Dataflow Process Networks

Total Page:16

File Type:pdf, Size:1020Kb

Dataflow Process Networks Dataflow Process Networks ~ ~~~ _____ ~____ EDWARD A. LEE, FELLOW, IEEE, AND THOMAS M. PARKS We review a model of computation used in industrial practice graph where the nodes represent computations and the in signal processing software environments and experimentally in arcs represent streams of data. The graphs are typically other contexts. We give this model the name “dataflow process hierarchical, in that a node in a graph may represent networks,” and study its formal properties as well as its utility as a basis for programming language design. Variants of this model another directed graph. The nodes in the graph can be either are used in commercial visual programming systems such as SPW language primitives or subprograms specified in another from the Alta Group of Cadence (formerly Comdisco Systems), language, such as C or FORTRAN. COSSAP from Synopsys (formerly Cadis), the DSP Station from It is common in the signal processing community to use Mentor Graphics, and Hypersignal from Hyperception. They are also used in research sofhyare such as Khoros from the University a visual syntax to specify such graphs, in which case the of New Mexico and Ptolemy from the University of California at model is often called “visual dataflow programming.” But Berkeley, among many others. it is by no means essential to use a visual syntax. A few Dataflow process networks are shown to be a special case of graphical programming environments allow an arbitrary Kahn process networks, a model of computation where a number mixture of visual and textual specification, both based on of concurrent processes communicate through unidirectional FIFO channels, where writes to the channel are nonblocking, and reads the same language. For example, the Signal [12], [68], are blocking. In dataflow process networks, each process consists Lustre [46], and Silage [50] languages all have a visual of repeated “jirings” of a dataflow “actor.” An actor defines a and a textual syntax, the latter available in the commercial (oftenfunctional) quantum of computation. By dividing processes Mentor Graphics DSP Station as DFL. Other languages into actor jirings, the considerable overhead of context switching incurred in most implementations of Kahn process networks is with related semantics, such as Sisal [73], are used primarily avoided. or exclusively with textual syntax. The language Lucid We relate dataflow process networks to other dataflow models, [92], [96], while primarily used with textual syntax, has including those used in dataflow machines, such as static dataflow experimental visual forms [ 101. and the tagged-token model. We also relate dataflow process networks to functional languages such as Haskell, and show that Hierarchy in graphical program structure can be viewed modem language concepts such as higher-order functions and as an alternative to the more usual abstraction of subpro- polymorphism can be used effectively in dataflow process net- grams via procedures, functions, or objects. It is better works. A number of programming examples using a visual syntax suited than any of these to a visual syntax, and also better are given. suited to signal processing. Some examples of graphical dataflow programming en- I. MOTIVATION vironments intended for signal processing (including image processing) are Khoros, from the University of New Mexico This paper concerns programming methodologies com- [84] (now distributed by Khoral Research, Inc.), Ptolemy, monly called “graphical dataflow programming” that are from the University of California at Berkeley [25], the used extensively for signal processing and experimentally signal processing worksystem (SPW), from the Alta Group for other applications. In this paper, “graphical” means at Cadence (formerly Comdisco Systems), COSSAP, from simply that the program is explicitly specified by a directed Synopsys (formerly Cadis), and the DSP Station, from Manuscript received August 29, 1994; revised January 30, 1995. This Mentor Graphics (formerly EDC). MATLAB from The work is part of the Ptolemy project, which is supported by the Advanced Mathworks, which is popular for signal processing and Research Projects Agency and the US Air Force under the RASSP other applications, has a visual interface called SIMULINK. program contract number F33615-93-C-1317, Semiconductor Research Corp. project number 94-DC-008, National Science Foundation contract A survey of graphical dataflow languages for other applica- number MIP-9201605, Office of Naval Technology (via Naval Research tions is given by Hills [51]. These software environments all Laboratories), the State of California, and the following companies: Bell Northern Research, Dolby, Hitachi, Mentor Graphics, Mitsubishi, NEC, claim variants of dataflow semantics, but a word of caution Pacific Bell, Philips, Rockwell, Sony, and Synopsys. is in order. The term “dataflow” is often used loosely for The authors are with the Department of Electrical Engineering and semantics that bear little resemblance to those outlined Computer Sciences, The University of Califomia, Berkeley, CA 94720 USA. by Dennis in 1975 [38] or Davis in 1978 [35]. A major IEEE Log Number 9409997. motivation of this paper is to point out a rigorous formal 0018-9219/95$04.00 0 1995 IEEE PROCEEDINGS OF THE IEEE, VOL. 83, NO. 5, MAY 1995 173 -- ~ underpinning for dataflow graphical languages, to establish x; is an atomic data object, or token drawn from some precisely the relationship between such languages and func- set. Each token is written (produced) exactly once, and tional languages, and to show that such languages benefit read (consumed) exactly once. Writes to the channels are significantly from such modem programming concepts as nonblocking (they always succeed immediately), but reads polymorphism, strong typing, and higher-order functions. are blocking. This means that a process that attempts to Although it has been rarely exploited in visual dataflow read from an empty input channel stalls until the buffer has programming, we also show that such languages can make sufficient tokens to satisfy the read. Lest the reader protest, effective use of recursion. we will show that this model of computation does not Most graphical signal processing environments do not actually require either multitasking or parallelism, although define a language in any strict sense. In fact, some designers it is certainly capable of exploiting both. It also usually does of such environments advocate minimal semantics [76], ar- not require infinite queues, and indeed can be much more guing that the graphical organization by itself is sufficient to efficient in its use of memory than comparable methods in be useful. The semantics of a program in such environments functional languages, as we will see. is determined by the contents of the graph nodes, either A process in the Kahn model is a mapping from one subgraphs or subprograms. Subprograms are usually spec- or more input sequences to one or more output sequences. ified in a conventional programming language such as C. The process is usually constrained to be continuous in a Most such environments, however, including Khoros, SPW, rather technical sense. To develop this idea, we need a and COSSAP, take a middle ground, permitting the nodes little notation. in a graph or subgraph to contain arbitrary subprograms, Consider a prejix ordering of sequences, where the se- but defining precise semantics for the interaction between quence X precedes the sequence Y (written X C Y) nodes. Following Halbwachs [47], we call the language if X is a prefix of (or is equal to) Y. For example, used to define the subprograms in nodes the host language. [x1,x2] 5 [z1,x2,x3].If X & Y, it is common to say that Following Jagannathan, we call the language defining the X approximates Y, since it provides partial information interaction between nodes the coordination language [56]. about Y. The empty sequence is denoted I (bottom), Many possibilities have been explored for precise se- and is obviously a prefix of any other sequence. Consider mantics of coordination languages, including for example a (possibly infinite) increasing chain of sequences x = the computation graphs of Karp and Miller [61], the syn- { XO,XI, . .}, where XOL XI . Such an increasing chronous dataflow graphs of Lee and Messerschmitt [66], chain of sequences has one or more upper bounds Y,where the cyclostatic dataflow of Lauwereins et al. [17], [63], the Xi L for all X; E x. The least upper bound nx processing graph method (PGM) of Kaplan et al. [60], gran- Y is an upper bound such that for any other upper bound ular lucid [56], and others [3], [28], [33], [56], [94]. Many Y,nx E The least upper bound may be an infinite of these limit expressiveness in exchange for considerable Y. sequence. advantages such as compile-time predictability. Let S denote the set of finite and infinite sequences. Graphical programs can be either interpreted or compiled. This set is a complete partial order (cpo) with the prefix It is common in signal processing environments to provide order defining the ordering. The “complete” simply means both options. The output of compilation can be a standard that every increasing chain has a least upper bound in procedural language, such as C, assembly code for pro- grammable DSP processors [80], or even specifications of S. Let SP denote the set of p-tuples of sequences as silicon implementations [37]. Often, considerable effort is in X = {X1,X2,...,Xp} E SP. The set LE SP is understood to be the set of empty sequences. put into optimized compilation (see for example [15], [41], Such sets of sequences can be ordered as well; we write [811, [881). X C X’ if X; X,l for each i,1 5 i 5 p. A set of p-tuples of sequences x = {Xo,X,,...}always has a 11. FORMALUNDERPINNINGS greatest lower bound Ux (possibly I),but it may or may not have a least upper bound nx. If it is an increasing In most graphical programming environments, the nodes chain, x = {Xo,XI,.
Recommended publications
  • Integrating Stream Parallelism and Task Parallelism in a Dataflow Programming Model
    RICE UNIVERSITY Integrating Stream Parallelism and Task Parallelism in a Dataflow Programming Model by Drago¸sDumitru Sb^ırlea A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree Master of Science Approved, Thesis Committee: Vivek Sarkar Professor of Computer Science E.D. Butcher Chair in Engineering Keith D. Cooper L. John and Ann H. Doerr Professor of Computational Engineering Lin Zhong Associate Professor of Electrical and Computer Engineering Jun Shirako Research Scientist Computer Science Department Houston, Texas September 3rd, 2011 ABSTRACT Integrating Stream Parallelism and Task Parallelism in a Dataflow Programming Model by Drago¸sDumitru Sb^ırlea As multicore computing becomes the norm, exploiting parallelism in applications becomes a requirement for all software. Many applications exhibit different kinds of parallelism, but most parallel programming languages are biased towards a specific paradigm, of which two common ones are task and streaming parallelism. This results in a dilemma for programmers who would prefer to use the same language to exploit different paradigms for different applications. Our thesis is an integration of stream- parallel and task-parallel paradigms can be achieved in a single language with high programmability and high resource efficiency, when a general dataflow programming model is used as the foundation. The dataflow model used in this thesis is Intel's Concurrent Collections (CnC). While CnC is general enough to express both task-parallel and stream-parallel paradigms, all current implementations of CnC use task-based runtime systems that do not de- liver the resource efficiency expected from stream-parallel programs. For streaming programs, this use of a task-based runtime system is wasteful of computing cycles and makes memory management more difficult than it needs to be.
    [Show full text]
  • Dataflow Programming Model for Reconfigurable Computing Laurent Gantel, Amel Khiar, Benoît Miramond, Mohamed El Amine Benkhelifa, Fabrice Lemonnier, Lounis Kessal
    Dataflow Programming Model For Reconfigurable Computing Laurent Gantel, Amel Khiar, Benoît Miramond, Mohamed El Amine Benkhelifa, Fabrice Lemonnier, Lounis Kessal To cite this version: Laurent Gantel, Amel Khiar, Benoît Miramond, Mohamed El Amine Benkhelifa, Fabrice Lemonnier, et al.. Dataflow Programming Model For Reconfigurable Computing. 6th International Workshop on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), Jun 2011, Montpellier, France. pp.1-8, 10.1109/ReCoSoC.2011.5981505. hal-00623674 HAL Id: hal-00623674 https://hal.archives-ouvertes.fr/hal-00623674 Submitted on 14 Sep 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Dataflow Programming Model For Reconfigurable Computing L. Gantel∗† and A. Khiar∗ and B. Miramond∗ and A. Benkhelifa∗ and F. Lemonnier† and L. Kessal∗ ∗ ETIS Laboratory – UMR CNRS 8051 † Embedded System Lab Universityof Cergy-Pontoise/ ENSEA Thales Research and Technology 6,avenueduPonceau 1,avenueAugustinFresnel 95014 Cergy-Pontoise, FRANCE 91767 Palaiseau, FRANCE Email {firstname.name}@ensea.fr Email {firstname.name}@thalesgroup.com Abstract—This paper addresses the problem of image process- system, such as sockets. ing algorithms implementation onto dynamically and reconfig- It reduces significantly the work of application programmers urable architectures. Today, these Systems-on-Chip (SoC), offer by relieving them of tedious and error-prone programming.
    [Show full text]
  • Machine Learning with Multiscale Dataflow Computing for High Energy Physics
    Machine Learning with Multiscale Dataflow Computing for High Energy Physics 10.7.2019 Outline • Dataflow Concept and Maxeler • Dataflow for ML and Use Cases • Dataflow Programming Introduction • Hands-on Example 2 Dataflow Concept and Maxeler 10.7.2019 Programmable Spectrum Control-flow processors Dataflow processor GK110 Single-Core CPU Multi-Core Several-Cores Many-Cores Dataflow Increasing Parallelism (#cores) Increasing Core Complexity ( Hardware Clock Frequency ) GPU (NVIDIA, AMD) Intel, AMD Tilera, XMOS etc... Maxeler Hybrid e.g. AMD Fusion, IBM Cell 4 Maxeler Dataflow Engines (DFEs) • Largest Reconfigurable DataflowLMEM Engine (DFE) (Large Memory) Chip 4-96GB MaxRing • O(1k) multipliers High bandwidth memory link Interconnect • O(100k) logic cells Reconfigurable compute fabric • O(10MB) of on-chip SRAM MaxRing Dataflow cores & * links FMEM (fast • O(10GB) of on-card DRAM memory) • DFE-to-DFE interconnect Link to main data network * approaching 128GB on a ¾, single slot PCIe card 5 5 Maxeler Dataflow Engines (DFEs) CPU DFE (Dataflow Engine) 6 Control Flow versus Data Flow • Control Flow: • It is all about how instructions “move” • Data may move along with instructions (secondary issue) • Order of computation is the key • Data Flow: • It is about how data moves through a set of “instructions” in 2D space • Data moves will trigger control • Data availability, transformations and operation latencies are the key 7 Area Utilisation of Modern Chips AMD Bulldozer CPU Nvidia Tesla V100 GPU 8 DFE Area Utilisation 9 Dataflow Computing • A custom chip for a specific application • No instructions ➝ no instruction decode logic • No branches ➝ no branch prediction • Explicit parallelism ➝ no out-of-order scheduling • Data streamed onto-chip ➝ no multi-level caches Memory (Lots (Lots of) Rest of the My Dataflow world Engine 10 Dataflow Computing • Single worker builds a single • Each component is added to bicycle from a group of parts the bicycle in a production line.
    [Show full text]
  • Graceful Language Extensions and Interfaces
    Graceful Language Extensions and Interfaces by Michael Homer A thesis submitted to the Victoria University of Wellington in fulfilment of the requirements for the degree of Doctor of Philosophy Victoria University of Wellington 2014 Abstract Grace is a programming language under development aimed at ed- ucation. Grace is object-oriented, imperative, and block-structured, and intended for use in first- and second-year object-oriented programming courses. We present a number of language features we have designed for Grace and implemented in our self-hosted compiler. We describe the design of a pattern-matching system with object-oriented structure and minimal extension to the language. We give a design for an object-based module system, which we use to build dialects, a means of extending and restricting the language available to the programmer, and of implementing domain-specific languages. We show a visual programming interface that melds visual editing (à la Scratch) with textual editing, and that uses our dialect system, and we give the results of a user experiment we performed to evaluate the usability of our interface. ii ii Acknowledgments The author wishes to acknowledge: • James Noble and David Pearce, his supervisors; • Andrew P. Black and Kim B. Bruce, the other designers of Grace; • Timothy Jones, a coauthor on a paper forming part of this thesis and contributor to Minigrace; • Amy Ruskin, Richard Yannow, and Jameson McCowan, coauthors on other papers; • Daniel Gibbs, Jan Larres, Scott Weston, Bart Jacobs, Charlie Paucard, and Alex Sandilands, other contributors to Minigrace; • Gilad Bracha, Matthias Felleisen, and the other (anonymous) review- ers of papers forming part of this thesis; • the participants in his user study; • David Streader, John Grundy, and Laurence Tratt, examiners of the thesis; • and Alexandra Donnison, Amy Chard, Juanri Barnard, Roma Kla- paukh, and Timothy Jones, for providing feedback on drafts of this thesis.
    [Show full text]
  • Graceful Language Extensions and Interfaces
    Graceful Language Extensions and Interfaces by Michael Homer A thesis submitted to the Victoria University of Wellington in fulfilment of the requirements for the degree of Doctor of Philosophy Victoria University of Wellington 2014 Abstract Grace is a programming language under development aimed at ed- ucation. Grace is object-oriented, imperative, and block-structured, and intended for use in first- and second-year object-oriented programming courses. We present a number of language features we have designed for Grace and implemented in our self-hosted compiler. We describe the design of a pattern-matching system with object-oriented structure and minimal extension to the language. We give a design for an object-based module system, which we use to build dialects, a means of extending and restricting the language available to the programmer, and of implementing domain-specific languages. We show a visual programming interface that melds visual editing (à la Scratch) with textual editing, and that uses our dialect system, and we give the results of a user experiment we performed to evaluate the usability of our interface. ii ii Acknowledgments The author wishes to acknowledge: • James Noble and David Pearce, his supervisors; • Andrew P. Black and Kim B. Bruce, the other designers of Grace; • Timothy Jones, a coauthor on a paper forming part of this thesis and contributor to Minigrace; • Amy Ruskin, Richard Yannow, and Jameson McCowan, coauthors on other papers; • Daniel Gibbs, Jan Larres, Scott Weston, Bart Jacobs, Charlie Paucard, and Alex Sandilands, other contributors to Minigrace; • Gilad Bracha, Matthias Felleisen, and the other (anonymous) review- ers of papers forming part of this thesis; • the participants in his user study; • and Roma Klapaukh, Juanri Barnard, Alexandra Donnison, Amy Chard, and Timothy Jones for providing feedback on drafts of this thesis.
    [Show full text]
  • Proceedings of the 8Th European Lisp Symposium Goldsmiths, University of London, April 20-21, 2015 Julian Padget (Ed.) Sponsors
    Proceedings of the 8th European Lisp Symposium Goldsmiths, University of London, April 20-21, 2015 Julian Padget (ed.) Sponsors We gratefully acknowledge the support given to the 8th European Lisp Symposium by the following sponsors: WWWLISPWORKSCOM i Organization Programme Committee Julian Padget – University of Bath, UK (chair) Giuseppe Attardi — University of Pisa, Italy Sacha Chua — Toronto, Canada Stephen Eglen — University of Cambridge, UK Marc Feeley — University of Montreal, Canada Matthew Flatt — University of Utah, USA Rainer Joswig — Hamburg, Germany Nick Levine — RavenPack, Spain Henry Lieberman — MIT, USA Christian Queinnec — University Pierre et Marie Curie, Paris 6, France Robert Strandh — University of Bordeaux, France Edmund Weitz — University of Applied Sciences, Hamburg, Germany Local Organization Christophe Rhodes – Goldsmiths, University of London, UK (chair) Richard Lewis – Goldsmiths, University of London, UK Shivi Hotwani – Goldsmiths, University of London, UK Didier Verna – EPITA Research and Development Laboratory, France ii Contents Acknowledgments i Messages from the chairs v Invited contributions Quicklisp: On Beyond Beta 2 Zach Beane µKanren: Running the Little Things Backwards 3 Bodil Stokke Escaping the Heap 4 Ahmon Dancy Unwanted Memory Retention 5 Martin Cracauer Peer-reviewed papers Efficient Applicative Programming Environments for Computer Vision Applications 7 Benjamin Seppke and Leonie Dreschler-Fischer Keyboard? How quaint. Visual Dataflow Implemented in Lisp 15 Donald Fisk P2R: Implementation of
    [Show full text]
  • Visualocv: Refined Dataflow Programming Interface for Opencv
    Southern Adventist University KnowledgeExchange@Southern MS in Computer Science Project Reports School of Computing Summer 8-17-2020 VisualOCV: Refined Dataflow ogrPr amming Interface for OpenCV John Boggess [email protected] Follow this and additional works at: https://knowledge.e.southern.edu/mscs_reports Part of the Graphics and Human Computer Interfaces Commons, and the Programming Languages and Compilers Commons Recommended Citation Boggess, John, "VisualOCV: Refined Dataflow ogrPr amming Interface for OpenCV" (2020). MS in Computer Science Project Reports. 5. https://knowledge.e.southern.edu/mscs_reports/5 This Article is brought to you for free and open access by the School of Computing at KnowledgeExchange@Southern. It has been accepted for inclusion in MS in Computer Science Project Reports by an authorized administrator of KnowledgeExchange@Southern. For more information, please contact [email protected]. VISUALOCV: REFINED DATAFLOW PROGRAMMING INTERFACE FOR OPENCV by John R. W. Boggess A PROJECT DEFENSE Presented to the Faculty of The School of Computing at the Southern Adventist University In Partial Fulfilment of Requirements For the Degree of Master of Science Major: Computer Science Under the Supervision of Professor Hall Collegedale, Tennessee August 4, 2020 VisualOVC: Refined Dataflow Programming Interface for OpenCV Approved by: Professor Tyson Hall, Adviser Professor Scot Anderson Professor Robert Ord´o˜nez Date Approved VISUALOCV: REFINED DATAFLOW PROGRAMMING INTERFACE FOR OPENCV John R. W. Boggess Southern Adventist University, 2020 Adviser: Tyson Hall, Ph.D. OpenCV is a popular tool for developing computer vision algorithms; however, prototyping OpenCV-based algorithms is a time consuming and iterative process. VisualOCV is an open source tool to help users better understand and create computer vision algorithms.
    [Show full text]
  • Synchronous Functional Programming: the Lucid Synchrone Experiment ∗
    Synchronous Functional Programming: The Lucid Synchrone Experiment ∗ Paul Caspi † Gr´egoire Hamon Marc Pouzet ‡ VERIMAG The MathWorks LRI, Univ. Paris-Sud 11 Grenoble Boston Orsay 1 Introduction Lucid Synchrone is a programming language dedicated to the design of reactive systems. It is based on the synchronous model of Lustre [25] which it extends with features usually found in functional languages such as higher-order or constructed data-types. The language is equipped with several static analysis, all expressed as special type-systems and used to ensure the absence of certain run-time errors on the final application. It provides, in particular, automatic type and clock inference and statically detects initialization issues or dead-locks. Finally, the language offers both data-flow and automata-based programming inside a unique framework. This chapter is a tutorial introduction to the language. Its aim is to show that techniques can be applied, at the language level, to ease the specification, implementation, and verification of reactive systems. 1.1 Programming Reactive Systems We are interested in programming languages dedicated to the design of reactive systems [31]. Such systems interact continuously with their external environment and have to meet strong temporal constraints: emergency braking systems, plane autopilots, electronic stopwatches, etc. In the mid-70’s, with the shift from mechanical and electronic systems to logical systems, the question of the computer-based implementation of reactive systems arose. At first, these implementations used available general-purpose programming languages, such as assembly, C, or Ada. Low-level languages were prominent as they give strong and precise control over the resources.
    [Show full text]
  • Network Programming Languages
    1 Network Programming Languages Robert Soulé University of Lugano 2 Languages A programming language provides abstractions and ways to compose those abstractions The programming languages you are familiar with are models of computer systems They provide abstractions for data and computation 3 Abstractions abstractions compositions addresses, registers, Assembly languages sequences of instructions instructions, labels booleans, arithmetic, loops, sequences of statements, Procedural languages arrays, procedures procedure calls objects, methods, fields, method invocation, OO languages classes inheritance first-class functions, function application, type Functional languages algebraic data types constructors 4 Domain Specific Languages A general-purpose language provides abstractions for modeling computation A domain-specific language provides abstractions for other domains 5 Benefits of a DSL Can enable optimizations Can ensure program correctness Provide abstractions tailored to a particular domain Allow programmers to use emerging technologies 6 Enabling Optimizations StreamIt: a streaming language designed for static optimization … float->float pipeline ABC { A add float->float filter A() { FIFO queue work pop … push 2 { 2 /*details elided*/ } 3 B pops 3 per firing } B add float->float filter B() { B pushes 1 per firing work pop 3 push 1 { 1 /*details elided*/ } 2 } C add float->float filter C() { work pop 2 push … { … /*details elided*/ } } } Statically known push/pop rates for every operator. 7 Enabling Optimizations … A A A A A A 2 3 B
    [Show full text]
  • Dataflow Supercomputers
    Dataflow Supercomputers Michael J. Flynn Maxeler Technologies and Stanford University Outline ◦ History • Dataflow as a supercomputer technology • openSPL: generalizing the dataflow programming model • Optimizing the hardware for dataflow 3 The great parallel precessor debate of 1967 • Amdahl espouses to sequential machine and posits Amdahl’s law • Danial Slotnick (father of ILLIAC IV) posits the parallel approach while recognizing the problem of programming 4Slotnick’s law “The parallel approach to computing does require that some original thinking be done about numerical analysis and data management in order to secure efficient use. In an environment which has represented the absence of the need to think as the highest virtue this is a decided disadvantage.” -Daniel Slotnick (1967) ….Speedup in parallel processing is achieved by programming effort…… Michael J Flynn The (multi core) Parallel Processor Problem • Efficient distribution of tasks • Inter-node communications (data assembly & dispatch) reduces computational efficiency: speedup/nodes • Memory bottleneck limitations • The sequential programming model: Layers of abstraction hide critical sources of and limits to efficient parallel execution Is there a magic compiler bullet? May’s laws May’s first law: Software efficiency halves every 18 months, exactly compensating for Moore’s Law May’s second law: Compiler technology doubles efficiency no faster than once a decade David May 7 Dataflow as a supercomputer technology • Looking for another way. Some experience from Maxeler • Dataflow is an old technology (70’s and 80’s), conceptually creates and ideal machine to match the program but the interconnect problem was insurmountable for the day. • Today’s FPGAs have come a long way and enable an emulation of the dataflow machine.
    [Show full text]
  • Developments in Dataflow Programming
    University of Exeter Department of Computer Science Developments in Dataflow Programming Daniel Julius Maxwell April 2018 Supervised by Dr Antony Galton & Prof. Jonathan Fieldsend Submitted by Daniel Julius Maxwell to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Computer Science, April 2018. This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that all material in this thesis which is not my own work has been identi- fied and that no material has previously been submitted and approved for the award of a degree by this or any other University. (signature) ................................................................................................. Abstract Dataflow has historically been motivated either by parallelism or programmability or some combination of the two. This work, rather than being directed primarily at parallelism or programmability, is instead aimed at maximising the overall utility to the programmer of the system at large. This means that it aims to result in a system in which it is easy to create well-constructed, flexible programs that comply with the principles of software engineering and architecture, but also that the proposed system should be capable at performing practical real-life tasks and should be as widely applicable as can be achieved. With those aims in mind, this project has four goals: • to argue for a unified global dataflow coordination system, extensible to be able to accommodate components of any form that may exist now or in the future; • to establish a link between the design of such a system and the principles of software engineering and architecture; • to design a dataflow coordination system based on those principles, aiming where possible to embed them in the design so that they become easy or unthinking for programmers to apply; and • to implement and test components of the proposed system, using it to build a set of three sample algorithms.
    [Show full text]
  • Easy Dataflow Programming in Clusters with UPC++ Depspawn
    This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication. The final version of record is available at http://dx.doi.org/10.1109/TPDS.2018.2884716 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1 Easy Dataflow Programming in Clusters with UPC++ DepSpawn Basilio B. Fraguela, Diego Andrade Abstract—The Partitioned Global Address Space (PGAS) programming model is one of the most relevant proposals to improve the ability of developers to exploit distributed memory systems. However, despite its important advantages with respect to the traditional message-passing paradigm, PGAS has not been yet widely adopted. We think that PGAS libraries are more promising than languages because they avoid the requirement to (re)write the applications using them, with the implied uncertainties related to portability and interoperability with the vast amount of APIs and libraries that exist for widespread languages. Nevertheless, the need to embed these libraries within a host language can limit their expressiveness and very useful features can be missing. This paper contributes to the advance of PGAS by enabling the simple development of arbitrarily complex task-parallel codes following a dataflow approach on top of the PGAS UPC++ library, implemented in C++. In addition, our proposal, called UPC++ DepSpawn, relies on an optimized multithreaded runtime that provides very competitive performance, as our experimental evaluation shows. Index Terms—libraries, parallel programming models, distributed memory, multithreading, programmability, dataflow F 1 INTRODUCTION HILE the exploitation of parallelism is never trivial, Namely, the private space is always the one that can be more W this is particularly true in the case of distributed efficiently accessed and the shared local space is accessible memory systems such as clusters.
    [Show full text]