Profile of Nontuberculous Mycobacteria in Patients Suspected of Tuberculosis and Drug-Resistant Tuberculosis

Total Page:16

File Type:pdf, Size:1020Kb

Profile of Nontuberculous Mycobacteria in Patients Suspected of Tuberculosis and Drug-Resistant Tuberculosis Published online: 2020-11-23 THIEME Original Article 203 Profile of Nontuberculous Mycobacteria in Patients Suspected of Tuberculosis and Drug-Resistant Tuberculosis Megha Sharma1 Bharti Malhotra1 Jitendra Tiwari2 Shipra Bhargava1 1Department of Microbiology, SMS Medical College, Jaipur, Address for correspondence Bharti Malhotra, MBBS, MD, Rajasthan, India Department of Microbiology, SMS Medical College, Jaipur, 2Department of Microbiology, Government Medical College, Rajasthan, 302004 India (e-mail: [email protected]). Bharatpur, Rajasthan, India J Lab Physicians:2020;12:203–211 Abstract Objective Infections due to nontuberculous mycobacteria (NTM) is increasing glob- ally and may present as drug-resistant tuberculosis (DRTB). In India, data on NTM prevalence and species diversity is limited. Present study was conducted to detect the prevalence and profile of NTM among patients suspected of DRTB using paraffin slide culture (PSC)and mycobacteria growth indicator tube (MGIT) culture methods for isolation of NTM. Material and Method A total of 2,938 samples suspected of TB/DRTB were cultured on PSC and MGIT960. Species identification of mycobacterial isolate was done by sequencing of 16s ribosomal RNA gene. Result Among 2938 samples, 35 (1.19%) were found positive for NTM by PSC and 9 (0.30%) were found positive by MGIT. The diversity of NTM species was high (13 species). Out of 35 NTM isolates by PSC, maximum 34.29% (12) isolates were found to be Mycobacterium fortuitum, followed by 11.43% (4) Mycobacterium abscessus and Mycobacterium chelonae, and 42.85% (15) were other species viz. 8.57% (3) were Mycobacterium intracellulare and Mycobacterium kansasii, 5.71% (2) were Mycobacterium peregrinum, and 2.85% (1) were Mycobacterium flavescens, Mycobacterium farcinogenes, Mycobacterium moriokanese, Mycobacterium wolinskyi, Mycobacterium simiae, Mycobacterium goodii, and Mycobacterium terrae each. Coinfection of Mycobacterium tuberculosis(MTB) and NTM was found in 60% (21) samples. Keywords Conclusion Prevalence of NTM was low among multidrug resistant tuberculosis/TB ► nontuberculous suspected patients, similar to other studies done in India. PSC was found better than mycobacteria (NTM) MGIT for the isolation of NTM, though poor separation of NTM and MTB on subculture ► paraffin slide may have led to false negativity in cases of coinfection. About 13 species were iso- culture (PSC) lated; M. fortuitum was the most common of all. Since coinfection of NTM and TB can ► mycobacterium also occur, samples of patients suspected of NTM should be cultured on PSC even if tuberculosis (MTB) positive for MTB. DOI https://doi.org/ © 2020. The Indian Association of Laboratory Physicians. 10.1055/s-0040-1721160 This is an open access article published by Thieme under the terms of the Creative ISSN 0974-2727 . Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/) Thieme Medical and Scientific Publishers Pvt. Ltd., A-12, 2nd Floor, Sector 2, Noida-201301 UP, India 204 NTM Detection and Profile Sharma et al. Introduction presumptive DRTB and TB suspected patients were included in the study. This study was approved by the Institutional Nontuberculous mycobacteria (NTM) are opportunistic Ethical Committee. pathogens that cause surgical-site infections, postinjection abscesses, osteomyelitis, catheter-related bloodstream infec- Inclusion Criteria tions, and central nervous system infections, mostly affect- Pulmonary samples with more than 5 mL volume and ing patients with the pre-existing pulmonary disease such extrapulmonary samples with more than 2 mL volume were as chronic obstructive pulmonary disease (COPD) or tuber- included in the study. culosis (TB), or immunocompromised patients with HIV All samples received in laboratory having adequate volume infection, leukemia, or those patients on immunosuppres- were included in the study. Among 2,938 samples enrolled 1,2 sive drugs. The exact burden of NTM disease is not known in the study, 1,612 were from DRTB suspect and1,326 were because it is not a reportable disease worldwide including from pulmonary and extrapulmonary TB suspects. All clin- India, but now NTM infections are showing increasing trend ical samples, pulmonary (sputum, bronchoalveolar lavage) 3 in India. The clinic radiological signs and symptoms of and extrapulmonary (gastric aspirate, pleural fluid, pus and both NTM and Mycobacterium tuberculosis (MTB) are quite endometrial biopsy), from males and females of all age groups similar; thus, NTM is easily misdiagnosed as MTB, or as were included in this study. Handling of MGIT cultures and multidrug-resistant tuberculosis (MDRTB) and extensively PSC cultures were done in biosafety level 3 (BSL3) laborato- drug-resistant tuberculosis (XDRTB) that pose challenge for ry,while rest all processes were done in BSL2 laboratory as 3 effective treatment. NTM isolation rates range from 0.5 to recommended for MTB. 8.6% in India.4 A recent study from India reported increase in prevalence of NTM from 1.0% in 2005 to 3.5% in 2008; Statistical Analysis 5 88.6% of these NTM were clinically relevant. The isolation All data were entered in Microsoft Excel version 10 and ana- rates of NTM vary widely depending on population and lyzed by SPSS version 21. Chi-squared test was applied to find 6 geographic location. Infections with pathogenic NTM such statistical significance. as Mycobacterium marinum, Mycobacterium fortuitum, and 7 Mycobacterium chelonae have been reported from India. Sample Collection Paraffin baiting has been used for isolating NTM and Samples were collected in sterile, screw cap containers from 8,9 Nocardia as NTM utilizes paraffin wax as the sole source of various districts of Rajasthan, stored in refrigerator at the carbon, while MTB is not able to utilize paraffin wax as the districts for 1 to 5 days and transported to the laboratory by sole source of carbon and does not grow in the paraffin slide courier or hand delivered maintaining cold chain. On receipt culture (PSC). This property helps in isolating NTM from clin- of samples at laboratory, they were processed immediately or ical specimens as this property of paraffin metabolism is not after refrigeration at 4°C overnight.15 For PSC, the deposits of 9 found among other human pathogens. processed samples were stored in–20°C and inoculated once It is important to isolate and identify NTM because of its in 7 to 10 days; rest all work was done daily as per Revised pathogenic potential and higher resistance to antitubercu- National Tuberculosis Control Program (RNTCP) guidelines. losis drugs.10 Phenotypic identification of NTM species is 11 based on a panel of biochemical tests, which have many Sample Processing and Culture drawbacks such as slow turnaround time, difficult to inter- All the samples were subjected to smear microscopy by pret, low specificity, and limited accuracy; laboratories are Ziehl–Neelsen staining method, decontamination byN-ace- now using alternative rapid methods for species identi- tyl-L-cysteine-sodium hydroxide method (with final NaOH fication such as DNA probes (AccuProbe, Gen-Probe, San concentration of 4%) as per RNTCP guidelines.10 The concen- Diego, California, United States),polymerase chain reaction trated sediment (1–1.5mL) was resuspended in 1 to 2 mL of 12 (PCR)-restriction enzyme analysis of the hsp65 gene, or phosphate buffer and processed for MGIT culture (0.5mL) and 13 sequencing of the 16S ribosomal DNA (rDNA). Use of 16S line probe assay (LPA) (0.1mL) as per RNTCP guidelines.16,17 Rest ribosomal RNA (rRNA) gene has now become a “gold stan- of deposit was stored at–20°C; 0.5 mL of the stored deposit of 14 dard” for the identification of NTM. all samples was inoculated in PSC.9 Smear-positive DRTB sus- Hence, present study was conducted to investigate the pected samples were processed directly for LPA from sample, prevalence and profile of NTM among DRTB suspected MTB growth from MGIT was processed for LPA if direct LPA/ patients using mycobacteria growth indicator tube (MGIT) GeneXpert results were not available.17,18 Samples (1mL) of TB and PSC methods for isolation and 16S rRNA gene sequencing suspects were processed directly for GeneXpert as per proto- for species identification. col.18 All the processing done in this study is shown in ►Fig. 1. Procedure PSC Briefly, 0.5 mL of processed sample was inoculated Study Setting into 4.5 mL sterile Czapek broth medium (Czapek broth Study was performed in Mycobacteriology Laboratory, constituents: NaNO3—3.0 g, K2HPO4—1.0, MgSO4H2O—0.5 g, Department of Microbiology, SMS Medical College, Jaipur, KCl—0.5 g, FeSO4—0.01 g) with added BACTEC PANTA Plus Rajasthan from August 2016 to August 2017. Samples of (Becton Dickinson) (polymyxin B, amphotericin B, nalidixic Journal of Laboratory Physicians Vol. 12 No. 3/2020 © 2020. The Indian Association of Laboratory Physicians. NTM Detection and Profile Sharma et al. 205 Fig. 1 Workflow chart (STROBE Guideline). AFB, acid-fast bacilli; DRTB, drug-resistant tuberculosis; LJ, Lowenstein-Jensen medium; LPA, line probe assay; MGIT, mycobacteria growth indicator tube; MTB, Mycobacterium tuberculosis; NTM, nontuberculous mycobacteria; PSC, paraffin slide culture; STROBE, Strengthening The Reporting of Observational studies in Epidemiology. acid, trimethoprim, and
Recommended publications
  • Accuprobe Mycobacterium Avium Complex Culture
    non-hybridized and hybridized probe. The labeled DNA:RNA hybrids are measured in a Hologic luminometer. A positive result is a luminometer reading equal to or greater than the cut-off. A value below this cut-off is AccuProbe® a negative result. REAGENTS Note: For information on any hazard and precautionary statements that MYCOBACTERIUM AVIUM may be associated with reagents, refer to the Safety Data Sheet Library at www.hologic.com/sds. COMPLEX CULTURE Reagents for the ACCUPROBE MYCOBACTERIUM AVIUM COMPLEX IDENTIFICATION TEST CULTURE IDENTIFICATION TEST are provided in three separate reagent kits: INTENDED USE The ACCUPROBE MYCOBACTERIUM AVIUM COMPLEX CULTURE ACCUPROBE MYCOBACTERIUM AVIUM COMPLEX PROBE KIT IDENTIFICATION TEST is a rapid DNA probe test which utilizes the Probe Reagent. (4 x 5 tubes) technique of nucleic acid hybridization for the identification of Mycobacterium avium complex Mycobacterium avium complex (M. avium complex) isolated from culture. Lysing Reagent. (1 x 20 tubes) Glass beads and buffer SUMMARY AND EXPLANATION OF THE TEST Infections caused by members of the M. avium complex are the most ACCUPROBE CULTURE IDENTIFICATION REAGENT KIT common mycobacterial infections associated with AIDS and other Reagent 1 (Lysis Reagent). 1 x 10 mL immunocompromised patients (7,15). The incidence of M. avium buffered solution containing 0.04% sodium azide complex as a clinically significant pathogen in cases of chronic pulmonary disease is also increasing (8,17). Recently, several Reagent 2 (Hybridization Buffer). 1 x 10 mL laboratories have reported that the frequency of isolating M. avium buffered solution complex is equivalent to or greater than the frequency of isolating M.
    [Show full text]
  • Identification of Different Subtypes of Rapid Growing Atypical
    International Journal of Mycobacteriology xxx (2016) xxx– xxx Available at www.sciencedirect.com ScienceDirect journal homepage: www.elsevier.com/locate/IJMYCO Identification of different subtypes of rapid growing Atypical Mycobacterium from water and soil sources: Using PCR-RFLP using hsp65 and rRNA 16s–23s genes Mohammad Varahram a, Parissa Farnia a,*, Shima Saif a, Mehran Marashian a, Poopak Farnia a,b, Jaladein Ghanavi a, Ali Akbar Velayati a a Mycobacteriology Research Centre (MRC), National Research Institute of Tuberculosis and Lung Disease (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran b Department of Biotechnology Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran ARTICLE INFO ABSTRACT Article history: Objective/Background: Nontuberculosis mycobacteria (NTM) are a diverse group of microor- Received 13 September 2016 ganisms that cause a variety of diseases in humans including skin, respiratory, and gas- Accepted 14 September 2016 trointestinal tract infection. Generally, NTM are classified into two categories: rapid Available online xxxx (<7 days) and slow growing (>7 days). In this study, we aimed to investigate NTM frequency and prevalence in environmental samples. Additionally, we tried to identify various sub- Keywords: types of isolated rapid growing mycobacteria (RGM). Iran Methods: Through a prospective descriptive cross-sectional study, water and soil samples Mycobacterium fortuitum were gathered from four neighboring towns around Tehran, the capital of Iran, at different 2 RGM geographic directions. Every 100 m of the studied areas gave one sample containing 6 g of Soil soil in 3–5 cm depth deposited in 50 mL sterile water as sampling media. After digestion Water and decontamination, DNA from culture-positive specimens (RGM) were extracted using phenol–chloroform methods.
    [Show full text]
  • Health Monitoring for Your Zebrafish Colonies
    Discover better insight Health Monitoring for your zebrafish colonies The clear choice for a comprehensive health monitoring program. BioResearch Your partner in discovery Contents Introduction . 3 Edwardsiella ictaluri. 4 Flavobacterium columnare . 5 Ichthyophthirius multifiliis. 6 Infectious spleen and kidney necrosis virus (ISKNV) . 7 Mycobacterium abscessus . 8 Mycobacterium chelonae . .9 Mycobacterium fortuitum. 10 Mycobacterium haemophilum. 11 Mycobacterium marinum. 12 Mycobacterium peregrinum . 13 Piscinoodinium pillulare . 14 Pleistophora hyphessobryconis . 15 Pseudocapillaria tomentosa . 16 Pseudoloma neurophilia . 17 Profiles and Pricing. 18 Specimen preparation and shipping . 20 Additional resources . 21 Introduction A growing number of researchers are choosing zebrafish as models for biomedical research because of the advantages zebrafish offer over other animal models for certain studies. First, their small size and ease of breeding make zebrafish relatively inexpensive to maintain, which allows researchers to perform experiments using zebrafish that would be cost prohibitive using larger animal models. Secondly, embryos are transparent, which allows easy visualization of cell and organ development and permits experimental manipulations involving DNA or mRNA injection, cell labeling and transplantation. Zebrafish are now commonly employed as models in a diverse range of bioresearch fields, such as immunology, infectious disease, cardiac and vascular disease research, chemical and drug toxicity studies, reproductive biology and cancer research to name a few. As with other vertebrate models used in research, undetected infections can alter, confound or invalidate experimental results. Therefore, it is important to develop and utilize a health monitoring program to detect infectious agents that may affect the animal and the research outcomes. IDEXX BioResearch has developed sensitive molecular diagnostic assays to improve health monitoring for zebrafish colonies.
    [Show full text]
  • Non-Tuberculous Mycobacteria in South African Wildlife: Neglected Pathogens and Potential Impediments for Bovine Tuberculosis Diagnosis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector ORIGINAL RESEARCH published: 30 January 2017 doi: 10.3389/fcimb.2017.00015 Non-tuberculous Mycobacteria in South African Wildlife: Neglected Pathogens and Potential Impediments for Bovine Tuberculosis Diagnosis Nomakorinte Gcebe * and Tiny M. Hlokwe Tuberculosis Laboratory, Onderstepoort Veterinary Institute, Zoonotic Diseases, Agricultural Research Council, Onderstepoort, South Africa Non-tuberculous mycobacteria (NTM) are not only emerging and opportunistic pathogens of both humans and animals, but from a veterinary point of view some species induce cross-reactive immune responses that hamper the diagnosis of bovine tuberculosis (bTB) in both livestock and wildlife. Little information is available about NTM species circulating in wildlife species of South Africa. In this study, we determined the diversity of NTM isolated from wildlife species from South Africa as well as Botswana. Thirty known NTM species and subspecies, as well as unidentified NTM, and NTM closely related to Mycobacterium goodii/Mycobacterium smegmatis were identified from Edited by: Adel M. Talaat, 102 isolates cultured between the years 1998 and 2010, using a combination of University of Wisconsin-Madison, USA molecular assays viz PCR and sequencing of different Mycobacterial house-keeping Reviewed by: genes as well as single nucleotide polymorphism (SNP) analysis. The NTM identified Lei Wang, in this study include the following species which were isolated from tissue with Nankai University, China Tyler C. Thacker, tuberculosis- like lesions in the absence of Mycobacterium tuberculosis complex (MTBC) National Animal Disease Center implying their potential role as pathogens of animals: Mycobacterium abscessus subsp.
    [Show full text]
  • About Mycobacterium Simiae in Brief Mouhamad Nasser* American University of Beirut- Medical Center, Lebanon
    Microbio al lo ic g d y e & M D f i o a l g Journal of Nasser, J Med Microb Diagn 2014, 4:1 a n n o r s u DOI; 10.4172/2161-0703.1000175 i s o J ISSN: 2161-0703 Medical Microbiology & Diagnosis ReviewResearch Article Article OpenOpen Access Access All about Mycobacterium simiae in Brief Mouhamad Nasser* American University of Beirut- Medical Center, Lebanon Abstract More than hundreds pathogens of mycobacterium have been identified till now but a minority of these bugs cause diseases in humans. M. simiae, an emerging bacterium that has been discovered recently, commonly recovered from human sputum especially in patients with underlying lung diseases. Most commonly this bacterium is a bystander rather than a true culprit. Such differentiation is critical to avoid unnecessary long term treatment not free of side effects. Keywords: Non-tuberculous mycobacterium; M. simiae; with underlying lung diseases such as prior pulmonary tuberculosis Immunocompetent; Lung diseases or silicosis, chronic obstructive pulmonary disease [COPD], and non- cystic fibrosis bronchiectasis have higher risk for M. simiae than healthy Introduction people [11].The association between M. simiae and cystic fibrosis was Different terms are used to define non-tuberculosis mycobacteria also been described [12]. Furthermore, other co-morbidities, such as [NTM] including atypical mycobarcteria and mycobacteria other than Diabetes Mellitus, cardiovascular diseases, and malignancies could tuberculosis [MOTT]. However, NTM terminology is the most used also predispose to M. simiae infection [13]. Other than that, M. simiae name worldwide. NTM, an emerging entity, includes more than 100 can cause disseminated disease in immunocompromised patients species with variable microbiological features, clinical manifestations mainly HIV [14].
    [Show full text]
  • Nontuberculous Mycobacteria in Respiratory Samples from Patients with Pulmonary Tuberculosis in the State of Rondônia, Brazil
    Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 108(4): 457-462, June 2013 457 Nontuberculous mycobacteria in respiratory samples from patients with pulmonary tuberculosis in the state of Rondônia, Brazil Cleoni Alves Mendes de Lima1,2/+, Harrison Magdinier Gomes3, Maraníbia Aparecida Cardoso Oelemann3, Jesus Pais Ramos4, Paulo Cezar Caldas4, Carlos Eduardo Dias Campos4, Márcia Aparecida da Silva Pereira3, Fátima Fandinho Onofre Montes4, Maria do Socorro Calixto de Oliveira1, Philip Noel Suffys3, Maria Manuela da Fonseca Moura1 1Centro Interdepartamental de Biologia Experimental e Biotecnologia, Universidade Federal de Rondônia, Porto Velho, RO, Brasil 2Laboratório Central de Saúde Pública de Rondônia, Porto Velho, RO, Brasil 3Laboratório de Biologia Molecular Aplicada a Micobactérias, Instituto Oswaldo Cruz 4Centro de Referência Professor Hélio Fraga, Escola Nacional de Saúde Pública-Fiocruz, Rio de Janeiro, RJ, Brasil The main cause of pulmonary tuberculosis (TB) is infection with Mycobacterium tuberculosis (MTB). We aimed to evaluate the contribution of nontuberculous mycobacteria (NTM) to pulmonary disease in patients from the state of Rondônia using respiratory samples and epidemiological data from TB cases. Mycobacterium isolates were identified using a combination of conventional tests, polymerase chain reaction-based restriction enzyme analysis of hsp65 gene and hsp65 gene sequencing. Among the 1,812 cases suspected of having pulmonary TB, 444 yielded bacterial cultures, including 369 cases positive for MTB and 75 cases positive for NTM. Within the latter group, 14 species were identified as Mycobacterium abscessus, Mycobacterium avium, Mycobacterium fortuitum, Myco- bacterium intracellulare, Mycobacterium gilvum, Mycobacterium gordonae, Mycobacterium asiaticum, Mycobac- terium tusciae, Mycobacterium porcinum, Mycobacterium novocastrense, Mycobacterium simiae, Mycobacterium szulgai, Mycobacterium phlei and Mycobacterium holsaticum and 13 isolates could not be identified at the species level.
    [Show full text]
  • Distribution of a Novel Mycolic Acid in Species of the Genus Mycobacterium M
    1.NTERNATIONAL JOURNAL OF SYSTEMATIC BACTERIOLOGY,July 1991, p. 390-394 Vol. 41, No. 3 0020-7713/91/03039O-05$02 .OO/O Copyright 0 1991, International Union of Microbiological Societies Distribution of a Novel Mycolic Acid in Species of the Genus Mycobacterium M. LUQUfN,' M. A. LANEELLE,, V. AUSINA,'" M. GARCIA BARCELO,' F. BELDA,' C. ALONS0,l AND G. PRATS' Departamento de Microbiologia, Hospital de la Sta. Cruz y San Pablo, Facultad de Medicina de la Universidad Autbnoma de Barcelona, Barcelona, Spain,' and Centre de Biochimie et Gkne'tique Cellulaires du CNRS et Universite' P. Sabatier, Toulouse, France2 We found that Mycobacterium porcinum ATCC 33776T (T = type strain) contains a new kind of mycolic acid with a methoxy group at the w-1 position. This mycolic acid was identified by comparing it with the previously described methoxymycolic acids. The patterns of mycolic acid methyl esters from 418 strains belonging to 44 species of mycobacteria were studied by using thin-layer chromatography. In addition to M. porcinum ATCC 33776T, representative strains of M. porcinum, Mycobacterium fortuitum, "Mycobacterium peregrinum," Mycobacterium senegalense, and a recently isolated Mycobacterium sp. contained appreciable amounts of the newly described mycolic acid. Mycolic acids are characteristic 2-branched, 3-hydroxy Mycobacterium aichiense, Mycobacterium chubuense, My- acids with very long chains (up to 90 carbon atoms) and are cobacterium obuense, and Mycobacterium rhodesiae were found only in mycobacteria, nocardiae, rhodococci, coryne- incubated at 30"C, and Mycobacterium thermoresistibile bacteria, and related taxa (1, 12, 14, 20). Differences in the strains were incubated at 42°C. structures of mycolic acids have proved to be valuable Analysis of mycolic acids.
    [Show full text]
  • All Mycobacteria Are Not Tubercular: a Case Report Internal Medicine Section
    DOI: 10.7860/JCDR/2018/36573.11925 Case Report All Mycobacteria are not Tubercular: A Case Report Internal Medicine Section LAXMA S REDDY1, K BHASKAR2, N PRASHANTH3, NARENDRA KUMAR NARAHARI4, GK PARAMJYOTHI5 ABSTRACT Mycobacterium tuberculosis is a common infection in developing countries with high morbidity and mortality. However, Non- Tuberculous Mycobacteria (NTM) are common environmental organisms which closely resemble tuberculosis but rarely present with disease in immunocompromised patients. They have different growth requirements, identification methods and treatment options when compared to tuberculosis and require individualised care. Here we present a case of Mycobacterium simiae infection in an immunocompetent patient presenting like tubercular infection with good outcomes after treatment. Keywords: Bronchiectasis, Immunocompetent, Mycobacterium simiae INTRODUCTION Non-tuberculous mycobacteria are widely distributed in the environment with high isolation rates worldwide [1,2]. Organisms can be found in soil and water, including both natural and treated water sources. Prevalence of NTM was highest among Japanese, Chinese, and Vietnamese patients (>300/100,000 persons) and lowest among Native Hawaiians and other Pacific Islanders (50/100,000) [3]. Currently, there are more than 150 species of NTM identified worldwide. By far, the most common organism associated with pulmonary disease is Mycobacterium avium Complex (MAC). Others are Mycobacterium kansasii, M. abscessus [4,5]. However, Mycobacterium simiae is a rare cause of pulmonary infections. Here, we present a case of M.simiae causing pulmonary infection in immune competent host. [Table/Fig-1]: Chest radiograph showing non homogeneous opacity in right lower CASE REPORT zone. A 45-year-old female with no co-morbid conditions presented to a local private hospital in November 2015 with complaints of cough with was normal.
    [Show full text]
  • Frequency and Clinical Implications of the Isolation of Rare Nontuberculous Mycobacteria
    Kim et al. BMC Infectious Diseases (2015) 15:9 DOI 10.1186/s12879-014-0741-7 RESEARCH ARTICLE Open Access Frequency and clinical implications of the isolation of rare nontuberculous mycobacteria Junghyun Kim1, Moon-Woo Seong2, Eui-Chong Kim2, Sung Koo Han1 and Jae-Joon Yim1* Abstract Background: To date, more than 125 species of nontuberculous mycobacteria (NTM) have been identified. In this study, we investigated the frequency and clinical implication of the rarely isolated NTM from respiratory specimens. Methods: Patients with NTM isolated from their respiratory specimens between July 1, 2010 and June 31, 2012 were screened for inclusion. Rare NTM were defined as those NTM not falling within the group of eight NTM species commonly identified at our institution: Mycobacterium avium, M. intracellulare, M. abscessus, M. massiliense, M. fortuitum, M. kansasii, M. gordonae, and M. peregrinum. Clinical, radiographic and microbiological data from patients with rare NTM were reviewed and analyzed. Results: During the study period, 73 rare NTM were isolated from the respiratory specimens of 68 patients. Among these, M. conceptionense was the most common (nine patients, 12.3%). The median age of the 68 patients with rare NTM was 68 years, while 39 of the patients were male. Rare NTM were isolated only once in majority of patient (64 patients, 94.1%). Among the four patients from whom rare NTM were isolated two or more times, only two showed radiographic aggravation caused by rare NTM during the follow-up period. Conclusions: Most of the rarely identified NTM species were isolated from respiratory specimens only once per patient, without concomitant clinical aggravation.
    [Show full text]
  • Gene Sequencing and Phylogenetic Analysis: Powerful Tools for an Improved Diagnosis of Fish Mycobacteriosis Caused by Mycobacterium Fortuitum Group Members
    microorganisms Article Gene Sequencing and Phylogenetic Analysis: Powerful Tools for an Improved Diagnosis of Fish Mycobacteriosis Caused by Mycobacterium fortuitum Group Members Davide Mugetti 1,* , Mattia Tomasoni 1, Paolo Pastorino 1 , Giuseppe Esposito 2, Vasco Menconi 1 , Alessandro Dondo 1 and Marino Prearo 1 1 Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Torino, Italy; [email protected] (M.T.); [email protected] (P.P.); [email protected] (V.M.); [email protected] (A.D.); [email protected] (M.P.) 2 Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-01-1268-6251 Abstract: The Mycobacterium fortuitum group (MFG) consists of about 15 species of fast-growing nontuberculous mycobacteria (NTM). These globally distributed microorganisms can cause diseases in humans and animals, especially fish. The increase in the number of species belonging to MFG and the diagnostic techniques panel do not allow to clarify their real clinical significance. In this study, biomolecular techniques were adopted for species determination of 130 isolates derived from fish Citation: Mugetti, D.; Tomasoni, M.; initially identified through biochemical tests as NTM belonging to MFG. Specifically, gene sequencing Pastorino, P.; Esposito, G.; Menconi, and phylogenetic analysis were used based on a fragment of the gene encoding the 65 KDa heat V.; Dondo, A.; Prearo, M. Gene shock protein (hsp65). The analyzes made it possible to confirm that all the isolates belong to MFG, Sequencing and Phylogenetic allowing to identify the strains at species level.
    [Show full text]
  • The Impact of Chlorine and Chloramine on the Detection and Quantification of Legionella Pneumophila and Mycobacterium Spp
    The impact of chlorine and chloramine on the detection and quantification of Legionella pneumophila and Mycobacterium spp. Maura J. Donohue Ph.D. Office of Research and Development Center of Environmental Response and Emergency Response (CESER): Water Infrastructure Division (WID) Small Systems Webinar January 28, 2020 Disclaimer: The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency. A Tale of Two Bacterium… Legionellaceae Mycobacteriaceae • Legionella (Genus) • Mycobacterium (Genus) • Gram negative bacteria • Nontuberculous Mycobacterium (NTM) (Gammaproteobacteria) • M. avium-intracellulare complex (MAC) • Flagella rod (2-20 µm) • Slow grower (3 to 10 days) • Gram positive bacteria • Majority of species will grow in free-living • Rod shape(1-10 µm) amoebae • Non-motile, spore-forming, aerobic • Aerobic, L-cysteine and iron salts are required • Rapid to Slow grower (1 week to 8 weeks) for in vitro growth, pH: 6.8 to 7, T: 25 to 43 °C • ~156 species • ~65 species • Some species capable of causing disease • Pathogenic or potentially pathogenic for human 3 NTM from Environmental Microorganism to Opportunistic Opponent Genus 156 Species Disease NTM =Nontuberculous Mycobacteria MAC = M. avium Complex Mycobacterium Mycobacterium duvalii Mycobacterium litorale Mycobacterium pulveris Clinically Relevant Species Mycobacterium abscessus Mycobacterium elephantis Mycobacterium llatzerense. Mycobacterium pyrenivorans, Mycobacterium africanum Mycobacterium europaeum Mycobacterium madagascariense Mycobacterium rhodesiae Mycobacterium agri Mycobacterium fallax Mycobacterium mageritense, Mycobacterium riyadhense Mycobacterium aichiense Mycobacterium farcinogenes Mycobacterium malmoense Mycobacterium rufum M. avium, M. intracellulare, Mycobacterium algericum Mycobacterium flavescens Mycobacterium mantenii Mycobacterium rutilum Mycobacterium alsense Mycobacterium florentinum. Mycobacterium marinum Mycobacterium salmoniphilum ( M. fortuitum, M.
    [Show full text]
  • A Rapid Method for Identification of Mycobacterium Species by Polyacrylamide Gel Electrophoresis of Soluble Cell Proteins
    J. Med. Microbiol. - Vol. 34 (1991), 1-5 01991 The Pathological Society of Great Britain and Ireland A rapid method for identification of Mycobacterium species by polyacrylamide gel electrophoresis of soluble cell proteins A. DE JONG, A. H. HOENTJEN and A. G. M. VAN DER ZANDEN Regional Institute for Public Health, Or. H. G. Gooszenstraat I, 74 15 CL Deventer, The Netherlands Summary. The sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) profiles of an easily and rapidly prepared soluble protein fraction were used in conjunction with conventional techniques to identify different strains of Mycobacterium tuberculosis, M. bovis, M. bovis BCG, M. africanum, M. avium, M. kansasii, M. marinurn, M.gastri, M. simiae and M. malmoense. Complete concordance of results from both methods was obtained with all species except those of the M. tuberculosis complex. With the SDS-PAGE technique, all strains of the M. tuberculosis complex were recognised as belonging to one species. By visual analysis of the SDS-PAGE polypeptide profiles, only minor differences between strains of the same species were seen and each species showed a characteristic polypeptide profile. Quantitation of the data by calculation of the Dice coefficient of similarity of the band positions obtained by densitometry indicated that the similarity between different strains of one species was 90-100% and the similarity between the species was in the range 30-45%. The results indicate that SDS-PAGE is a simple and rapid method for identifying mycobacterial strains. Introduction scribes our results with SDS-PAGE of soluble polypep- tides of strains of the M. tuberculosis complex and of In a routine laboratory, the identification of slowly seven other mycobacterial species.
    [Show full text]