Antisecretory Factor Suppresses Intestinal Inflammation And

Total Page:16

File Type:pdf, Size:1020Kb

Antisecretory Factor Suppresses Intestinal Inflammation And 642 Gut 1997; 41: 642–645 Antisecretory factor suppresses intestinal inflammation and hypersecretion Gut: first published as 10.1136/gut.41.5.642 on 1 November 1997. Downloaded from E Johansson, E Jennische, S Lange, I Lönnroth Abstract Diarrhoeal shellfish poisoning appears in Background—Antisecretory factor (AF) man after consumption of shellfish which have is a recently identified regulatory protein been contaminated with marine phytoplank- which inhibits the intestinal fluid secre- ton. The causative agent, okadaic acid, is tion induced by cholera toxin. produced by the plankton and induces diar- Aims—To test the eVect of AF on: (a) rhoea, nausea, and vomiting without any inflammation and hypersecretion induced inflammatory reaction.10 11 In the rat the toxin by toxin A from Clostridium diYcile; and induces rapid fluid secretion12 and a concomi- (b) morphological changes and hyperse- tant shedding of epithelial cells in the intestinal cretion induced by okadaic acid (the blue mucosa without inflammation or any apparent mussel toxin) in rat intestinal mucosa. disruption of the epithelial barrier.13 The cellu- Methods—Morphological changes and lar action of okadaic acid is to inhibit cellular fluid accumulation were observed in in- phosphatases types 1 and 2A, an action which testinal loops challenged with 1 µg of toxin has been demonstrated in epithelial cells, nerve A or 3 µg of okadaic acid administered cells and neutrophils.14 15 before or after injection of 0.1 µg of The mucosal barrier protects against the recombinant AF (rAF). action of bacterial toxins by means of both Results—The cytotoxic and inflammatory physiological and immunological defence reaction caused by toxin A was abolished mechanisms. We have previously shown that after treatment with rAF given either antisecretory factor (AF), a protein produced intraveneously or intraluminally prior to in the pituitary gland and in the intestinal the toxin or one hour after the toxin. The mucosa, reverses intestinal hypersecretion in- intestinal fluid response induced by toxin duced by bacterial enterotoxins. Thus, a small A and okadaic acid was reduced 55–80% by amount of porcine AF was able to inhibit the rAF. However, the characteristic increase action of a variety of enterotoxins in the pig16 17 18 in goblet cells at the tips of villi in the oka- and in the rat, including the heat labile http://gut.bmj.com/ daic acid treated mucosa was not inhib- enterotoxins from Vibrio cholerae and Es- ited by rAF. cherichia coli and toxin A. With the help of anti- Conclusion—Results suggest that AF bodies raised against AF purified from porcine might be involved in protection against blood we were able to clone complementary inflammation and in counteracting dehy- DNA (cDNA) and express the human AF in E dration caused by enterotoxins. Both coli.19 Less than one picomole of homogeneous human recombinant AF (rAF) was shown to eVects are probably mediated via the on September 25, 2021 by guest. Protected copyright. enteric nervous system. inhibit cholera toxin induced fluid secretion in (Gut 1997; 41: 642–645) rat intestinal loops. In the present paper we describe the action of rAF on fluid secretion Keywords: okadaic acid; Clostridium diYcile toxin A; induced by toxin A and okadaic acid in rat Department of diarrhoea; neuropeptide; S5a; rat small intestine. The eVect of rAF on toxin A Medical Microbiology and Immunology, induced cytotoxicity and inflammation in rat University of intestinal mucosa is also described. Gothenburg, Bacterial enterotoxins induce fluid secretion Guldhedsgatan 10, 413 and inflammation in the intestine. A fatal form Methods 46 Gothenburg, of intestinal toxinosis is caused by toxin A from RECOMBINANT ANTISECRETORY FACTOR Sweden Clostridium diYcile, a bacterium which fre- Human rAF was expressed in E coli and E Johansson quently colonises the gut after treatment with purified as previously described.19 In brief, the I Lönnroth 1 antibiotics. Toxin A causes fluid secretion, full length cDNA was subcloned into the inflammation, and mucosal damage in the glutathione S-transferase (GST) expression Department of Clinical 23 Bacteriology small intestine of hamsters, rabbits, and rats vector pGEX-1ëT (Pharmacia, Uppsala, Swe- S Lange and is probably the main cause of pseudomem- den), and the expressed fusion protein was branous colitis in man.1 After an initial attach- purified on a glutathione-Sepharose column Department of ment to oligosaccharide receptors,45 the toxin (Pharmacia) and cleaved with thrombin to Anatomy and Cell seems to penetrate into the mucosal epithelium Biology, University of elute pure rAF protein. The purity of the pro- Gothenburg and acting as an enzyme it transfers glucose tein was evaluated by sodium dodecyl sulphate E Jennische residues to the G-protein rho causing rear- (SDS) polyacrylamide gel electrophoresis rangement of the cytoskeleton.67 The initial using Coomassie brilliant blue staining.19 Correspondence to: cytophatic eVect of toxin A on the intestinal Dr I Lönnroth. mucosa is followed by an inflammatory re- ENTEROTOXINS Accepted for publication sponse, probably via a nerve mediated eVect on CdiYcile toxin A was produced and purified 29 May 1997 intestinal mast cells and neutrophils.89 as previously described20 and checked for Antisecretory factor suppresses intestinal inflammation and hypersecretion 643 homogeneity by SDS polyacrylamide gel elec- ting the ligated loop longitudinally, 0.5–1.0 cm trophoresis. Okadaic acid was a gift from Pro- long sections were prepared from each of the fessor Lars Edebo, Gothenburg, Sweden. intestinal specimens. The specimens were fixed Gut: first published as 10.1136/gut.41.5.642 on 1 November 1997. Downloaded from by immersion for 24 hours in 4% paraformal- RAT INTESTINAL LOOP TEST dehyde diluted in PBS, after which they were The study design was approved by the Ethics immersed in 7.5% sucrose solution. After at Committee of the University of Gothenburg. least 24 hours’ incubation in the sucrose solu- Male Sprague-Dawley rats (300±10 g), housed tion, the specimens were frozen on dry ice, and in a controlled environment, were fasted for 20 5 µm thick cryostat sections were prepared; at hours before experimentation but given free least 5–10 sections were taken from each of two access to water. Intestinal secretion was diVerent parts of the specimen—that is, a investigated with the “ligated loop” method as minimum of 10 and a maximum of 20 sections described previously.21 Under ether anaesthesia from each specimen. The sections were then one loop, about 10 cm in length, was ligated in stained with periodic acid SchiV reagents the jejunum. The loop was challenged with (PAS) according to routine histological proce- 1.5 ml of phosphate buVered saline (PBS; dures. Finally, the sections were rinsed in water 0.15 M NaCl, 0.05 M sodium phosphate, pH and mounted in glycerol-gelatine. 7.5) in the control group, and in the test groups with 3 µg of okadaic acid or 0.5 µg of CdiYcile STATISTICAL ANALYSES toxin A, dissolved in the same volume of PBS. Student’s t test for non-paired data was used Two millilitres of 0.1 µg rAF (experimental for statistical analysis of the data. groups) or PBS (controls) were administrated intravenously via the dorsal vein of the penis. Results The animals were then allowed to wake up. QUANTITATIVE ASSESSMENT OF SECRETION IN The duration of challenge was five hours for LIGATED JEJUNAL LOOPS toxin A and 90 minutes for okadaic acid, inter- Five hours after challenge with CdiYcile toxin vals based on findings in earlier kinetic studies A in a ligated loop, there was pronounced fluid of fluid accumulation induced by the respective accumulation in the loop in the absence of rAF toxins. At the end of the observation period, the (controls), whereas in the presence of rAF (test rats were sacrificed by cervical spine disloca- animals) this response was significantly re- tion, the abdomen was opened and the loops duced (table 1). Intravenous and intraluminal dissected out. The net fluid secretion (mg/cm) administration of rAF yielded a similar inhibi- was estimated by subtracting the weight of a tion of response to toxin A (about 60% inhibi- control loop from that of the experimental tion); administration of rAF just before or one loop. Specimens for histological examination hour after toxin challenge resulted in the same (see later) were taken from each loop. magnitude of inhibition (60–70%). The fluid response to okadaic acid challenge was rapid http://gut.bmj.com/ ANIMAL GROUPS and transient, the most pronounced secretion Six groups of rats (I–VI) were studied, each already being observed after 90 minutes. As group containing at least five animals. Rats shown in table 1, this fluid response was also serving as controls were subjected to 1.5 ml of inhibited significantly by rAF (55%). intraluminal PBS challenge in combination with intravenous (n=6) or intraluminal (n=5) MORPHOLOGY OF THE LIGATED LOOP PBS injection. Groups I and V received 2 ml The ligated loops in all experimental groups PBS by intravenous injection some 10–20 sec- (table 1) were subjected to morphological on September 25, 2021 by guest. Protected copyright. onds before toxin challenge into the loop, while investigation after the challenge period. Con- groups II and VI were injected with rAF in the trol loops were obtained from rats treated sys- same volume and by the same route. Group III temically and intraluminally with PBS. Figure was injected with rAF 60 minutes after 1A shows the distinct and unchanged morphol- challenge with toxin A, while group IV was ogy in the controls. Severely damaged intestinal injected with rAF intraluminally just before morphology is seen in fig 1B, showing results challenge with toxin A. obtained five hours after challenge with CdiY- toxin A: 50–70% of the apical portion of the HISTOLOGICAL EXAMINATION cile A histological investigation of the gut wall was villi is completely destroyed, and the intestinal undertaken in all experimental groups (groups lumen is full of cellular debris.
Recommended publications
  • Review Cholera Toxin Structure, Gene Regulation and Pathophysiological
    Cell. Mol. Life Sci. 65 (2008) 1347 – 1360 1420-682X/08/091347-14 Cellular and Molecular Life Sciences DOI 10.1007/s00018-008-7496-5 Birkhuser Verlag, Basel, 2008 Review Cholera toxin structure, gene regulation and pathophysiological and immunological aspects J. Sncheza and J. Holmgrenb,* a Facultad de Medicina, UAEM, Av. Universidad 1001, Col. Chamilpa, CP62210 (Mexico) b Department of Microbiology and Immunology and Gothenburg University Vaccine Research Institute (GUVAX), University of Gçteborg, Box 435, Gothenburg, 405 30 (Sweden), e-mail: [email protected] Received 25 October 2007; accepted 12 December 2007 Online First 19 February 2008 Abstract. Many notions regarding the function, struc- have recently been discovered. Regarding the cell ture and regulation of cholera toxin expression have intoxication process, the mode of entry and intra- remained essentially unaltered in the last 15 years. At cellular transport of cholera toxin are becoming the same time, recent findings have generated addi- clearer. In the immunological field, the strong oral tional perspectives. For example, the cholera toxin immunogenicity of the non-toxic B subunit of cholera genes are now known to be carried by a non-lytic toxin (CTB) has been exploited in the development of bacteriophage, a previously unsuspected condition. a now widely licensed oral cholera vaccine. Addition- Understanding of how the expression of cholera toxin ally, CTB has been shown to induce tolerance against genes is controlled by the bacterium at the molecular co-administered (linked) foreign antigens in some level has advanced significantly and relationships with autoimmune and allergic diseases. cell-density-associated (quorum-sensing) responses Keywords.
    [Show full text]
  • Biological Toxins Fact Sheet
    Work with FACT SHEET Biological Toxins The University of Utah Institutional Biosafety Committee (IBC) reviews registrations for work with, possession of, use of, and transfer of acute biological toxins (mammalian LD50 <100 µg/kg body weight) or toxins that fall under the Federal Select Agent Guidelines, as well as the organisms, both natural and recombinant, which produce these toxins Toxins Requiring IBC Registration Laboratory Practices Guidelines for working with biological toxins can be found The following toxins require registration with the IBC. The list in Appendix I of the Biosafety in Microbiological and is not comprehensive. Any toxin with an LD50 greater than 100 µg/kg body weight, or on the select agent list requires Biomedical Laboratories registration. Principal investigators should confirm whether or (http://www.cdc.gov/biosafety/publications/bmbl5/i not the toxins they propose to work with require IBC ndex.htm). These are summarized below. registration by contacting the OEHS Biosafety Officer at [email protected] or 801-581-6590. Routine operations with dilute toxin solutions are Abrin conducted using Biosafety Level 2 (BSL2) practices and Aflatoxin these must be detailed in the IBC protocol and will be Bacillus anthracis edema factor verified during the inspection by OEHS staff prior to IBC Bacillus anthracis lethal toxin Botulinum neurotoxins approval. BSL2 Inspection checklists can be found here Brevetoxin (http://oehs.utah.edu/research-safety/biosafety/ Cholera toxin biosafety-laboratory-audits). All personnel working with Clostridium difficile toxin biological toxins or accessing a toxin laboratory must be Clostridium perfringens toxins Conotoxins trained in the theory and practice of the toxins to be used, Dendrotoxin (DTX) with special emphasis on the nature of the hazards Diacetoxyscirpenol (DAS) associated with laboratory operations and should be Diphtheria toxin familiar with the signs and symptoms of toxin exposure.
    [Show full text]
  • The Effects of Cholera Toxin on Cellular Energy Metabolism
    Toxins 2010, 2, 632-648; doi:10.3390/toxins2040632 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Article The Effects of Cholera Toxin on Cellular Energy Metabolism Rachel M. Snider 1, Jennifer R. McKenzie 1, Lewis Kraft 1, Eugene Kozlov 1, John P. Wikswo 2,3 and David E. Cliffel 1,2,* 1 Department of Chemistry, Vanderbilt University, VU Station B. Nashville, TN 37235-1822, USA; E-Mails: [email protected] (R.S.); [email protected] (J.M.); [email protected] (L.K.); [email protected] (E.K.) 2 Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235-1809, USA; E-Mail: [email protected] (J.W.) 3 Departments of Physics, Biomedical Engineering, and Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37235-1809, USA * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-615-343-3937; Fax: +1-615-343-1234. Received: 11 March 2010; in revised form: 31 March 2010 / Accepted: 6 April 2010 / Published: 8 April 2010 Abstract: Multianalyte microphysiometry, a real-time instrument for simultaneous measurement of metabolic analytes in a microfluidic environment, was used to explore the effects of cholera toxin (CTx). Upon exposure of CTx to PC-12 cells, anaerobic respiration was triggered, measured as increases in acid and lactate production and a decrease in the oxygen uptake. We believe the responses observed are due to a CTx-induced activation of adenylate cyclase, increasing cAMP production and resulting in a switch to anaerobic respiration. Inhibitors (H-89, brefeldin A) and stimulators (forskolin) of cAMP were employed to modulate the CTx-induced cAMP responses.
    [Show full text]
  • Cholera Toxin Genes: Nucleotide Sequence, Deletion Analysis and Vaccine Development John J
    ~NA~T~U~R~E~VO~L~.~3~06~8~D~E~C~EM~BE~R~19~8~3 ________________------A~RT~ICnnLE~S~-------------------------------------------~551 Cholera toxin genes: nucleotide sequence, deletion analysis and vaccine development John J. Mekalanos, Daryl J. Swartz & Gregory D. N. Pearson Department of Microbiology and Molecular Genetics, Harvard Medical School, 25 Shattuck Street, Boston, Massachusetts 02115, USA Nigel Harford, Francoise Groyne & Michel de Wilde Department of Molecular Genetics, Smith-K1ine-R.I.T., rue de I'Institut, 89, B-1330 Rixensart, Belgium Nucleotide sequence and deletion analysis have been used to identify the regulatory and coding sequences comprising the cholera toxin operon (ctx). Incorporation of defined in vitro-generated ctx deletion mutations into Vibrio cholerae by in vivo genetic recombination produced strains which have practical value in cholera vaccine development. MODERN history has recorded seven world pandemics of ctx, while the remaining strains have two or more ctx copies cholera, a diarrhoeal disease produced by the Gram-negative present on a tandemly repeated genetic element. This genetic l bacterium Vibrio cholerae . Laboratory tests can distinguish two duplication and amplification of the toxin operon may be related biotypes of V. cholerae, classical and El Tor, the latter being to the instability observed in some of the earlier V. cholerae responsible for the most recent cholera pandemic. The diar­ toxin mutants13.l6. rhoeal syndrome induced by colonization of the human small In this article, we report the entire nucleotide sequence of bowel by either biotype of V cholerae is caused by the action one ctx operon together with partial sequences containing the of cholera toxin, a heat-labile enterotoxin secreted by the grow­ ctx promoter regions of five other cloned ctx copies.
    [Show full text]
  • Safe Handling of Acutely Toxic Chemicals Safe Handling of Acutely
    Safe Handling of Acutely Toxic Chemicals , Mutagens, Teratogens and Reproductive Toxins October 12, 2011 BSBy Sco ttBthlltt Batcheller R&D Manager Milwaukee WI Hazards Classes for Chemicals Flammables • Risk of ignition in air when in contact with common energy sources Corrosives • Generally destructive to materials and tissues Energetic and Reactive Materials • Sudden release of destructive energy possible (e.g. fire, heat, pressure) Toxic Substances • Interaction with cells and organs may lead to tissue damage • EfftEffects are t tilltypically not general ltllti to all tissues, bttbut target tdted to specifi c ones • Examples: – Cancers – Organ diseases – Inflammation, skin rashes – Debilitation from long-term Poison Acute Cancer, health or accumulation with delayed (ingestion) risk reproductive risk emergence 2 Toxic Substances Are All Around Us Pollutants Natural toxins • Cigare tte smo ke • V(kidbt)Venoms (snakes, spiders, bees, etc.) • Automotive exhaust • Poison ivy Common Chemicals • Botulinum toxin • Pesticides • Ricin • Fluorescent lights (mercury) • Radon gas • Asbestos insulation • Arsenic and heavy metals • BPA ((pBisphenol A used in some in ground water plastics) 3 Application at UNL Chemicals in Chemistry Labs Toxin-producing Microorganisms • Chloro form • FiFungi • Formaldehyde • Staphylococcus species • Acetonitrile • Shiga-toxin from E. coli • Benzene Select Agent Toxins (see register) • Sodium azide • Botulinum neurotoxins • Osmium/arsenic/cadmium salts • T-2 toxin Chemicals in Biology Labs • Tetrodotoxin • Phenol
    [Show full text]
  • A Small Molecule Inhibitor of ER-To-Cytosol Protein Dislocation
    www.nature.com/scientificreports OPEN A small molecule inhibitor of ER-to- cytosol protein dislocation exhibits anti-dengue and anti-Zika virus Received: 19 December 2018 Accepted: 18 July 2019 activity Published: xx xx xxxx Jingjing Ruan1,2, Hussin A. Rothan2,4, Yongwang Zhong2, Wenjing Yan2, Mark J. Henderson 3, Feihu Chen1 & Shengyun Fang2 Infection with faviviruses, such as dengue virus (DENV) and the recently re-emerging Zika virus (ZIKV), represents an increasing global risk. Targeting essential host elements required for favivirus replication represents an attractive approach for the discovery of antiviral agents. Previous studies have identifed several components of the Hrd1 ubiquitin ligase-mediated endoplasmic reticulum (ER)-associated degradation (ERAD) pathway, a cellular protein quality control process, as host factors crucial for DENV and ZIKV replication. Here, we report that CP26, a small molecule inhibitor of protein dislocation from the ER lumen to the cytosol, which is an essential step for ERAD, has broad-spectrum anti-favivirus activity. CP26 targets the Hrd1 complex, inhibits ERAD, and induces ER stress. Ricin and cholera toxins are known to hijack the protein dislocation machinery to reach the cytosol, where they exert their cytotoxic efects. CP26 selectively inhibits the activity of cholera toxin but not that of ricin. CP26 exhibits a signifcant inhibitory activity against both DENV and ZIKV, providing substantial protection to the host cells against virus-induced cell death. This study identifed a novel dislocation inhibitor, CP26, that shows potent anti-DENV and anti-ZIKV activity in cells. Furthermore, this study provides the frst example of the targeting of host ER dislocation with small molecules to combat favivirus infection.
    [Show full text]
  • Piggybacking on the Cholera Toxin: Identification of a Toxoid-Binding Protein As an Approach for Targeted Delivery of Proteins to Motor Neurons Matthew R
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.11.982132; this version posted May 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Piggybacking on the Cholera Toxin: Identification of a Toxoid-binding Protein as an Approach for Targeted Delivery of Proteins to Motor Neurons Matthew R. Balmforth[a,b], Jessica Haigh[a,b], Christian Tiede[c], Darren C. Tomlinson[c], Jim Deu- chars[b], Michael E. Webb[a], and W. Bruce Turnbull*[a] [a] M. R. Balmforth, J. Haigh, M. E. Webb, W. B. Turnbull School of Chemistry, University of Leeds, Astbury Centre for Structural and Molecular Biology, Leeds, LS2 9JT [b] M. R. Balmforth, J. Haigh, J. Deuchars, School of Biomedical Sciences, University of Leeds, Faculty of Biological Sciences, Leeds, LS2 9JT [c] C. Tiede, D. C. Tomlinson, School of Molecular and Cellular Biology, Astbury Centre for Structural and Molecu- lar Biology, University of Leeds, Faculty of Biological Sciences, Leeds, LS2 9JT KEYWORDS Toxoid • Affimer • Drug delivery • Motor neuron • Cholera toxin ABSTRACT: A significant unmet need exists for the delivery of biologic drugs such as polypeptides or nucleic acids, to the central nervous system (CNS) for the treatment and understanding of neurodegenerative diseases. Naturally occurring tox- oids have been considered as tools to meet this need. However, due to the complexity of tethering macromolecular drugs to toxins, and the inherent dangers of working with large quantities of recombinant toxin, no such route has been successfully exploited. Developing a method where toxoid and drug can be assembled immediately prior to in vivo administration has the potential to circumvent some of these issues.
    [Show full text]
  • Chapter 7: Detection of Cholera Toxin
    Laboratory Methods for the Diagnosis of Vibrio cholerae Centers for Disease Control and Prevention VII. DETECTION OF CHOLERA TOXIN A. MODE OF ACTION OF CHOLERA TOXIN The production of cholera toxin (CT) is an essential virulence property of epidemic strains of Vibrio cholerae O1. Each CT molecule is composed of five B (binding) subunits and one A (active) subunit. The B subunits bind to GM1 ganglioside receptors on epithelial cells of the intestinal mucosa. After attachment, cleavage occurs between the A subunit and the A2 component, facilitating entry of the A1 component into the cell. The A1 component stimulates the production of the enzyme adenylate cyclase, which is responsible for the production of cyclic AMP (cAMP). Increased intracellular levels of cAMP result in a disruption of the active transport of electrolytes across the cell membrane, which hinders fluid absorption and leads to fluid secretion into the small intestine. When the volume of the fluid entering the colon from the small intestine is greater than its reabsorptive capability, diarrhea occurs. CT is very similar to Escherichia coli heat-labile enterotoxin (LT), both antigenically and in mechanism of action; therefore, most of the toxin assays for detection of CT are also applicable to LT, and vice-versa. B. INDICATIONS FOR TESTING FOR CT PRODUCTION The value of routine CT testing in a diagnostic laboratory varies with the epidemiology of cholera in a specific country or community. During an outbreak of cholera, the isolation of V. cholerae possessing the O1 antigen from symptomatic patients correlates well with toxin production and virulence, and there is no need to routinely test isolates for CT.
    [Show full text]
  • Differential Cholera-Toxin- and Pertussis-Toxin-Catalysed ADP-Ribosylation of G-Proteins Coupled to Formyl-Peptide and Leukotriene B4 Receptors Theresa M
    Biochem. J. Biochem. J. (1(1993)993) 289, 469-473 (Printed in Great Britain) 469 Differential cholera-toxin- and pertussis-toxin-catalysed ADP-ribosylation of G-proteins coupled to formyl-peptide and leukotriene B4 receptors Theresa M. SCHEPERS* and Kenneth R. McLEISHt Departments of Medicine and Biochemistry, University of Louisville Health Sciences Center and the Veterans Administration Medical Center, Louisville, KY 40292, U.S.A. N-Formylmethionyl-leucyl-phenylalanine (fMet-Leu-Phe) and imido]triphosphate and GDP in a concentration-dependent leukotriene B4 (LTB4) induce disparate second-messenger manner. Addition of fMet-Leu-Phe, but not LTB4, re-established generation and functional responses in neutrophils and HL-60 cholera-toxin labelling of a40 in the presence of either guanine granulocytes. Receptors for these chemoattractants couple to a nucleotide. In the absence of guanine nucleotides, fMet-Leu-Phe common pool of G-proteins which are substrates for both and C5a enhanced cholera-toxin-catalysed labelling of cc40, pertussis-toxin- and cholera-toxin-catalysed ADP-ribosylation. whereas LTB4 and platelet-activating factor had no effect. The hypothesis that formyl-peptide and LTB4 receptors induce Preincubation with fMet-Leu-Phe, but not LTB4, inhibited different receptor-specific conformations of activated G- pertussis-toxin labelling of a40 in the presence of guanosine 5'- proteins was tested. The ability of pertussis toxin and cholera [y-thio]triphosphate and in the absence of guanine nucleotides. toxin to ADP-ribosylate Gi proteins coupled to formyl-peptide Preincubation with fMet-Leu-Phe or LTB4 enhanced pertussis- or LTB4 receptors in membranes isolated from HL-60 toxin labelling of a40 in the presence of GDP.
    [Show full text]
  • Specificity of Escherichia Coli Heat-Labile Enterotoxin
    International Journal of Molecular Sciences Article Specificity of Escherichia coli Heat-Labile Enterotoxin Investigated by Single-Site Mutagenesis and Crystallography Julie Elisabeth Heggelund 1,†, Joel Benjamin Heim 1, Gregor Bajc 2, Vesna Hodnik 2,3,‡, Gregor Anderluh 3 and Ute Krengel 1,* 1 Department of Chemistry, University of Oslo, Postbox 1033 Blindern, 0315 Oslo, Norway; [email protected] (J.E.H.); [email protected] (J.B.H.) 2 Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; [email protected] (G.B.); [email protected] (V.H.) 3 Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana; Slovenia; [email protected] * Correspondence: [email protected]; Tel.: +47-2285-5461 † Current address: Department of Pharmacy, University of Oslo, Postbox 1068 Blindern, 0316 Oslo, Norway. ‡ Current address: Lek d.d., Kolodvorska 27, 1234 Mengeš, Slovenia. Received: 28 January 2019; Accepted: 31 January 2019; Published: 6 February 2019 Abstract: Diarrhea caused by enterotoxigenic Escherichia coli (ETEC) is one of the leading causes of mortality in children under five years of age and is a great burden on developing countries. The major virulence factor of the bacterium is the heat-labile enterotoxin (LT), a close homologue of the cholera toxin. The toxins bind to carbohydrate receptors in the gastrointestinal tract, leading to toxin uptake and, ultimately, to severe diarrhea. Previously, LT from human- and porcine-infecting ETEC (hLT and pLT, respectively) were shown to have different carbohydrate-binding specificities, in particular with respect to N-acetyllactosamine-terminating glycosphingolipids.
    [Show full text]
  • The Evolving Field of Biodefence: Therapeutic Developments and Diagnostics
    REVIEWS THE EVOLVING FIELD OF BIODEFENCE: THERAPEUTIC DEVELOPMENTS AND DIAGNOSTICS James C. Burnett*, Erik A. Henchal‡,Alan L. Schmaljohn‡ and Sina Bavari‡ Abstract | The threat of bioterrorism and the potential use of biological weapons against both military and civilian populations has become a major concern for governments around the world. For example, in 2001 anthrax-tainted letters resulted in several deaths, caused widespread public panic and exerted a heavy economic toll. If such a small-scale act of bioterrorism could have such a huge impact, then the effects of a large-scale attack would be catastrophic. This review covers recent progress in developing therapeutic countermeasures against, and diagnostics for, such agents. BACILLUS ANTHRACIS Microorganisms and toxins with the greatest potential small-molecule inhibitors, and a brief review of anti- The causative agent of anthrax for use as biological weapons have been categorized body development and design against biotoxins is and a Gram-positive, spore- using the scale A–C by the Centers for Disease Control mentioned in TABLE 1. forming bacillus. This aerobic and Prevention (CDC). This review covers the discovery organism is non-motile, catalase and challenges in the development of therapeutic coun- Anthrax toxin. The toxin secreted by BACILLUS ANTHRACIS, positive and forms large, grey–white to white, non- termeasures against select microorganisms and toxins ANTHRAX TOXIN (ATX), possesses the ability to impair haemolytic colonies on sheep from these categories. We also cover existing antibiotic innate and adaptive immune responses1–3,which in blood agar plates. treatments, and early detection and diagnostic strategies turn potentiates the bacterial infection.
    [Show full text]
  • Application of Biosensors Based on Lipid Membranes for the Rapid Detection of Toxins
    biosensors Review Application of Biosensors Based on Lipid Membranes for the Rapid Detection of Toxins Georgia-Paraskevi Nikoleli 1, Dimitrios P. Nikolelis 2,* ID , Christina G. Siontorou 3, Stephanos Karapetis 1 ID and Marianna-Thalia Nikolelis 3 1 Laboratory of Inorganic & Analytical Chemistry, School of Chemical Engineering, Department 1, Chemical Sciences, National Technical University of Athens, 9 Iroon Polytechniou St., 15780 Athens, Greece; [email protected] (G.-P.N.); [email protected] (S.K.) 2 Laboratory of Environmental Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis-Kouponia, 15771 Athens, Greece 3 Laboratory of Simulation of Industrial Processes, Department of Industrial Management and Technology, School of Maritime and Industry, University of Piraeus, 18534 Pireus, Greece; [email protected] (C.G.S.); [email protected] (M.-T.N.) * Correspondence: [email protected]; Tel.: +30-210-7274-754 Received: 17 April 2018; Accepted: 21 June 2018; Published: 26 June 2018 Abstract: Lipid assemblies in the form of two dimensional films have been used extensively as biosensing platforms. These films exhibit certain similarities with cell membranes, thus providing a suitable means for the immobilization of proteinaceous moieties and, further, a number of intrinsic signal amplification mechanisms. Their implementation in the detection of toxins yielded reliable and fast detectors for in field analyses of environmental and clinical samples. Some examples are presented herein, including aflatoxin and cholera toxin detection. The conditions and parameters that determine the analytical specifications of the lipid membrane sensors are discussed, advantages and technology bottlenecks are reviewed, and possible further developments are highlighted. Keywords: biosensors; lipid membranes; toxins 1.
    [Show full text]