OSSS Black Belt Training Manual

Total Page:16

File Type:pdf, Size:1020Kb

OSSS Black Belt Training Manual Table of Contents Page Define Phase Understanding Six Sigma…………………………………………………..….…….… 1 Six Sigma Fundamentals………………………………..…………………..……..…. 22 Selecting Projects………………………………………………………..……..……… 42 Elements of Waste………………………………………...……………………………64 Wrap Up and Action Items……………………………………………………….……77 Measure Phase Welcome to Measure…………………………………………………….……..….....83 Process Discovery………………………………………………………………………86 Six Sigma Statistics…………………………….………………………………….….135 Measurement System Analysis……………………………………………………....168 Process Capability ………………………………………………………… ……….200 Wrap Up and Action Items ………………………………………………………….221 Analyze Phase Welcome to Analyze…………………………………………………………… .…..227 “X” Sifting………………………………….…………………………….……….….230 Inferential Statistics…………………………………………………..………….…….256 Introduction to Hypothesis Testing…………………………….…………………….271 Hypothesis Testing Normal Data Part 1……………………………..………………285 Hypothesis Testing Normal Data Part 2 ……………………………………….……328 Hypothesis Testing Non-Normal Data Part 1………………………………….……358 Hypothesis Testing Non-Normal Data Part 2……………………………………….384 Wrap Up and Action Items ………………………………………………....……..403 Improve Phase Welcome to Improve…………………………………………………………...…..409 Process Modeling Regression……………………………………………………….412 Advanced Process Modeling……………………………………………………….431 Designing Experiments………………………………………………………………458 Experimental Methods………………………………………………………………473 Full Factorial Experiments………………………………………………………..…488 Fractional Factorial Experiments…………………………………………….……..517 Wrap Up and Action Items…………………………………………………………537 Control Phase Welcome to Control…………………………………………………………………543 Lean Controls…………………………………………………………………………546 Defect Controls…………………………………………………………….…………561 Statistical Process Control…………………………………………………………….573 Six Sigma Control Plans………………………………………………………………613 Wrap Up and Action Items……………………………………………………….…633 Glossary OSSS LSS Black Belt Manual Copyright OpenSourceSixSigma.com 409 Lean Six Sigma Black Belt Training ImproveImprove PhasePhase DesigningDesigning ExperimentsExperiments Now we are going to continue with the Improve Phase “Designing Experiments”. OSSS LSS Black Belt Manual Copyright OpenSourceSixSigma.com 410 Designing Experiments Overview Within this module we WelcomeWelcome toto ImproveImprove will provide an ProcessProcess Modeling:Modeling: RegressionRegression introduction to Design of AdvancedAdvanced ProcessProcess Modeling:Modeling: Experiments, MLRMLR ReasonsReasons forfor ExperimentsExperiments explain what they are, how DesigningDesigning ExperimentsExperiments GraphicalGraphical AnalysisAnalysis they work and when to use DOEDOE MethodologyMethodology them. ExperimentalExperimental MethodsMethods FullFull FactorialFactorial ExperimentsExperiments FractionalFractional FactorialFactorial ExperimentsExperiments WrapWrap UpUp && ActionAction ItemsItems Project Status Review • Understand our problem and it’s impact on the business. (Define) • Established firm objectives/goals for improvement. (Define) • Quantified our output characteristic. (Define) • Validated the measurement system for our output characteristic. (Measure) • Identified the process input variables in our process. (Measure) • Narrowed our input variables to the potential “X’s” through Statistical Analysis. (Analyze) • Selected the vital few X’s to optimize the output response(s). (Improve) • Quantified the relationship of the Y’s to the X’s with Y=f(x). (Improve) OSSS LSS Black Belt Manual Copyright OpenSourceSixSigma.com 411 Designing Experiments Six Sigma Strategy O s u liers Cu ut SIPOC t Supp st p p om In VOC u Co e Project Scope ts nt E rs rac mploy tors ees (X1) (X11) P-Map, XY, FMEA (X2) (X3) (X4) (X8) (X9) Capability (X6) (X7) (X5) (X10) Box Plot, Scatter (X3) (X4) (X1) (X11) Plots, Regression (X8) (X2) (X5) Fractional Factorial Full Factorial (X5) (X3) Center Points (X11) (X4) This is reoccurring awareness. By using tools we filter the variables of defects. When talking of the Improve Phase in the Six Sigma methodology we are confronted by many designed experiments; transactional, manufacturing, research. Reasons for Experiments The Analyze Phase narrowed down the many inputs to a critical few, now it is necessary to determine the proper settings for the vital few inputs because: – The vital few potentially have interactions. – The vital few will have preferred ranges to achieve optimal results. – Confirm cause and effect relationships among factors identified in analyze phase (e.g. regression) Understanding the reason for an experiment can help in selecting the design and focusing the efforts of an experiment. Reasons for experimenting are: – Problem Solving (Improving a process response) – Optimizing (Highest yield or lowest customer complaints) – Robustness (Constant response time) – Screening (Further screening of the critical few to the vital few X’s) Design where you’re going - be sure you get there! Designs of Experiments help the Belt to understand the cause and effect between the process output or outputs of interest and the vital few inputs. Some of these causes and effects may include the impact of interactions often referred to synergistic or cancelling effects. OSSS LSS Black Belt Manual Copyright OpenSourceSixSigma.com 412 Designing Experiments Desired Results of Experiments Designed experiments Problem Solving allows us to – Eliminate defective products or services. describe a – Reduce cycle time of handling transactional processes. mathematical Optimizing relationship – Mathematical model is desired to move the process response. between the inputs and outputs. – Opportunity to meet differing customer requirements (specifications or However, often VOC). the mathematical Robust Design equation is not – Provide consistent process or product performance. necessary or used – Desensitize the output response(s) to input variable changes including depending on the NOISE variables. focus of the – Design processes knowing which input variables are difficult to maintain. experiment. Screening – Past process data is limited or statistical conclusions prevented good narrowing of critical factors in Analyze Phase When it rains it PORS! DOE Models vs. Physical Models Here we have models that are the result of designed experiments. Many have difficulty determining DOE models from that of physical models. A physical model includes: biology, chemistry, physics and usually many variables, typically using complexities and calculus to describe. The DOE model doesn’t include any variables or complex calculus: it includes most important variables and shows variation of data collected. DOE will focus on the specific region of interest. What are the differences between DOE modeling and physical models? – A Physical model is known by theory using concepts of physics, chemistry, biology, etc... – Physical models explain outside area of immediate project needs and include more variables than typical DOE models. – DOE describes only a small region of the experimental space. The objective is to minimize the response. The physical model is not important for our business objective. The DOE Model will focus in the region of interest. OSSS LSS Black Belt Manual Copyright OpenSourceSixSigma.com 413 Designing Experiments Definition for Design of Experiments Design of Experiments (DOE) is a scientific method of Design of Experiment shows planning and conducting an experiment that will yield the cause and effect the true cause-and-effect relationship between the X relationship of variables of variables and the Y variables of interest. interest X and Y. By way of input variables, designed DOE allows the experimenter to study the effect of many input variables that may influence the product or process experiments have been simultaneously, as well as possible interaction effects (for noted within the Analyze example synergistic effects). Phase then are executed in the Improve Phase. DOE The end result of many experiments is to describe the tightly controls the input results as a mathematical function. variables and carefully y = f (x) monitors the uncontrollable The goal of DOE is to find a design that will produce the variables. information required at a minimum cost. Properly designed DOE’s are more efficient experiments. One Factor at a Time is NOT a DOE Let’s assume a Belt has found One Factor at a Time (OFAT) is an experimental style but not a in the Analyze Phase that planned experiment or DOE. pressure and temperature The graphic shows yield contours for a process that are impact his process and no unknown to the experimenter. Trial Temp Press Yield one knows what yield is Yield Contours Are 1 125 30 74 achieved for the possible Unknown To Experimenter 75 2 125 31 80 3 125 32 85 temperature and pressure 4 125 33 92 combinations. 80 5 125 34 86 6 130 33 85 7 120 33 90 If a Belt inefficiently did a 135 85 6 130 One Factor at a Time 90 1 2 3 4 5 Optimum identified experiment (referred to as 125 95 with OFAT Pressure (psi) Pressure 120 OFAT), one variable would 7 be selected to change first while the other variable is True Optimum available 30 31 32 33 34 35 with DOE held constant, once the Temperature (C) desired result was observed, the first variable is set at that level and the second variable is changed. Basically, you pick the winner of the combinations tested. The curves shown on the graph above represent a constant process yield if the Belt knew the theoretical relationships of all the variables and the process output of pressure. These contour lines are familiar if you’ve ever done hiking in the mountains
Recommended publications
  • Ruggles, Olivia, M Title: Standardized Work Instruction
    1 Author: Ruggles, Olivia, M Title: Standardized Work Instruction The accompanying research report is submitted to the University of Wisconsin-Stout, Graduate School in partial completion of the requirements for the Graduate Degree/ Major: MS Technology Management Research Adviser: Jim Keyes, Ph.D. Submission Term/Year: Summer, 2012 Number of Pages: 56 Style Manual Used: American Psychological Association, 6th edition I understand that this research report must be officially approved by the Graduate School and that an electronic copy of the approved version will be made available through the University Library website I attest that the research report is my original work (that any copyrightable materials have been used with the permission of the original authors), and as such, it is automatically protected by the laws, rules, and regulations of the U.S. Copyright Office. My research adviser has approved the content and quality of this paper. STUDENT: NAME Olivia Ruggles DATE: 8/3/2012 ADVISER: (Committee Chair if MS Plan A or EdS Thesis or Field Project/Problem): NAME Jim Keyes, Ph.D. DATE: 8/3/2012 --------------------------------------------------------------------------------------------------------------------------------- This section for MS Plan A Thesis or EdS Thesis/Field Project papers only Committee members (other than your adviser who is listed in the section above) 1. CMTE MEMBER’S NAME: DATE: 2. CMTE MEMBER’S NAME: DATE: 3. CMTE MEMBER’S NAME: DATE: --------------------------------------------------------------------------------------------------------------------------------- This section to be completed by the Graduate School This final research report has been approved by the Graduate School. Director, Office of Graduate Studies: DATE: 2 Ruggles, Olivia M. Standardized Work Instruction Abstract Mercury Marine is a world-wide manufacturing company in the marine industry.
    [Show full text]
  • Statistical Process Control for Monitoring Nonlinear Profiles: a Six Sigma Project on Curing Process
    This is the author’s final, peer-reviewed manuscript as accepted for publication. The publisher-formatted version may be available through the publisher’s web site or your institution’s library. Statistical process control for monitoring nonlinear profiles: a six sigma project on curing process Shing I. Chang, Tzong-Ru Tsai, Dennis K. J. Lin, Shih-Hsiung Chou, & Yu-Siang Lin How to cite this manuscript If you make reference to this version of the manuscript, use the following information: Chang, S. I., Tsai, T., Lin, D. K. J., Chou, S., & Lin, Y. (2012). Statistical process control for monitoring nonlinear profiles: A six sigma project on curing process. Retrieved from http://krex.ksu.edu Published Version Information Citation: Chang, S. I., Tsai, T., Lin, D. K. J., Chou, S., & Lin, Y. (2012). Statistical process control for monitoring nonlinear profiles: A six sigma project on curing process. Quality Engineering, 24(2), 251-263. Copyright: Copyright © Taylor & Francis Group, LLC. Digital Object Identifier (DOI): doi:10.1080/08982112.2012.641149 Publisher’s Link: http://www.tandfonline.com/doi/abs/10.1080/08982112.2012.641149 This item was retrieved from the K-State Research Exchange (K-REx), the institutional repository of Kansas State University. K-REx is available at http://krex.ksu.edu Statistical Process Control for Monitoring Nonlinear Profiles: A Six Sigma Project on Curing Process Shing I Chang1, Tzong‐Ru Tsai2, Dennis K.J. Lin3, Shih‐Hsiung Chou1 & Yu‐Siang Lin4 1Quality Engineering Laboratory, Department of Industrial and Manufacturing Systems Engineering, Kansas State University, USA 2Department of Statistics, Tamkang University, Danshui District, New Taipei City 25137 Taiwan 3Department of Statistics, Pennsylvania State University, USA 4Department of Industrial Management, National Taiwan University of Science and Technology, Taipei, Taiwan ABSTRACT Curing duration and target temperature are the most critical process parameters for high- pressure hose products.
    [Show full text]
  • Achieving Total Quality Management in Construction Project Using Six Sigma Concept
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 05 Issue: 06 | June 2018 www.irjet.net p-ISSN: 2395-0072 Achieving Total Quality Management in Construction Project Using Six Sigma Concept Dr.Divakar.K1 and Nishaant.Ha2 1Associate Professor in Civil Engineering, Coimbatore Institute of Technology, Coimbatore-641014 2Assistant Professor in Civil Engineering, Kumaraguru College of Technology, Coimbatore-641049 ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - A Six Sigma approach is one of the most Low Sui Pheng and Mok Sze Hui (2004) examined the efficient quality improvement processes. In this study, six strategies and concepts of Six Sigma and implemented sigma concepts were applied in construction scheduling those concepts in construction industry. A. D. Lade et.al. process to avoid delay as well as to maintain the quality of (2015) analysed the quality performance of Ready Mix the construction activities. Detailed schedule of the building Concrete (RMC) plant at Mumbai, India, using the six was analysed & also the updated schedule was verified. At sigma philosophy had been evaluated using various this stage, DMAIC (Define, Measure, Analyse, Improve and quality tools and sigma value was calculated. According to Control) principle was implemented. The variation in the the sigma level, recommendations were given for the scheduling due to delay of the activities was noted down. improvement. Seung Heon Han et.al. in their study they Delay reasons and their impacts in the whole project were developed a general methodology to apply the six sigma calculated. All delayed activities were considered as principles on construction operations rather than “Defects”. DPMO (Defects Per Million Opportunities) was construction materials in terms of the barometers to calculated.
    [Show full text]
  • The Use of Six Sigma in Healthcare
    The Use of Six Sigma in Healthcare Jayanta K. Bandyopadhyay And Karen Coppens Central Michigan University Mt. Pleasant, Michigan, U.S.A. International Journal of Quality & Productivity Management Bandyopadhyay and Volume 5, No. 1 December 15, 2005 Coppens Six Sigma Approach to Healthcare Quality and Productivity Management By Jayanta K. Bandyopadhyay and Karen Coppens Central Michigan University Abstract: For decades the U.S. health care industry has been operating on its own way ignoring emerging factors such as competition, patient safety, skyrocketing health care cost, liability, malpractice insurance cost and use of DRG for Medicare and insurance payment. However, as these factors became more prevalent and competition within the industry intensified, many U.S. hospitals have been becoming increasingly aware of the critical needs of controlling the operating costs and meet and even exceeds the expectations of patient care quality. This paper presents a model of Six Sigma approach to health care quality management for hospitals in the U.S. and abroad. Keywords: six sigma, quality and productivity management in healthcare Introduction The health care industry in the U.S has been operating on its own traditional economic domain ignoring current emerging factors such as competition, patient safety, skyrocketing health care cost, liability from malpractice lawsuits and more government control on Medicare payment.( Hansson, 2000). But in recent years, these factors have become more prevalent and competition within the industry has been intensified, and many U.S. hospitals has been becoming increasingly aware of the critical needs of controlling their operating costs and meet the expectations of patient care quality (Chow-Chua et.al,2000).
    [Show full text]
  • 4. Six Sigma Six Sigma Is a Set of Strategies, Techniques, and Tools For
    4. Six Sigma Six Sigma is a set of strategies, techniques, and tools for process improvement. It was developed by Motorola in 1986. Six Sigma became famous when Jack Welch made it central to his successful business strategy at General Electric in 1995. Today, it is used in many industrial sectors. Six Sigma seeks to improve the quality of process outputs by identifying and removing the causes of defects (errors) and minimizing variability in manufacturing and business processes.[5] It uses a set of quality management methods, including statistical methods, and creates a special infrastructure of people within the organization ("Champions", "Black Belts", "Green Belts", "Yellow Belts", etc.) who are experts in the methods. Each Six Sigma project carried out within an organization follows a defined sequence of steps and has quantified value targets, for example: reduce process cycle time, reduce pollution, reduce costs, increase customer satisfaction, and increase profits. The term Six Sigma originated from terminology associated with manufacturing, specifically terms associated with statistical modeling of manufacturing processes. The maturity of a manufacturing process can be described by a sigma rating indicating its yield or the percentage of defect-free products it creates. A six sigma process is one in which 99.9999998% of the products manufactured are statistically expected to be free of defects (0.002 defective parts/million), although, as discussed below, this defect level corresponds to only a 4.5 sigma level. Motorola set a goal of "six sigma" for all of its manufacturing operations, and this goal became a by-word for the management and engineering practices used to achieve it.
    [Show full text]
  • Developing an Innovative and Creative Hands-On Lean Six Sigma Manufacturing Experiments for Engineering Education
    Engineering, Technology & Applied Science Research Vol. 6, No. 6, 2016, 1297-1302 1297 Developing an Innovative and Creative Hands-on Lean Six Sigma Manufacturing Experiments for Engineering Education Isam Elbadawi Mohamed Aichouni Noor Aite Messaoudene Industrial Engineering Industrial Engineering Mechanical Engineering University of Hail University of Hail University of Hail Hail, Saudi Arabia Hail, Saudi Arabia Hail, Saudi Arabia [email protected], [email protected] [email protected] [email protected] Abstract—The goal of this study was to develop an innovative relevant to the needs of both students and market place. Such and creative hands-on project based on Lean Six Sigma integration is particularly important not only because the world experiments for engineering education at the College of has changed tremendously and new challenges have surfaced Engineering at the University of Hail. The exercises were over the last decade, but also because a considerable number of designed using junction box assembly to meet the following the students who join engineering schools have probably never learning outcomes: 1-to provide students with solid experience on had their hands on any practical engineering project. At the waste elimination and variation reduction and 2-to engage present, this integration has become an essential practice in students in exercises related to assembly line mass production most engineering schools worldwide. However, the number and motion study. To achieve these objectives, students were and complexity of the project-based courses significantly vary introduced to the principles of Lean manufacturing and Six among institutions with some having a project-based Sigma through various pedagogical activities such as classroom component to almost every engineering course [1] and others instruction, laboratory experiments, hands-on exercises, and that have only a few of such projects.
    [Show full text]
  • Success of Manufacturing Industries – Role of Six Sigma
    MATEC Web of Conferences 144, 05002 (2018) https://doi.org/10.1051/matecconf/201814405002 RiMES 2017 Success of manufacturing industries – Role of Six Sigma N. Venkatesh1* and C. Sumangala2 1Department of Mechanical Engineering, Canara College of Engineering, Benjanapadavu, Bantwal 574 219, Karnataka, India 2Department of MBA, University of Mysore, Mysore 570005, Karnataka, India Abstract. Six Sigma is a phenomenal quality management concepts which has helped many organizations to overcome quality crisis in the recent past. Six Sigma is observed as a very promising quality management tool for any organization to make its presence felt in the corporate world as it emphasizes on obtaining a fruitful solution to improve accuracy, reduce defect thereby reduce the cost and improve profits. The main objective of this investigation is to unearth the extent to which the companies have been benefitted due to Six Sigma implementation. This article presents the results based on the analysis of collective opinion of employees of various Indian manufacturing industries that have implemented Six Sigma. This research also examines interrelationship among various parameters defined in the research. The research revealed that industries are benefitted irrespective of their nature in terms of their growth, financial benefits, productivity and satisfaction of the customer. However, peoples’ equity that deals with the benefits that employees obtain after Six Sigma implementation is not certain. The research also revealed the existence of strong interrelationship among various parameters used to measure the success of Six Sigma. Keywords: Six Sigma; Qualitative analysis; manufacturing industry. 1 Introduction The Six Sigma philosophy aims to maintain a process within control limits in order to record no defects (Arendt, 2008).
    [Show full text]
  • Lean Six Sigma for Dummies‰
    Lean Six Sigma FOR DUMmIES‰ 2ND EDITION by John Morgan and Martin Brenig-Jones A John Wiley and Sons, Ltd, Publication Lean Six Sigma For Dummies®, 2nd Edition Published by John Wiley & Sons, Ltd The Atrium Southern Gate Chichester West Sussex PO19 8SQ England www.wiley.com Copyright © 2012 John Wiley & Sons, Ltd, Chichester, West Sussex, England Published by John Wiley & Sons, Ltd, Chichester, West Sussex All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmit- ted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, Saffron House, 6-10 Kirby Street, London EC1N 8TS, UK, without the permission in writing of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, England, or emailed to [email protected], or faxed to (44) 1243 770620. Trademarks: Wiley, the Wiley logo, For Dummies, the Dummies Man logo, A Reference for the Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc., and/or its affiliates in the United States and other countries, and may not be used without written permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.
    [Show full text]
  • What Is Six Sigma? Donald P
    What is Six Sigma? Donald P. Lynch, Ph.D. I: INTRODUCTION Six Sigma has become part of our everyday (defects per million opportunities). The standard vocabulary as its popularity has grown in today’s unit of measure can be used to compare processes, business environment. For those who work in business units and, furthermore, organizations. an organization that has embraced Six Sigma, Six Sigma, the methodology, comprises a the term is clear and the methodology is well systematic approach, a set of statistical tools understood. However, others are still trying to and a vehicle for customer focus, breakthrough figure out exactly what Six Sigma is, and how improvement and people involvement. This it may be able to help them reach their goals. viewpoint is really the “how” for the “why” – vision and “what” – metric. Six Sigma as a isd.engin.umich.edu/six-sigma A: What is Six Sigma? methodology is the step-by-step approach to reduce variation, in everything we do, to One of the reasons it has been so difficult for improve customer satisfaction. This approach ABSTRACT those not working in an organization that has follows a methodology sometimes referred embraced Six Sigma to really understand it to as the Breakthrough Strategy, and utilizes is because Six Sigma means multiple things. a set of tools to accomplish the results in a Six Sigma has burst onto The term Six Sigma is used interchangeably to project environment with dedicated personnel. the business world scene These three categories of Six Sigma can be reflect a vision, philosophy, commitment, goal, and has commanded level of performance, statistical measurement, summarized into a couple of phrases.
    [Show full text]
  • Download Complete Curriculum
    L E A N S I X S I G M A G R E E N B E LT C O U R S E T O P I C S Copyright ©2019 by Pyzdek Institute, LLC. LEAN SIX SIGMA GREEN BELT COURSE TOPICS LESSON TOPIC Overview A top-level overview of the topics covered in this course What is Six Sigma? A complete overview of Six Sigma Lean Overview 1 Waste and Value Lean Overview 2 Value Streams, Flow and Pull Lean Overview 3 Perfection Recognizing an Linking your Green Belt activities to the organization’s Opportunity vision and goals Choosing the Project- How to pick a winning project using Pareto Analysis Pareto Analysis Assessing Lean Six Sigma How to carefully assess Lean Six Sigma project candidates Project Candidates to assure success Develop the Project Plan 1 Team selection and dynamics; brainstorming; consensus decision making; nominal group technique Develop the Project Plan 2 Stakeholder analysis, communication and planning, cross functional collaboration, and Force Field Analysis Develop the Project Plan 3 Obtain a charter for your project Develop the Project Plan 4 Work breakdown structures, DMAIC tasks, network diagrams Develop the Project Plan 5 Project schedule management; project budget management Develop the Project Plan 6 Obstacle avoidance tactics and management support strategies High Level Maps 1 L-Maps, linking project charter Ys to L-Map processes High Level Maps 2 Mapping the process from supplier to customer (SIPOC) High Level Maps 3 Product family matrix 2 Voice of the Customer (VOC) 1 Kano Model, getting the voice of the customer using the critical incident technique VOC 2-CTQ Specification Link the voice of the customer to the CTQs that drive it Principles of Variation 1 How will I measure success? Are my measurements trustworthy? Scales of measurement, data types, measurement error principles.
    [Show full text]
  • Review Paper on “Poka Yoke: the Revolutionary Idea in Total Productive Management” 1,Mr
    Research Inventy: International Journal Of Engineering And Science Issn: 2278-4721, Vol. 2, Issue 4 (February 2013), Pp 19-24 Www.Researchinventy.Com Review Paper On “Poka Yoke: The Revolutionary Idea In Total Productive Management” 1,Mr. Parikshit S. Patil, 2,Mr. Sangappa P. Parit, 3,Mr. Y.N. Burali 1,Final Year U.G. Students, Mechanical Engg. Department,Rajarambapu Institute of Technology Islampur (Sangli),Shivaji University, Kolhapur (India) 2,P.G. Student, Electronics Engg. Department, Rajarambapu Institute of Technology Islampur (Sangli), Shivaji University, Kolhapur (India) Abstract: Poka-yoke is a concept in total quality management which is related to restricting errors at source itself. It deals with "fail-safing" or "mistake-proofing". A poka-yoke is any idea generation or mechanism development in a total productive management process that helps operator to avoid (yokeru) mistakes (poka). The concept was generated, and developed by Shigeo Shingo for the Toyota Production System. Keywords— Mistake-proofing, Total quality management, Total productive management. I INTRODUCTION In today’s competitive world any organisation has to manufacture high quality, defect free products at optimum cost. The new culture of total quality management, total productive management in the manufacturing as well as service sector gave birth to new ways to improve quality of products. By using various tools of TQM like KAIZEN, 6 sigma, JIT, JIDCO, POKA YOKE, FMS etc. organisation is intended to develop quality culture.[2,6] The paper is intended to focus basic concept of poka yoke, types of poka yoke system, ways to achieve simple poka yoke mechanism. It also covers practical study work done by various researchers .
    [Show full text]
  • Leaning Lean: a Case of Reengineering in the Automotive Industry
    Leaning Lean: A Case of Reengineering in the Automotive Industry Rasoul Rashidifar, Matthew Silvas, Frank F. Chen Department of Mechanical Engineering, University of Texas at San Antonio, One UTSA Circle San Antonio, San Antonio, TX 78249, USA Abstract In recent years, more and more companies have begun to adopt the ideas and methodologies of lean six-sigma. However, as lean practitioners we often find that the companies that excessively advertise themselves as lean are often not lean at all. That’s because lean six-sigma is a journey. It is a journey in which has no end. It is a journey that, while tough, is extremely rewarding for those daring enough to undertake it. So what happens when a company who has adopted lean six-sigma continues to struggle with high defect rates, high employee turnover and the inability to meet demand? Leaning lean. The scope of this paper focuses on the improvement and reengineering of the die maintenance process for a leading automotive component supplier. Keywords Lean; Automotive; Reengineering 1. Introduction In recent years more and more companies have begun to adopt the ideas and methodologies of lean six-sigma. We now see more job postings than ever before of companies seeking employees with the experience and knowledge of lean six-sigma. The certifications of Lean Six-Sigma Green Belt and Black Belt are highly sought after. Companies boast of their lean transformations and cultures and even add continuous improvement as one of their companies’ core values. However, as lean practitioners, we often find that the companies that excessively advertise themselves as lean organizations are often not lean at all.
    [Show full text]