A Survey on Deep Learning Toolkits and Libraries for Intelligent User
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Getting Started with Machine Learning
Getting Started with Machine Learning CSC131 The Beauty & Joy of Computing Cornell College 600 First Street SW Mount Vernon, Iowa 52314 September 2018 ii Contents 1 Applications: where machine learning is helping1 1.1 Sheldon Branch............................1 1.2 Bram Dedrick.............................4 1.3 Tony Ferenzi.............................5 1.3.1 Benefits of Machine Learning................5 1.4 William Golden............................7 1.4.1 Humans: The Teachers of Technology...........7 1.5 Yuan Hong..............................9 1.6 Easton Jensen............................. 11 1.7 Rodrigo Martinez........................... 13 1.7.1 Machine Learning in Medicine............... 13 1.8 Matt Morrical............................. 15 1.9 Ella Nelson.............................. 16 1.10 Koichi Okazaki............................ 17 1.11 Jakob Orel.............................. 19 1.12 Marcellus Parks............................ 20 1.13 Lydia Sanchez............................. 22 1.14 Tiff Serra-Pichardo.......................... 24 1.15 Austin Stala.............................. 25 1.16 Nicole Trenholm........................... 26 1.17 Maddy Weaver............................ 28 1.18 Peter Weber.............................. 29 iii iv CONTENTS 2 Recommendations: How to learn more about machine learning 31 2.1 Sheldon Branch............................ 31 2.1.1 Course 1: Machine Learning................. 31 2.1.2 Course 2: Robotics: Vision Intelligence and Machine Learn- ing............................... 33 2.1.3 Course -
Gitmate Let's Write Good Code!
GitMate Let's Write Good Code! Artwork by Ankit, published under CC0. Vision Today's world is driven by software. We are able to solve increasingly complex problems with only a few lines of code. However, with increasing complexity, code quality becomes an issue that needs to be dealt with to ensure that the software works as intended. Code reviews have become a popular tool to keep the quality up and problems solvable. They make out at least 30% of the amount of time spent on the development of a software product. Static code analysis and code reviews are converging areas. Still, they are still treated seperately and thus their full synergetic potential remains unused. With GitMate, we want to reinvent the code review process. Our product will integrate static code analysis directly into the code review process to reduce the number of bugs while leaving more time for the development of your favorite features. Our product, the interactive code review bot "GitMate", is not only an easily usable static code analyser, but also actively supports the development process without any overhead for the developer. GitMate is as easy to use and interact with as a collegue next door and unique in its capabilities to even fix bugs by itself. It thereby reduces the amount of work of the reviewer, allowing him to focus on semantic problems that cannot be solved automatically. Product GitMate is a code review bot. It uses coala [1] to perform static code analysis on GitHub Pull Requests [2]. It searches committed changes for possible problems and drops comments right in the GitHub review user interface, effectively following the same workflow of a human reviewer. -
Mining DEV for Social and Technical Insights About Software Development
Mining DEV for social and technical insights about software development Maria Papoutsoglou∗y, Johannes Wachszx, Georgia M. Kapitsakiy ∗Aristotle University of Thessaloniki, Greece yUniversity of Cyprus, Cyprus zVienna University of Economics and Business, Austria xComplexity Science Hub Vienna, Austria [email protected]; [email protected]; [email protected] Abstract—Software developers are social creatures: they com- On more socially oriented platforms like Twitter, which limits municate, collaborate, and promote their work in a variety of post lengths to 280 characters, discussions about software mix channels. Twitter, GitHub, Stack Overflow, and other platforms with an endless variety of other content. offer developers opportunities to network and exchange ideas. Researchers analyze content on these sites to learn about trends To address this gap we present a novel source of long-form and topics in software engineering. However, insight mined text data created by people working in software called DEV from the text of Stack Overflow questions or GitHub issues (https://dev.to). DEV is “a community of software developers is highly focused on detailed and technical aspects of software getting together to help one another out,” focused especially development. In this paper, we present a relatively new online on facilitating cooperation and learning. Content on DEV community for software developers called DEV. On DEV users write long-form posts about their experiences, preferences, and resembles blog and Medium posts and, at a glance, covers working life in software, zooming out from specific issues and files everything from programming language choice to technical to reflect on broader topics. -
CV, Dlib, Flask, Opencl, CUDA, Matlab/Octave, Assembly/Intrinsics, Cmake, Make, Git, Linux CLI
Arun Arun Ponnusamy Visakhapatnam, India. Ponnusamy Computer Vision [email protected] Research Engineer www.arunponnusamy.com github.com/arunponnusamy ㅡ Skills Passionate about Image Processing, Computer Vision and Machine Learning. Key skills - C/C++, Python, Keras,TensorFlow, PyTorch, OpenCV, dlib, Flask, OpenCL, CUDA, Matlab/Octave, Assembly/Intrinsics, CMake, Make, Git, Linux CLI. ㅡ Experience care.ai (5 years) Computer Vision Research Engineer JAN 2019 - PRESENT, VISAKHAPATNAM Key areas worked on - image classification, object detection, action recognition, face detection and face recognition for edge devices. Tools and technologies - TensorFlow/Keras, TensorFlow Lite, TensorRT, OpenCV, dlib, Python, Google Cloud. Devices - Nvidia Jetson Nano / TX2, Google Coral Edge TPU. 1000Lookz Senior Computer Vision Engineer JAN 2018 - JAN 2019, CHENNAI Key areas worked on - head pose estimation, face analysis, image classification and object detection. Tools and technologies - TensorFlow/Keras, OpenCV, dlib, Flask, Python, AWS, Google Cloud. MulticoreWare Inc. Software Engineer JULY 2014 - DEC 2017, CHENNAI Key areas worked on - image processing, computer vision, parallel processing, software optimization and porting. Tools and technologies - OpenCV, dlib, C/C++, OpenCL, CUDA. ㅡ PSG College of Technology / Bachelor of Engineering Education JULY 2010 - MAY 2014, COIMBATORE Bachelor’s degree in Electronics and Communication Engineering with CGPA of 8.42 (out of 10). Favourite subjects - Digital Electronics, Embedded Systems and C Programming. ㅡ Notable Served as one of the Joint Secretaries of Institution of Engineers(I) (students’ chapter) of PSG College of Technology. Efforts Secured first place in Line Tracer Event in Kriya ‘13, a Techno management fest conducted by Students Union of PSG College of Technology. Actively participated in FIRST Tech Challenge, a robotics competition, conducted by Caterpillar India. -
Open Source in the Enterprise
Open Source in the Enterprise Andy Oram and Zaheda Bhorat Beijing Boston Farnham Sebastopol Tokyo Open Source in the Enterprise by Andy Oram and Zaheda Bhorat Copyright © 2018 O’Reilly Media. All rights reserved. Printed in the United States of America. Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472. O’Reilly books may be purchased for educational, business, or sales promotional use. Online edi‐ tions are also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/institutional sales department: 800-998-9938 or [email protected]. Editor: Michele Cronin Interior Designer: David Futato Production Editor: Kristen Brown Cover Designer: Karen Montgomery Copyeditor: Octal Publishing Services, Inc. July 2018: First Edition Revision History for the First Edition 2018-06-18: First Release The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Open Source in the Enterprise, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc. The views expressed in this work are those of the authors, and do not represent the publisher’s views. While the publisher and the authors have used good faith efforts to ensure that the informa‐ tion and instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility for errors or omissions, including without limitation responsibility for damages resulting from the use of or reliance on this work. Use of the information and instructions contained in this work is at your own risk. If any code samples or other technology this work contains or describes is subject to open source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use thereof complies with such licenses and/or rights. -
ML Cheatsheet Documentation
ML Cheatsheet Documentation Team Sep 02, 2021 Basics 1 Linear Regression 3 2 Gradient Descent 21 3 Logistic Regression 25 4 Glossary 39 5 Calculus 45 6 Linear Algebra 57 7 Probability 67 8 Statistics 69 9 Notation 71 10 Concepts 75 11 Forwardpropagation 81 12 Backpropagation 91 13 Activation Functions 97 14 Layers 105 15 Loss Functions 117 16 Optimizers 121 17 Regularization 127 18 Architectures 137 19 Classification Algorithms 151 20 Clustering Algorithms 157 i 21 Regression Algorithms 159 22 Reinforcement Learning 161 23 Datasets 165 24 Libraries 181 25 Papers 211 26 Other Content 217 27 Contribute 223 ii ML Cheatsheet Documentation Brief visual explanations of machine learning concepts with diagrams, code examples and links to resources for learning more. Warning: This document is under early stage development. If you find errors, please raise an issue or contribute a better definition! Basics 1 ML Cheatsheet Documentation 2 Basics CHAPTER 1 Linear Regression • Introduction • Simple regression – Making predictions – Cost function – Gradient descent – Training – Model evaluation – Summary • Multivariable regression – Growing complexity – Normalization – Making predictions – Initialize weights – Cost function – Gradient descent – Simplifying with matrices – Bias term – Model evaluation 3 ML Cheatsheet Documentation 1.1 Introduction Linear Regression is a supervised machine learning algorithm where the predicted output is continuous and has a constant slope. It’s used to predict values within a continuous range, (e.g. sales, price) rather than trying to classify them into categories (e.g. cat, dog). There are two main types: Simple regression Simple linear regression uses traditional slope-intercept form, where m and b are the variables our algorithm will try to “learn” to produce the most accurate predictions. -
CI/CD Pipelines Evolution and Restructuring: a Qualitative and Quantitative Study
CI/CD Pipelines Evolution and Restructuring: A Qualitative and Quantitative Study Fiorella Zampetti,Salvatore Geremia Gabriele Bavota Massimiliano Di Penta University of Sannio, Italy Università della Svizzera Italiana, University of Sannio, Italy {name.surname}@unisannio.it Switzerland [email protected] [email protected] Abstract—Continuous Integration and Delivery (CI/CD) • some parts of the pipelines become unnecessary and can pipelines entail the build process automation on dedicated ma- be removed, or some others (e.g., testing environments) chines, and have been demonstrated to produce several advan- become obsolete and should be upgraded/replaced; tages including early defect discovery, increased productivity, and faster release cycles. The effectiveness of CI/CD may depend on • performance bottlenecks need to be resolved, e.g., by the extent to which such pipelines are properly maintained to parallelizing or restructuring some pipeline jobs; or cope with the system and its underlying technology evolution, • in general, the pipeline needs to be adapted to cope with as well as to limit bad practices. This paper reports the results the evolution of the underlying software and systems, of a study combining a qualitative and quantitative evaluation including technological changes (e.g., changes of archi- on CI/CD pipeline restructuring actions. First, by manually analyzing and coding 615 pipeline configuration change commits, tectures, operating systems, or library upgrades). we have crafted a taxonomy of 34 CI/CD pipeline restructuring We report the results of an empirical qualitative and quanti- actions, either improving extra-functional properties or changing tative study investigating how CI/CD pipelines of open source the pipeline’s behavior. -
The Open Source Way 2.0
THE OPEN SOURCE WAY 2.0 Contributors Version 2.0, 2020-12-16: This release contains opinions Table of Contents Presenting the Open Source Way . 2 The Shape of Things (I.e., Assumptions We Are Making) . 2 Structure of This Guide. 4 A Community of Practice Always Rebuilding Itself . 5 Getting Started. 6 Community 101: Understanding, Joining, or Forming a New Community . 6 New Project Checklist . 14 Creating an Open Source Product Strategy . 16 Attracting Users . 19 Communication Norms in Open Source Software Projects . 20 To Build Diverse Open Source Communities, Make Them Inclusive First . 36 Guiding Participants . 48 Why Do People Participate in Open Source Communities?. 48 Growing Contributors . 52 From Users to Contributors. 52 What Is a Contribution? . 58 Essentials of Building a Community . 59 Onboarding . 66 Creating a Culture of Mentorship . 71 Project and Community Governance . 78 Community Roles . 97 Community Manager Self-Care . 103 Measuring Success . 122 Defining Healthy Communities . 123 Understanding Community Metrics . 136 Announcing Software Releases . 144 Contributors . 148 Chapters writers. 148 Project teams. 149 This guidebook is available in HTML single page and PDF. Bugs (mistakes, comments, etc.) with this release may be filed as an issue in our repo on GitHub. You are also welcome to bring it as a discussion to our forum/mailing list. 1 Presenting the Open Source Way An English idiom says, "There is a method to my madness."[1] Most of the time, the things we do make absolutely no sense to outside observers. Out of context, they look like sheer madness. But for those inside that messiness—inside that whirlwind of activity—there’s a certain regularity, a certain predictability, and a certain motive. -
A First Look at Developers' Live Chat on Gitter
A First Look at Developers’ Live Chat on Gitter Lin Shi Xiao Chen Ye Yang [email protected] [email protected] [email protected] Institute of Software Chinese Institute of Software Chinese School of Systems and Enterprises, Academy of Sciences, University of Academy of Sciences, University of Stevens Institute of Technology Chinese Academy of Sciences, China Chinese Academy of Sciences, China Hoboken, NJ, USA Hanzhi Jiang Nan Niu Qing Wang∗ Ziyou Jiang [email protected] [email protected] {hanzhi2021,ziyou2019}@iscas.ac.cn Department of EECS, University of State Key Laboratory of Computer Institute of Software Chinese Cincinnati, Cincinnati, OH Science, Institute of Software Chinese Academy of Sciences, University of USA Academy of Sciences, University of Chinese Academy of Sciences, China Chinese Academy of Sciences, China ABSTRACT KEYWORDS Modern communication platforms such as Gitter and Slack play an Live chat, Team communication, Open source, Empirical Study increasingly critical role in supporting software teamwork, espe- ACM Reference Format: cially in open source development. Conversations on such platforms Lin Shi, Xiao Chen, Ye Yang, Hanzhi Jiang, Ziyou Jiang, Nan Niu, and Qing often contain intensive, valuable information that may be used for Wang. 2021. A First Look at Developers’ Live Chat on Gitter. In Proceed- better understanding OSS developer communication and collabora- ings of the 29th ACM Joint European Software Engineering Conference and tion. However, little work has been done in this regard. To bridge Symposium on the Foundations of Software Engineering (ESEC/FSE ’21), Au- the gap, this paper reports a first comprehensive empirical study gust 23–28, 2021, Athens, Greece. -
How Are Issue Reports Discussed in Gitter Chat Rooms?
How are issue reports discussed in Gitter chat rooms? Hareem Sahar1, Abram Hindle1, Cor-Paul Bezemer2 University of Alberta Edmonton, Canada Abstract Informal communication channels like mailing lists, IRC and instant messaging play a vital role in open source software development by facilitating communica- tion within geographically diverse project teams e.g., to discuss issue reports to facilitate the bug-fixing process. More recently, chat systems like Slack and Git- ter have gained a lot of popularity and developers are rapidly adopting them. Gitter is a chat system that is specifically designed to address the needs of GitHub users. Gitter hosts project-based asynchronous chats which foster fre- quent project discussions among participants. Developer discussions contain a wealth of information such as the rationale behind decisions made during the evolution of a project. In this study, we explore 24 open source project chat rooms that are hosted on Gitter, containing a total of 3,133,106 messages and 14,096 issue references. We manually analyze the contents of chat room discus- sions around 457 issue reports. The results of our study show the prevalence of issue discussions on Gitter, and that the discussed issue reports have a longer resolution time than the issue reports that are never brought on Gitter. Keywords: developer discussions, Gitter, issue reports Email address: [email protected] (Hareem Sahar ) 1Department of Computing Science, University of Alberta, Canada 2Analytics of Software, Games and Repository Data (ASGAARD) lab, University of Al- berta, Canada Preprint submitted to Journal of Systems and Software October 29, 2020 1. Introduction Open source software (OSS) development uses the expertise of developers from all over the world, who communicate with each other via email, mailing lists [1], IRC channels [2], and modern communication platforms like Gitter 5 and Slack [3]. -
Cascaded Facial Detection Algorithms to Improve Recognition Edmund Yee San Jose State University
San Jose State University SJSU ScholarWorks Master's Projects Master's Theses and Graduate Research Spring 5-22-2017 Cascaded Facial Detection Algorithms To Improve Recognition Edmund Yee San Jose State University Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects Part of the Artificial Intelligence and Robotics Commons Recommended Citation Yee, Edmund, "Cascaded Facial Detection Algorithms To Improve Recognition" (2017). Master's Projects. 517. DOI: https://doi.org/10.31979/etd.c62h-qdhm https://scholarworks.sjsu.edu/etd_projects/517 This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. Cascaded Facial Detection Algorithms To Improve Recognition A Thesis Presented to The Faculty of the Department of Computer Science San Jose State University In Partial Fulfillment of the Requirements for the Degree Master of Science By Edmund Yee May 2017 c 2017 Edmund Yee ALL RIGHTS RESERVED The Designated Thesis Committee Approves the Thesis Titled Cascaded Facial Detection Algorithms To Improve Recognition by Edmund Yee APPROVED FOR THE DEPARTMENTS OF COMPUTER SCIENCE SAN JOSE STATE UNIVERSITY May 2017 Dr. Robert Chun Department of Computer Science Dr. Thomas Austin Department of Computer Science Dr. Melody Moh Department of Computer Science Abstract The desire to be able to use computer programs to recognize certain biometric qualities of people have been desired by several different types of organizations. One of these qualities worked on and has achieved moderate success is facial detection and recognition. -
Bringing Data Into Focus
Bringing Data into Focus Brian F. Tankersley, CPA.CITP, CGMA K2 Enterprises Bringing Data into Focus It has been said that data is the new oil, and our smartphones, computer systems, and internet of things devices add hundreds of millions of gigabytes more every day. The data can create new opportunities for your cooperative, but your team must take care to harvest and store it properly. Just as oil must be refined and separated into gasoline, diesel fuel, and lubricants, organizations must create digital processing platforms to the realize value from this new resource. This session will cover fundamental concepts including extract/transform/load, big data, analytics, and the analysis of structured and unstructured data. The materials include an extensive set of definitions, tools and resources which you can use to help you create your data, big data, and analytics strategy so you can create systems which measure what really matters in near real time. Stop drowning in data! Attend this session to learn techniques for navigating your ship on ocean of opportunity provided by digital exhaust, and set your course for a more efficient and effective future. Copyright © 2018, K2 Enterprises, LLC. Reproduction or reuse for purposes other than a K2 Enterprises' training event is prohibited. About Brian Tankersley @BFTCPA CPA, CITP, CGMA with over 25 years of Accounting and Technology business experience, including public accounting, industry, consulting, media, and education. • Director, Strategic Relationships, K2 Enterprises, LLC (k2e.com) (2005-present) – Delivered presentations in 48 US states, Canada, and Bermuda. • Author, 2014-2019 CPA Firm Operations and Technology Survey • Director, Strategic Relationships / Instructor, Yaeger CPA Review (2017-present) • Freelance Writer for accounting industry media outlets such as AccountingWeb and CPA Practice Advisor (2015-present) • Technology Editor, The CPA Practice Advisor (CPAPracAdvisor.com) (2010-2014) • Selected seven times as a “Top 25 Thought Leader” by The CPA Practice Advisor.