Fgvolume11.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Fgvolume11.Pdf FORUM GEOMETRICORUM A Journal on Classical Euclidean Geometry and Related Areas published by Department of Mathematical Sciences Florida Atlantic University b b b FORUM GEOM Volume 11 2011 http://forumgeom.fau.edu ISSN 1534-1178 Editorial Board Advisors: John H. Conway Princeton, New Jersey, USA Julio Gonzalez Cabillon Montevideo, Uruguay Richard Guy Calgary, Alberta, Canada Clark Kimberling Evansville, Indiana, USA Kee Yuen Lam Vancouver, British Columbia, Canada Tsit Yuen Lam Berkeley, California, USA Fred Richman Boca Raton, Florida, USA Editor-in-chief: Paul Yiu Boca Raton, Florida, USA Editors: Nikolaos Dergiades Thessaloniki, Greece Clayton Dodge Orono, Maine, USA Roland Eddy St. John’s, Newfoundland, Canada Jean-Pierre Ehrmann Paris, France Chris Fisher Regina, Saskatchewan, Canada Rudolf Fritsch Munich, Germany Bernard Gibert St Etiene, France Antreas P. Hatzipolakis Athens, Greece Michael Lambrou Crete, Greece Floor van Lamoen Goes, Netherlands Fred Pui Fai Leung Singapore, Singapore Daniel B. Shapiro Columbus, Ohio, USA Man Keung Siu Hong Kong, China Peter Woo La Mirada, California, USA Li Zhou Winter Haven, Florida, USA Technical Editors: Yuandan Lin Boca Raton, Florida, USA Aaron Meyerowitz Boca Raton, Florida, USA Xiao-Dong Zhang Boca Raton, Florida, USA Consultants: Frederick Hoffman Boca Raton, Floirda, USA Stephen Locke Boca Raton, Florida, USA Heinrich Niederhausen Boca Raton, Florida, USA Table of Contents Alain Levelut, A note on the Hervey point of a complete quadrilateral 1 Arie Bialostocki and Dora Bialostocki, The incenter and an excenter as solutions to an extremal problem, 9 Jan Vonk and J. Chris Fisher, Translation of Fuhrmann’s “Sur un nouveau cercle associe´ a` un triangle”, 13 Paris Pamfilos, Triangles with given incircle and centroid, 27 Jo Niemeyer, A simple construction of the golden section, 53 Michel Bataille, Another simple construction of the golden section, 55 Michel Bataille, On the foci of circumparabolas, 57 Martin Josefsson, More characterizations of tangential quadrilaterals, 65 Peter J. C. Moses and Clark Kimberling, Perspective isoconjugate triangle pairs, Hofstadter pairs, and crosssums on the nine-point circle, 83 Darren C. Ong, On a theorem of intersecting conics, 95 Maria Flavia Mammana, Biagio Micale, and Mario Pennisi, The Droz-Farny circles of a convex quadrilateral, 109 Roger C. Alperin, Solving Euler’s triangle problems with Poncelet’s pencil, 121 Nguyen Minh Ha and Bui Viet Loc, More on the extension of Fermat’s problem, 131 Hiroshi Okumura, More on twin circles of the skewed arbelos, 139 Luis Gonz´alez, On a triad of circles tangent to the circumcircle and the sides at their midpoints, 145 Martin Josefsson, The area of a bicentric quadrilateral, 155 Martin Josefsson, When is a tangential quadrilateral a kite ? 165 Toufik Mansour and Mark Shattuck, On a certain cubic geometric inequality, 175 Joel C. Langer and David A. Singer, The lemniscatic chessboard, 183 Floor van Lamoen, A spatial view of the second Lemoine circle, 201 Michael J. G. Scheer, A simple vector proof of Feuerbach’s theorem, 205 Larry Hoehn, A new formula concerning the diagonals and sides of a quadrilateral, 211 Martin Josefsson, The area of the diagonal point triangle, 213 Francisco Javier Garc´ıa Capit´an, Collinearity of the first trisection points of cevian segments, 217 Mihai Cipu, Cyclic quadrilaterals associated with squares, 223 William N. Franzsen, The distance from the incenter to the Euler line, 231 Paul Yiu, Rational Steiner porism, 237 Quang Tuan Bui, Golden sections in a regular hexagon, 251 Nikolaos Dergiades and Paul Yiu, The golden section with a collapsible compass only, 255 Jean-Pierre Ehrmann, Francisco Javier Garc´ıa Capit´an, and Alexei Myakishev, Construction of circles through intercepts to paralells to cevians, 261 Nikolas Dergiades, Francisco Javier Garc´ıa Capit´an, and Sung Hyun Lim, On six circumcenters and their concyclicity, 269 Author Index, 277 Forum Geometricorum b Volume 11 (2011) 1–7. b b FORUM GEOM ISSN 1534-1178 A Note on the Hervey Point of a Complete Quadrilateral Alain Levelut Abstract. Using the extension of the Sylvester relation to four concyclic points we define the Hervey point of a complete quadrilateral and show that it is the center of a circle congruent to the Miquel circle and that it is the point of concur- rence of eight remarkable lines of the complete quadrilateral. We also show that the Hervey point and the Morley point coincide for a particular type of complete quadrilaterals. 1. Introduction In the present paper we report on several properties of a remarkable point of a complete quadrilateral, the so-called Hervey point. 1 This originated from a prob- lem proposed and solved by F. R. J. Hervey [2] on the concurrence of the four lines drawn through the centers of the nine point circles perpendicular to the Euler lines of the four associated triangles. Here, we use a different approach which seems more efficient than the usual one. We first define the Hervey point by the means of a Sylvester type relation, and, only after that, we look for its properties. Following this way, several interesting results are easily obtained: the Hervey point is the cen- ter of a circle congruent to the Miquel circle, and it is the point of concurrence of eight remarkable lines of the complete quadrilateral, obviously including the four lines quoted above. 2. Some properties of the complete quadrilateral and notations Before we present our approach to the Hervey point, we recall some properties of the complete quadrilateral. Most of them were given by J. Steiner in 1827 [6]. An analysis of the Steiner’s note was recently published by J.-P. Ehrmann [1]. In what follows we quote the theorems as they were labelled by Steiner himself and reported in the Ehrmann’s review. They are referred to as theorems (S-n). The three theorems used in the course of the present paper are: Theorem S-1: The four lines of a complete quadrilateral form four associated triangles whose circumcircles pass through the same point (Miquel point M). Theorem S-2: The centers of the four circumcircles and the Miquel point M lie on the same circle (Miquel circle). Publication Date: February 4, 2011. Communicating Editor: Paul Yiu. 1Erroneously rendered “the Harvey point” in [5]. 2 A. Levelut Theorem S-4: The orthocenters of the four associated triangles lie on the same line (orthocenter or Miquel-Steiner line). In what follows the indices run from 1 to 4. The complete quadrilateral is formed with the lines dn. The associated trian- gle Tn is formed with three lines other than dn, and has circumcenter On and orthocenter is Hn. The four circumcenters are all distinct, otherwise the complete quadrilateral would be degenerate. According to Theorem S-2, the four centers On are concyclic on the Miquel circle with center O. The triangle Θn is formed with the three circumcenters other than On. It has circumcenter O and orthocenter is hn. The Euler line OnHn cuts the Miquel circle at On and another point Nn. The triangle MOnNn is inscribed in the Miquel circle. d4 d3 H3 N3 O1 O2 H1 M N4 d1 H4 O O4 N2 d2 N1 H2 O3 Figure 1. The Miquel circle and the Miquel-Steiner line It is worthwhile to mention two more properties: (1) The triangles Θn and Tn are directly similar [1]; (2) Each orthocenter hn is on the corresponding line dn. A note on the Hervey point of a complete quadrilateral 3 3. The Hervey point of a complete quadrilateral In order to introduce the Hervey point, we proceed in three steps, successively defining the orthocenter of a triangle, the pseudo-orthocenter of an inscriptable quadrangle and the Hervey point of a complete quadrilateral. We define the orthocenter H of triangle ABC by the means of the standard Sylvester relation [3, §416]: the vector joining the circumcenter O to the ortho- center H is equal to the sum of the three vectors joining O to the three vertices, namely, OH = OA + OB + OC. It is easy to see that the resultant AH of the two vectors OB and OC is perpen- dicular to the side BC. Therefore the line AH is the altitude drawn through the vertex A and, more generally, the point H is the point of concurrence of the three altitudes. The usual property of the orthocenter is recovered. We define the pseudo-orthocenter H of the inscriptable quadrangle with the fol- lowing extension of the Sylvester relation OH = OP1 + OP2 + OP3 + OP4, where P1, P2, P3, P4 are four distinct points lying on a circle with center O. We do not go further in the study of this point since many of its properties are similar to those of the Hervey point. We define the Hervey point h of a complete quadrilateral as the pseudo-orthocenter of the inscriptable quadrangle made up with the four concyclic circumcenters O1, O2, O3, O4 of the triangles T1, T2, T3, T4, which lie on the Miquel circle with center O. The extended Sylvester relation reads Oh = OO1 + OO2 + OO3 + OO4. The standard Sylvester relation used for the triangle Θn reads Ohn = X OOi. i6=n This leads to Oh = Ohn + OOn for each n = 1, 2, 3, 4. From these, we deduce Onh = Ohn, hnh = OOn and hnhm = OmOn for m =6 n. (1) The last relation implies that the four orthocenters hn are distinct since the centers On are distinct. Figure 2 shows the construction of the Hervey point starting with the orthocenter h4. 4 A. Levelut d4 d3 H3 h3 O1 M h H1 O2 h4 S h O4 2 H O d1 4 h1 H2 d2 O3 Figure 2. 4. Three theorems on the Hervey point Theorem 1. The Hervey point h is the center of the circle which bears the four orthocenters hn of the triangles Θn.
Recommended publications
  • Angle Chasing
    Angle Chasing Ray Li June 12, 2017 1 Facts you should know 1. Let ABC be a triangle and extend BC past C to D: Show that \ACD = \BAC + \ABC: 2. Let ABC be a triangle with \C = 90: Show that the circumcenter is the midpoint of AB: 3. Let ABC be a triangle with orthocenter H and feet of the altitudes D; E; F . Prove that H is the incenter of 4DEF . 4. Let ABC be a triangle with orthocenter H and feet of the altitudes D; E; F . Prove (i) that A; E; F; H lie on a circle diameter AH and (ii) that B; E; F; C lie on a circle with diameter BC. 5. Let ABC be a triangle with circumcenter O and orthocenter H: Show that \BAH = \CAO: 6. Let ABC be a triangle with circumcenter O and orthocenter H and let AH and AO meet the circumcircle at D and E, respectively. Show (i) that H and D are symmetric with respect to BC; and (ii) that H and E are symmetric with respect to the midpoint BC: 7. Let ABC be a triangle with altitudes AD; BE; and CF: Let M be the midpoint of side BC. Show that ME and MF are tangent to the circumcircle of AEF: 8. Let ABC be a triangle with incenter I, A-excenter Ia, and D the midpoint of arc BC not containing A on the circumcircle. Show that DI = DIa = DB = DC: 9. Let ABC be a triangle with incenter I and D the midpoint of arc BC not containing A on the circumcircle.
    [Show full text]
  • Relationships Between Six Excircles
    Sangaku Journal of Mathematics (SJM) c SJM ISSN 2534-9562 Volume 3 (2019), pp.73-90 Received 20 August 2019. Published on-line 30 September 2019 web: http://www.sangaku-journal.eu/ c The Author(s) This article is published with open access1. Relationships Between Six Excircles Stanley Rabinowitz 545 Elm St Unit 1, Milford, New Hampshire 03055, USA e-mail: [email protected] web: http://www.StanleyRabinowitz.com/ Abstract. If P is a point inside 4ABC, then the cevians through P divide 4ABC into smaller triangles of various sizes. We give theorems about the rela- tionship between the radii of certain excircles of some of these triangles. Keywords. Euclidean geometry, triangle geometry, excircles, exradii, cevians. Mathematics Subject Classification (2010). 51M04. 1. Introduction Let P be any point inside a triangle ABC. The cevians through P divide 4ABC into six smaller triangles. In a previous paper [5], we found relationships between the radii of the circles inscribed in these triangles. For example, if P is at the orthocenter H, as shown in Figure 1, then we found that r1r3r5 = r2r4r6, where the ri are radii of the incircles as shown in the figure. arXiv:1910.00418v1 [math.HO] 28 Sep 2019 Figure 1. r1r3r5 = r2r4r6 In this paper, we will find similar results using excircles instead of incircles. When the cevians through a point P interior to a triangle ABC are drawn, many smaller 1This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
    [Show full text]
  • Point of Concurrency the Three Perpendicular Bisectors of a Triangle Intersect at a Single Point
    3.1 Special Segments and Centers of Classifications of Triangles: Triangles By Side: 1. Equilateral: A triangle with three I CAN... congruent sides. Define and recognize perpendicular bisectors, angle bisectors, medians, 2. Isosceles: A triangle with at least and altitudes. two congruent sides. 3. Scalene: A triangle with three sides Define and recognize points of having different lengths. (no sides are concurrency. congruent) Jul 24­9:36 AM Jul 24­9:36 AM Classifications of Triangles: Special Segments and Centers in Triangles By angle A Perpendicular Bisector is a segment or line 1. Acute: A triangle with three acute that passes through the midpoint of a side and angles. is perpendicular to that side. 2. Obtuse: A triangle with one obtuse angle. 3. Right: A triangle with one right angle 4. Equiangular: A triangle with three congruent angles Jul 24­9:36 AM Jul 24­9:36 AM Point of Concurrency The three perpendicular bisectors of a triangle intersect at a single point. Two lines intersect at a point. The point of When three or more lines intersect at the concurrency of the same point, it is called a "Point of perpendicular Concurrency." bisectors is called the circumcenter. Jul 24­9:36 AM Jul 24­9:36 AM 1 Circumcenter Properties An angle bisector is a segment that divides 1. The circumcenter is an angle into two congruent angles. the center of the circumscribed circle. BD is an angle bisector. 2. The circumcenter is equidistant to each of the triangles vertices. m∠ABD= m∠DBC Jul 24­9:36 AM Jul 24­9:36 AM The three angle bisectors of a triangle Incenter properties intersect at a single point.
    [Show full text]
  • Median and Altitude of a Triangle Goal: • to Use Properties of the Medians
    Median and Altitude of a Triangle Goal: • To use properties of the medians of a triangle. • To use properties of the altitudes of a triangle. Median of a Triangle Median of a Triangle – a segment whose endpoints are the vertex of a triangle and the midpoint of the opposite side. Vertex Median Median of an Obtuse Triangle A D Point of concurrency “P” or centroid E P C B F Medians of a Triangle The medians of a triangle intersect at a point that is two-thirds of the distance from each vertex to the midpoint of the opposite side. A D If P is the centroid of ABC, then AP=2 AF E 3 P C CP=22CE and BP= BD B F 33 Example - Medians of a Triangle P is the centroid of ABC. PF 5 Find AF and AP A D E P C B F 5 Median of an Acute Triangle A Point of concurrency “P” or centroid E D P C B F Median of a Right Triangle A F Point of concurrency “P” or centroid E P C B D The three medians of an obtuse, acute, and a right triangle always meet inside the triangle. Altitude of a Triangle Altitude of a triangle – the perpendicular segment from the vertex to the opposite side or to the line that contains the opposite side A altitude C B Altitude of an Acute Triangle A Point of concurrency “P” or orthocenter P C B The point of concurrency called the orthocenter lies inside the triangle. Altitude of a Right Triangle The two legs are the altitudes A The point of concurrency called the orthocenter lies on the triangle.
    [Show full text]
  • What's Your Altitude?
    TImath.com Geometry Hey, Ortho! What’s Your Altitude? Time Required ID: 11484 45 minutes Activity Overview In this activity, students will explore the altitudes of a triangle. They will discover that the altitude can be inside, outside, or a side of the triangle. Then, students will discover that the altitudes are concurrent. The point of concurrency is the orthocenter. They should also discover the relationship between the type of triangle and the location of the point of concurrency. Finally, students will discover properties of the orthocenter in equilateral triangles. Topic: Triangle & Their Centers • Altitudes of a Triangle • Orthocenter Teacher Preparation and Notes • This activity was written to be explored with the TI-Nspire. • The answers to all problems except Exercise 8 can be answered in the TI-Nspire document. • This is an introductory activity in which students will need to know how to change between pages, construct triangles, grab and move points, measure lengths, and construct the perpendicular bisector. • The multiple choice items are self-check, and students can check them by pressing / + S. • To download the student and solution TI-Nspire documents (.tns files) and student worksheet, go to education.ti.com/exchange and enter “11484” in the quick search box. Associated Materials • HeyOrthoWhatsYourAltitude_Student.doc • HeyOrthoWhatsYourAltitude.tns • HeyOrthoWhatsYourAltitude_Soln.tns Suggested Related Activities To download any activity listed, go to education.ti.com/exchange and enter the number in the quick search box. • Centroid and Orthocenter (TI-84 Plus family) — 4618 • Exploring the Orthocenter of a Triangle (TI-84 Plus family) — 6863 • The Orthocenter of a Triangle (TI-89 Titanium) — 4597 ©2010 Texas Instruments Incorporated Teacher Page Hey, Ortho! What’s Your Altitude TImath.com Geometry Problem 1 – Exploring the Altitude of a Triangle On page 1.2, students should define the altitude of a triangle using their textbook or other source.
    [Show full text]
  • Special Isocubics in the Triangle Plane
    Special Isocubics in the Triangle Plane Jean-Pierre Ehrmann and Bernard Gibert June 19, 2015 Special Isocubics in the Triangle Plane This paper is organized into five main parts : a reminder of poles and polars with respect to a cubic. • a study on central, oblique, axial isocubics i.e. invariant under a central, oblique, • axial (orthogonal) symmetry followed by a generalization with harmonic homolo- gies. a study on circular isocubics i.e. cubics passing through the circular points at • infinity. a study on equilateral isocubics i.e. cubics denoted 60 with three real distinct • K asymptotes making 60◦ angles with one another. a study on conico-pivotal isocubics i.e. such that the line through two isoconjugate • points envelopes a conic. A number of practical constructions is provided and many examples of “unusual” cubics appear. Most of these cubics (and many other) can be seen on the web-site : http://bernard.gibert.pagesperso-orange.fr where they are detailed and referenced under a catalogue number of the form Knnn. We sincerely thank Edward Brisse, Fred Lang, Wilson Stothers and Paul Yiu for their friendly support and help. Chapter 1 Preliminaries and definitions 1.1 Notations We will denote by the cubic curve with barycentric equation • K F (x,y,z) = 0 where F is a third degree homogeneous polynomial in x,y,z. Its partial derivatives ∂F ∂2F will be noted F ′ for and F ′′ for when no confusion is possible. x ∂x xy ∂x∂y Any cubic with three real distinct asymptotes making 60◦ angles with one another • will be called an equilateral cubic or a 60.
    [Show full text]
  • Generalized Gergonne and Nagel Points
    Generalized Gergonne and Nagel Points B. Odehnal June 16, 2009 Abstract In this paper we show that the Gergonne point G of a triangle ∆ in the Euclidean plane can in fact be seen from the more general point of view, i.e., from the viewpoint of projective geometry. So it turns out that there are up to four Gergonne points associated with ∆. The Gergonne and Nagel point are isotomic conjugates of each other and thus we find up to four Nagel points associated with a generic triangle. We reformulate the problems in a more general setting and illustrate the different appearances of Gergonne points in different affine geometries. Darboux’s cubic can also be found in the more general setting and finally a projective version of Feuerbach’s circle appears. Mathematics Subject Classification (2000): 51M04, 51M05, 51B20 Key Words: triangle, incenter, excenters, Gergonne point, Brianchon’s theorem, Nagel point, isotomic conjugate, Darboux’s cubic, Feuerbach’s nine point circle. 1 Introduction Assume ∆ = {A,B,C} is a triangle with vertices A, B, and C and the incircle i. Gergonne’s point is the locus of concurrency of the three cevians connecting the contact points of i and ∆ with the opposite vertices. The Gergonne point, which can also be labelled with X7 according to [10, 11] has frequently attracted mathematician’s interest. Some generalizations have been given. So, for example, one can replace the incircle with a concentric 1 circle and replace the contact points of the incircle and the sides of ∆ with their reflections with regard to the incenter as done in [2].
    [Show full text]
  • Cevians, Symmedians, and Excircles Cevian Cevian Triangle & Circle
    10/5/2011 Cevians, Symmedians, and Excircles MA 341 – Topics in Geometry Lecture 16 Cevian A cevian is a line segment which joins a vertex of a triangle with a point on the opposite side (or its extension). B cevian C A D 05-Oct-2011 MA 341 001 2 Cevian Triangle & Circle • Pick P in the interior of ∆ABC • Draw cevians from each vertex through P to the opposite side • Gives set of three intersecting cevians AA’, BB’, and CC’ with respect to that point. • The triangle ∆A’B’C’ is known as the cevian triangle of ∆ABC with respect to P • Circumcircle of ∆A’B’C’ is known as the evian circle with respect to P. 05-Oct-2011 MA 341 001 3 1 10/5/2011 Cevian circle Cevian triangle 05-Oct-2011 MA 341 001 4 Cevians In ∆ABC examples of cevians are: medians – cevian point = G perpendicular bisectors – cevian point = O angle bisectors – cevian point = I (incenter) altitudes – cevian point = H Ceva’s Theorem deals with concurrence of any set of cevians. 05-Oct-2011 MA 341 001 5 Gergonne Point In ∆ABC find the incircle and points of tangency of incircle with sides of ∆ABC. Known as contact triangle 05-Oct-2011 MA 341 001 6 2 10/5/2011 Gergonne Point These cevians are concurrent! Why? Recall that AE=AF, BD=BF, and CD=CE Ge 05-Oct-2011 MA 341 001 7 Gergonne Point The point is called the Gergonne point, Ge. Ge 05-Oct-2011 MA 341 001 8 Gergonne Point Draw lines parallel to sides of contact triangle through Ge.
    [Show full text]
  • Control Point Based Representation of Inellipses of Triangles∗
    Annales Mathematicae et Informaticae 40 (2012) pp. 37–46 http://ami.ektf.hu Control point based representation of inellipses of triangles∗ Imre Juhász Department of Descriptive Geometry, University of Miskolc, Hungary [email protected] Submitted April 12, 2012 — Accepted May 20, 2012 Abstract We provide a control point based parametric description of inellipses of triangles, where the control points are the vertices of the triangle themselves. We also show, how to convert remarkable inellipses defined by their Brianchon point to control point based description. Keywords: inellipse, cyclic basis, rational trigonometric curve, Brianchon point MSC: 65D17, 68U07 1. Introduction It is well known from elementary projective geometry that there is a two-parameter family of ellipses that are within a given non-degenerate triangle and touch its three sides. Such ellipses can easily be constructed in the traditional way (by means of ruler and compasses), or their implicit equation can be determined. We provide a method using which one can determine the parametric form of these ellipses in a fairly simple way. Nowadays, in Computer Aided Geometric Design (CAGD) curves are repre- sented mainly in the form n g (u) = j=0 Fj (u) dj δ Fj :[a, b] R, u [a, b] R, dj R , δ 2 P→ ∈ ⊂ ∈ ≥ ∗This research was carried out as a part of the TAMOP-4.2.1.B-10/2/KONV-2010-0001 project with support by the European Union, co-financed by the European Social Fund. 37 38 I. Juhász where dj are called control points and Fj (u) are blending functions. (The most well-known blending functions are Bernstein polynomials and normalized B-spline basis functions, cf.
    [Show full text]
  • Application of Nine Point Circle Theorem
    Application of Nine Point Circle Theorem Submitted by S3 PLMGS(S) Students Bianca Diva Katrina Arifin Kezia Aprilia Sanjaya Paya Lebar Methodist Girls’ School (Secondary) A project presented to the Singapore Mathematical Project Festival 2019 Singapore Mathematic Project Festival 2019 Application of the Nine-Point Circle Abstract In mathematics geometry, a nine-point circle is a circle that can be constructed from any given triangle, which passes through nine significant concyclic points defined from the triangle. These nine points come from the midpoint of each side of the triangle, the foot of each altitude, and the midpoint of the line segment from each vertex of the triangle to the orthocentre, the point where the three altitudes intersect. In this project we carried out last year, we tried to construct nine-point circles from triangulated areas of an n-sided polygon (which we call the “Original Polygon) and create another polygon by connecting the centres of the nine-point circle (which we call the “Image Polygon”). From this, we were able to find the area ratio between the areas of the original polygon and the image polygon. Two equations were found after we collected area ratios from various n-sided regular and irregular polygons. Paya Lebar Methodist Girls’ School (Secondary) 1 Singapore Mathematic Project Festival 2019 Application of the Nine-Point Circle Acknowledgement The students involved in this project would like to thank the school for the opportunity to participate in this competition. They would like to express their gratitude to the project supervisor, Ms Kok Lai Fong for her guidance in the course of preparing this project.
    [Show full text]
  • Nagel , Speiker, Napoleon, Torricelli
    Nagel , Speiker, Napoleon, Torricelli MA 341 – Topics in Geometry Lecture 17 Centroid The point of concurrency of the three medians. 07-Oct-2011 MA 341 2 Circumcenter Point of concurrency of the three perpendicular bisectors. 07-Oct-2011 MA 341 3 Orthocenter Point of concurrency of the three altitudes. 07-Oct-2011 MA 341 4 Incenter Point of concurrency of the three angle bisectors. 07-Oct-2011 MA 341 5 Symmedian Point Point of concurrency of the three symmedians. 07-Oct-2011 MA 341 6 Gergonne Point Point of concurrency of the three segments from vertices to intangency points. 07-Oct-2011 MA 341 7 Spieker Point The Spieker point is the incenter of the medial triangle. 07-Oct-2011 MA 341 8 Nine Point Circle Center The 9 point circle center is midpoint of the Euler segment. 07-Oct-2011 MA 341 9 Mittenpunkt Point The mittenpunkt of ΔABC is the symmedian point of the excentral triangle 05-Oct-2011 MA 341 001 10 Nagel Point Nagel point = point of concurrency of cevians to points of tangency of excircles 05-Oct-2011 MA 341 001 11 Nagel Point 05-Oct-2011 MA 341 001 12 The Nagel Point Ea has the unique property of being the point on the perimeter that is exactly half way around the triangle from A. = AB+BEaa AC+CE =s Then =- =- =- =- BEaa s AB s c and CE s AC s b BE sc- a = - CEa s b 07-Oct-2011 MA 341 13 The Nagel Point Likewise CE sa- b = - AEb s c AE sb- c = - BEc s a Apply Ceva’s Theorem AE BE CE sbscsa--- cab=´´=1 --- BEcab CE AE s a s b s c 07-Oct-2011 MA 341 14 The Nagel Segment 1.
    [Show full text]
  • Deko Dekov, Anticevian Corner Triangles PDF, 101
    Journal of Computer-Generated Euclidean Geometry Anticevian Corner Triangles Deko Dekov Abstract. By using the computer program "Machine for Questions and Answers", we study perspectors of basic triangles and triangles of triangle centers of anticevian corner triangles. Given a triangle ABC and a triangle center of kind 1, labeled by P. Let A1B1C1 be the anticevian triangle of P. Construct triangle centers A2, B2, C2 of kind 2 (possibly different from the kind 1) of triangles A1BC, B1CA, C1AB, respectively. We call triangle A2B2C2 the Triangle of the Triangle Centers of kind 2 of the Anticevian Corner triangles of the Triangle Center of kind 1. See the Figure: P - Triangle Center of kind 1; A1B1C1 - Anticevian Triangle of P; A2, B2, C2 - Triangle Centers of kind 2 of triangles A1BC, B1CA, C1AB, respectively; A2B2C2 - Triangle of the Triangle Centers of kind 2 of the Anticevian Corner Triangles of Journal of Computer-Generated Euclidean Geometry 2007 No 5 Page 1 of 14 the Triangle Center of kind 1. In this Figure: P - Incenter; A1B1C1 - Anticevian Triangle of the Incenter = Excentral Triangle; A2, B2, C2 - Centroids of triangles A1BC, B1CA, C1AB, respectively; A2B2C2 - Triangle of the Centroids of the Anticevian Corner Triangles of the Incenter. Known result (the reader is invited to submit a note/paper with additional references): Triangle ABC and the Triangle of the Incenters of the Anticevian Corner Triangles of the Incenter are perspective with perspector the Second de Villiers Point. See the Figure: A1B1C1 - Anticevian Triangle of the Incenter = Excentral Triangle; A2B2C2 - Triangle of the Incenters of the Anticevian Corner Triangles of the Incenter; V - Second de Villiers Point = perspector of triangles A1B1C1 and A2B2C2.
    [Show full text]