homogeneous space G2=B as well. 1. Introduction ∗ r Suppose an algebraic torus T = (C ) acts on a complex variety X which is smooth and complete. Let E be an equivariant complex vector bundle over X. Then E defines an element of the equivariant K-theory of X. In our setting there is no difference whether one considers the algebraic K-theory or the topological one. -
Filtering Grassmannian Cohomology Via K-Schur Functions
FILTERING GRASSMANNIAN COHOMOLOGY VIA K-SCHUR FUNCTIONS THE 2020 POLYMATH JR. \Q-B-AND-G" GROUPy Abstract. This paper is concerned with studying the Hilbert Series of the subalgebras of the cohomology rings of the complex Grassmannians and La- grangian Grassmannians. We build upon a previous conjecture by Reiner and Tudose for the complex Grassmannian and present an analogous conjecture for the Lagrangian Grassmannian. Additionally, we summarize several poten- tial approaches involving Gr¨obnerbases, homological algebra, and algebraic topology. Then we give a new interpretation to the conjectural expression for the complex Grassmannian by utilizing k-conjugation. This leads to two conjectural bases that would imply the original conjecture for the Grassman- nian. Finally, we comment on how this new approach foreshadows the possible existence of analogous k-Schur functions in other Lie types. Contents 1. Introduction2 2. Conjectures3 2.1. The Grassmannian3 2.2. The Lagrangian Grassmannian4 3. A Gr¨obnerBasis Approach 12 3.1. Patterns, Patterns and more Patterns 12 3.2. A Lex-greedy Approach 20 4. An Approach Using Natural Maps Between Rings 23 4.1. Maps Between Grassmannians 23 4.2. Maps Between Lagrangian Grassmannians 24 4.3. Diagrammatic Reformulation for the Two Main Conjectures 24 4.4. Approach via Coefficient-Wise Inequalities 27 4.5. Recursive Formula for Rk;` 27 4.6. A \q-Pascal Short Exact Sequence" 28 n;m 4.7. Recursive Formula for RLG 30 4.8. Doubly Filtered Basis 31 5. Schur and k-Schur Functions 35 5.1. Schur and Pieri for the Grassmannian 36 5.2. Schur and Pieri for the Lagrangian Grassmannian 37 Date: August 2020. -
Algebraic Cobordism
Algebraic Cobordism Marc Levine January 22, 2009 Marc Levine Algebraic Cobordism Outline I Describe \oriented cohomology of smooth algebraic varieties" I Recall the fundamental properties of complex cobordism I Describe the fundamental properties of algebraic cobordism I Sketch the construction of algebraic cobordism I Give an application to Donaldson-Thomas invariants Marc Levine Algebraic Cobordism Algebraic topology and algebraic geometry Marc Levine Algebraic Cobordism Algebraic topology and algebraic geometry Naive algebraic analogs: Algebraic topology Algebraic geometry ∗ ∗ Singular homology H (X ; Z) $ Chow ring CH (X ) ∗ alg Topological K-theory Ktop(X ) $ Grothendieck group K0 (X ) Complex cobordism MU∗(X ) $ Algebraic cobordism Ω∗(X ) Marc Levine Algebraic Cobordism Algebraic topology and algebraic geometry Refined algebraic analogs: Algebraic topology Algebraic geometry The stable homotopy $ The motivic stable homotopy category SH category over k, SH(k) ∗ ∗;∗ Singular homology H (X ; Z) $ Motivic cohomology H (X ; Z) ∗ alg Topological K-theory Ktop(X ) $ Algebraic K-theory K∗ (X ) Complex cobordism MU∗(X ) $ Algebraic cobordism MGL∗;∗(X ) Marc Levine Algebraic Cobordism Cobordism and oriented cohomology Marc Levine Algebraic Cobordism Cobordism and oriented cohomology Complex cobordism is special Complex cobordism MU∗ is distinguished as the universal C-oriented cohomology theory on differentiable manifolds. We approach algebraic cobordism by defining oriented cohomology of smooth algebraic varieties, and constructing algebraic cobordism as the universal oriented cohomology theory. Marc Levine Algebraic Cobordism Cobordism and oriented cohomology Oriented cohomology What should \oriented cohomology of smooth varieties" be? Follow complex cobordism MU∗ as a model: k: a field. Sm=k: smooth quasi-projective varieties over k. An oriented cohomology theory A on Sm=k consists of: D1. -
Circles in a Complex Projective Space
Adachi, T., Maeda, S. and Udagawa, S. Osaka J. Math. 32 (1995), 709-719 CIRCLES IN A COMPLEX PROJECTIVE SPACE TOSHIAKI ADACHI, SADAHIRO MAEDA AND SEIICHI UDAGAWA (Received February 15, 1994) 0. Introduction The study of circles is one of the interesting objects in differential geometry. A curve γ(s) on a Riemannian manifold M parametrized by its arc length 5 is called a circle, if there exists a field of unit vectors Ys along the curve which satisfies, together with the unit tangent vectors Xs — Ϋ(s)9 the differential equations : FSXS = kYs and FsYs= — kXs, where k is a positive constant, which is called the curvature of the circle γ(s) and Vs denotes the covariant differentiation along γ(s) with respect to the Aiemannian connection V of M. For given a point lEJIί, orthonormal pair of vectors u, v^ TXM and for any given positive constant k, we have a unique circle γ(s) such that γ(0)=x, γ(0) = u and (Psγ(s))s=o=kv. It is known that in a complete Riemannian manifold every circle can be defined for -oo<5<oo (Cf. [6]). The study of global behaviours of circles is very interesting. However there are few results in this direction except for the global existence theorem. In general, a circle in a Riemannian manifold is not closed. Here we call a circle γ(s) closed if = there exists So with 7(so) = /(0), XSo Xo and YSo— Yo. Of course, any circles in Euclidean m-space Em are closed. And also any circles in Euclidean m-sphere Sm(c) are closed. -
NOTES on CARTIER and WEIL DIVISORS Recall: Definition 0.1. A
NOTES ON CARTIER AND WEIL DIVISORS AKHIL MATHEW Abstract. These are notes on divisors from Ravi Vakil's book [2] on scheme theory that I prepared for the Foundations of Algebraic Geometry seminar at Harvard. Most of it is a rewrite of chapter 15 in Vakil's book, and the originality of these notes lies in the mistakes. I learned some of this from [1] though. Recall: Definition 0.1. A line bundle on a ringed space X (e.g. a scheme) is a locally free sheaf of rank one. The group of isomorphism classes of line bundles is called the Picard group and is denoted Pic(X). Here is a standard source of line bundles. 1. The twisting sheaf 1.1. Twisting in general. Let R be a graded ring, R = R0 ⊕ R1 ⊕ ::: . We have discussed the construction of the scheme ProjR. Let us now briefly explain the following additional construction (which will be covered in more detail tomorrow). L Let M = Mn be a graded R-module. Definition 1.1. We define the sheaf Mf on ProjR as follows. On the basic open set D(f) = SpecR(f) ⊂ ProjR, we consider the sheaf associated to the R(f)-module M(f). It can be checked easily that these sheaves glue on D(f) \ D(g) = D(fg) and become a quasi-coherent sheaf Mf on ProjR. Clearly, the association M ! Mf is a functor from graded R-modules to quasi- coherent sheaves on ProjR. (For R reasonable, it is in fact essentially an equiva- lence, though we shall not need this.) We now set a bit of notation.