The Numbers and Distribution of the Great Skua Stercorarius Skua Breeding in Iceland 1984-1985

Total Page:16

File Type:pdf, Size:1020Kb

The Numbers and Distribution of the Great Skua Stercorarius Skua Breeding in Iceland 1984-1985 ISSN 0365-4850 The numbers and distribution of the Great Skua Stercorarius skua breeding in Iceland 1984-1985 Lars Chr. Lund-Hansen Peter Lange ICELANDIC MUSEUM OF NATURAL HISTORY Reykjavik 1991 ACfA NATIJRALIA ISLANDICA PUBLISHED BY THE ICELANDIC MUSEUM OF NATURAL HISTORY (NA'rrURUFRAEDISTOFNUN ISLANDS) The Museum published two volumes of Acta Naturalia Islandica in the period 1946-1971, altogether 20 issues. From 1972 each paper has appeared under its own serial number, start­ ing with no. 21. ACTA NATURALIA ISLANDICA contains orginal articles dealing with the botany, geo­ logy, and zoology of Iceland. ACTA NATURALIA ISLANDICA is published preferably in English, and appears at ir­ regular intervals. ACTA NATURALIA ISLANDICA may be obtained: 1) on basis of institutional exchange from the Icelandic Museum of Natural History, P.O. Box 5320, 125 Reykjavik, Iceland. 2) by purchase (including mailing costs) from B6kaverslun Sigfusar Eymundssonar Austurstraeti 18, 101 Reykjavik, Iceland. EDITORIAL BOARD: Sveinn P. Iakobsson (ed.) Erling Olafsson Eyth6r Einarsson ODDI hf. The numbers and distribution of the Great Skua Stercorarius skua breeding in Iceland 1984-1985 Lars Chr. Lund-Hansen Peter Lange Institute of Geology, Jeksenvej 108, University of Aarhus, DK-8464 Galten, Denmark Ny Munkegade, DK-8000 Aarhus C, Denmark Abstract. The breeding population of the Great Skua Stercorarius slaw in Iceland was censused in the sum­ mers of 1984 and 1985. It numbered about 5400 pairs, which is about 42% of the entire North Atlantic pop­ ulation. The survey was based on the line-transect technique, but two outwash plains, together 1000 km2 in area, were covered from an aeroplane. The importance of the distribution of the colonies is discussed in re­ lation to factors which may influence this. Other species of birds breeding in the Great Skua colonies are listed. 2 CONTENTS INTRODUCTION .............................................................. 3 METHODS.................................................................... 3 RESULTS..................................................................... 4 COLONY DESCRIPTIONS 5 AREAS SURVEYED BUT WITHOUT NESTING GREAT SKUAS 13 OTHER BIRD SPECIES ......... 13 DISCUSSION.................................................................. 14 ACKNOWLEDGEMENTS...................................................... 15 REFERENCES ................................................................. 16 3 known and potential breeding sites of the INTRODUCTION Great Skua in Iceland. This very helpful in­ The Great Skua Stercorarius skua breeds in formation was supplemented with a study of the Shetlands, Orkneys, Outer Hebrides and the literature. Whenever work was started at a other Scottish islands, on the Faroes and in presumed breeding site, a contact was made Iceland. It also breeds irregularly on the Scot­ with the local farmers for detailed information. tish mainland (Cramp & Simmons 1983), and a They turned out to be extremely well informed few pairs in Norway, Spitsbergen, and on Bear about the breeding distribution, but they al­ Island (Vader 1980). most always overestimated the number of Censuses have been made of almost all the pairs. major breeding colonies in the world (Evans The study was basically a one-visit census 1984, Furness 1986). Iceland, though being the based on the line-transect technique. Breeding second most important area next to the Shet­ pairs of the Great Skua react violently to any lands, was the main exception. An estimate of interference by diving and attacking the in­ the breeding population was made by Gud­ truder, which makes breeding pairs easy to de­ mundsson (1954), but opinion has been divided tect on a line-transect (Fig. 1). The territories on whether the population was increasing or of Great Skuas were searched for eggs or declining (Dickens 1964, Bjornsson 1976). Cen­ chicks, when adult birds were present in the sus in Iceland was thus much needed so that a colonies, without showing any aggressive beha­ complete up-to-date picture of the size of the viour. Great Skua breeding population in all of the The breeding colonies were traversed by North Atlantic, would be available. walking and breeding pairs plotted on maps. It seemed particularly interesting to study The distance between transects varied from 50 the topography of the breeding grounds, since to 300 m, depending on local conditions, vis­ in Iceland, the Great Skuas primarily breed on ibility, and the density of breeding pairs. We large open fluvio-glacial plains, in contrast to have no quantitative information on territory their moorland breeding habitat in Shetland size in Iceland, but in general the radius of ter­ and Faroes. The census also provided an op­ ritories was bigger than the 50 m recorded in portunity to study the feeding ecology of the Shetland by Furness (pers. comm.). Notes species. This last part of the study is reported were taken on the vegetation and topography, on elsewhere (Hansen & Lange, in prep.). as well as other species of birds observed in the breeding areas of the skuas. At a few sites, especially on small inacces- METHODS The distribution of the Great Skua breeding colonies in Iceland is fairly well known (Tim­ mermann 1949, Gudmundsson 1954, Bjornsson 1976). The main grounds are the fluvio-glacial outwash plains of the southeast. There are also minor colonies along the southern and south­ western coasts, and a few along the eastern and northern shores. In 1982 a single pair was found breeding 120 km from the coast, at Thj6rsarver in central Iceland (Thorleifsson 1983), but breeding so far inland is reckoned to be quite exceptional. Aevar Petersen of the Icelandic Museum of Fig. 1. Working with Great Skuas. 6xarfjordur, July Natural History provided maps showing the 1984. Photo: Peter Lange. 4 sible islands in rivers, a telescope (25 x 60) was used to observe the parents feeding their chicks, chicks walking around, etc. which of course, gives some uncertainty. Such colonies were, however, small. The big fluvio-glacial plains of Skeidan'ir­ sandur and Brunasandur, with a combined ar­ 2 ea of about 1000 km , were covered by an aeroplane. The glacial rivers constantly change their course, which make maps inaccurate, and many areas are inaccessible by foot. The aerial survey was carried out on 19 July 1985. Great Skuas reacted to a low-flying aeroplane in the I 100 KM I same way as they do to ground intruders. The birds flew up and around in the territories, Pairs making it easy to detect and count the pairs. • 1-50 • 51-100 The plane was hired at Vfk and the pilot had a • 101-300 • 1000-1500 good knowledge of local conditions. By 19 July Fig. 2. The distribution and size of Great Skua co­ quite a few pairs will have failed breeding, but lonies in Iceland 1984-85. we have no data on this point. The aerial survey was started east of Ing6lfs­ hafdi, and we flew due north on a straight line to the Skeidan'irjakull glacier. There we turned At nearly all colonies pellets regurgitated by southwest, starting on a series of parallel tran­ Great SImas were collected. Corpses of all sects 25 km long and 1.5 km apart. The plane dead birds taken by Great Skuas were identi­ flew at a height of 45-60 m, at a speed of 100­ fied. Outer primary feathers from adult Great 130 km/h. Skua corpses were collected for later heavy We do not think many territories were over­ metal analysis (cf. Furness et al. 1986). looked in the aerial survey although transects It took us two summers to cover all the colo­ were 1.5 km apart. In order to test the aerial nies. In the summer of 1984 we stayed in Ice­ survey results, the area between Salthafdi and land from 21 June to 19 July, covering the east the river R6la (in Oraefi), was covered both coast from Oxarfjardur in the north to Rafn in by plane (600-650 pairs) and by land-based the south. In the summer of 1985 the area be­ line-transects (660-730 pairs). It is assumed tween Reykjanes in the west and Rafn in the that the average of the land transect (695 east was covered between 27 June and 1 Au­ pairs) is nearer the true value. Since the aerial gust. survey results were 9% lower, all these figures have been adjusted accordingly. When making a census of breeding Great Skuas it is possible to overestimate the number RESULTS of breeding pairs by recording non-breeding In Table 1, the estimated number of breed­ territory holders (Cramp, Bourne & Saunders ing pairs in each colony, the approximate sizes 1974). To solve this problem a test was carried of the breeding areas, and the number of pairs/ 2 out at nearly all colonies. All pairs in a repre­ km , are given. Fig. 2 shows the breeding dis­ sentative part of the colony were counted, and tribution of the Great SIma in Iceland, with an all nests, eggs and chicks were recorded to ob­ indication of the size of the colonies. tain a figure of the number of non-breeding Fig. 3 shows the regions in Iceland covered territory holders. This figure was then used to by Maps I-XI, which give the location of the adjust the totals for the entire colony. The Great Skua colonies in more detail. Place number of non-breeding pairs holding territo­ names are also given as further help in localiz­ ries varied between 5 and 10%, so the average ing the colonies. of 7% was deducted from the air survey data A total of 23 separate colonies were identi­ from Skeidararsandur and Brunasandur. fied, containing from 35 to 1418 pairs each. 5 Some of these colonies were divided into smaller sub-colonies. Great Skuas are known COLONY DESCRIPTIONS to have bred at one additional locality. It was 1. Hafnasandur. Map 1. sometimes difficult to determine, whether two 10-12 pairs. 1-2 July 1985. close-lying colonies were one or two colonies. Notes were also made on the vegetation and The colony is south of Keflavik, between basic topographic features of the areas.
Recommended publications
  • TREND NOTE Number 021, October 2012
    SCOTTISH NATURAL HERITAGE TREND NOTE Number 021, October 2012 SEABIRDS IN SCOTLAND Prepared by Simon Foster and Sue Marrs of SNH Knowledge Information Management Unit using results from the Seabird Monitoring Programme and the Joint Nature Conservation Committee Scotland has internationally important populations of several seabirds. Their conservation is assisted through a network of designated sites. Figure 1 shows the distribution of the 50 Special Protection Areas (SPA) which have seabirds listed as a feature of interest. The map shows the widespread nature of the sites and the predominance of important seabird areas on the Northern Isles (Orkney and Shetland), where some of our largest seabird colonies are present. The most recent estimate of seabird populations was obtained from Birds of Scotland (Forrester et al., 2007). Table 1 shows the population levels for all seabirds regularly breeding in Scotland. Table 1: Population Estimates for Breeding Seabirds in Scotland. Figure 1: Special Protection Areas for Seabirds Breeding in Scotland. Species* Unit** Estimate Key Points Northern fulmar 486,000 AOS Manx shearwater 126,545 AOS Trends are described for 11 of the 24 European storm-petrel 31,570+ AOS species of seabirds breeding in Leach’s storm-petrel 48,057 AOS Scotland Northern gannet 182,511 AOS Great cormorant c. 3,600 AON Nine have shown sustained declines European shag 21,500-30,000 PAIRS over the past 20 years. Two have Arctic skua 2,100 AOT remained stable. Great skua 9,650 AOT The reasons for the declines are Black headed
    [Show full text]
  • Miles, William Thomas Stead (2010) Ecology, Behaviour and Predator- Prey Interactions of Great Skuas and Leach's Storm-Petrels at St Kilda
    Miles, William Thomas Stead (2010) Ecology, behaviour and predator- prey interactions of Great Skuas and Leach's Storm-petrels at St Kilda. PhD thesis. http://theses.gla.ac.uk/2297/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] Ecology, behaviour and predator-prey interactions of Great Skuas and Leach’s Storm-petrels at St Kilda W. T. S. Miles Submitted for the degree of Doctor of Philosophy to the Faculty of Biomedical and Life Sciences, University of Glasgow June 2010 For Alison & Patrick Margaret & Gurney, Edna & Dennis 1 …after sunset, a first shadowy bird would appear circling over the ruins, seen intermittently because of its wide circuit in the thickening light. The fast jerky flight seemed feather-light, to have a buoyant butterfly aimlessness. Another appeared, and another. Island Going (1949 ): Leach’s Petrel 2 Declaration I declare that the work described in this thesis is of my own composition and has been carried out entirely by myself unless otherwise cited or acknowledged.
    [Show full text]
  • Seabirds in Southeastern Hawaiian Waters
    WESTERN BIRDS Volume 30, Number 1, 1999 SEABIRDS IN SOUTHEASTERN HAWAIIAN WATERS LARRY B. SPEAR and DAVID G. AINLEY, H. T. Harvey & Associates,P.O. Box 1180, Alviso, California 95002 PETER PYLE, Point Reyes Bird Observatory,4990 Shoreline Highway, Stinson Beach, California 94970 Waters within 200 nautical miles (370 km) of North America and the Hawaiian Archipelago(the exclusiveeconomic zone) are consideredas withinNorth Americanboundaries by birdrecords committees (e.g., Erickson and Terrill 1996). Seabirdswithin 370 km of the southern Hawaiian Islands (hereafterreferred to as Hawaiian waters)were studiedintensively by the PacificOcean BiologicalSurvey Program (POBSP) during 15 monthsin 1964 and 1965 (King 1970). Theseresearchers replicated a tracklineeach month and providedconsiderable information on the seasonaloccurrence and distributionof seabirds in these waters. The data were primarily qualitative,however, because the POBSP surveyswere not basedon a strip of defined width nor were raw counts corrected for bird movement relative to that of the ship(see Analyses). As a result,estimation of density(birds per unit area) was not possible. From 1984 to 1991, using a more rigoroussurvey protocol, we re- surveyedseabirds in the southeasternpart of the region (Figure1). In this paper we providenew informationon the occurrence,distribution, effect of oceanographicfactors, and behaviorof seabirdsin southeasternHawai- ian waters, includingdensity estimatesof abundant species. We also document the occurrenceof six speciesunrecorded or unconfirmed in thesewaters, the ParasiticJaeger (Stercorarius parasiticus), South Polar Skua (Catharacta maccormicki), Tahiti Petrel (Pterodroma rostrata), Herald Petrel (P. heraldica), Stejneger's Petrel (P. Iongirostris), and Pycroft'sPetrel (P. pycrofti). STUDY AREA AND SURVEY PROTOCOL Our studywas a piggybackproject conducted aboard vessels studying the physicaloceanography of the easterntropical Pacific.
    [Show full text]
  • BROWN SKUAS Stercorarius Antarcticus INCUBATE a MACARONI PENGUIN EUDYPTES CHRYSOLOPHUS EGG at MARION ISLAND
    Clokie & Cooper: Skuas incubate a Macaroni Penquin egg 59 BROWN SKUAS STERCORARIUS antarcticus INCUBATE A MACARONI PENGUIN EUDYPTES CHRYSOLOPHUS EGG AT MARION ISLAND LINDA CLOKIE1 & JOHN COOPER2,3 1Marine & Coastal Management Branch, Department of Environmental Affairs, Private Bag X2, Rogge Bay 8012, South Africa 2Animal Demography Unit, Department of Zoology, University of Cape Town, Rondebosch 7701, South Africa 3DST/NRF Centre of Excellence for Invasion Biology, Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa ([email protected]) Received 3 October 2009, accepted 5 February 2010 Brown/Sub-antarctic Skua Stercorarius antarcticus are widely -sized for skua eggs, thus deemed to be the birds’ own clutch, but distributed at cool-temperate and sub-Antarctic islands in the the third was an all-white egg (Fig. 1). This egg was noticeably Southern Ocean, where their diet includes burrowing petrels caught larger than the two skua eggs, and was more rounded in shape. at night and eggs stolen from incubating birds, especially penguins, On 19 December when the nest was revisited one of the two skua during the day (Furness 1987, Higgins & Davies 1996, Shirihai eggs was no longer present. During visits on 21 December 2008 2007). At Marion Island, Prince Edward Islands in the southern and on 4 and 15 January 2009 only the white egg was present, and Indian Ocean, Brown Skua prey on eggs of crested penguins the displaced incubating bird was quick to defend its nest. On 9 Eudyptes sp. during summer months which they remove in their February 2009 the skua pair was still present at the nest, with one bills from the colonies by flying to nearby middens where the eggs’ bird in an incubating position, but the nest was empty of contents.
    [Show full text]
  • Assessment of Great Skua Stercorarius Skua Pellet Composition to Inform Estimates of Storm Petrel Consumption from Bioenergetics Models
    Storm Petrels in Great Skua pellets Assessment of Great Skua Stercorarius skua pellet composition to inform estimates of storm petrel consumption from bioenergetics models Zoe Deakin1*, Lucy Gilbert2, Gina Prior3 and Mark Bolton4 * Correspondence author. Email: [email protected] 1 School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK; 2 Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow G12 8QQ, UK; 3 National Trust for Scotland, Balnain House, 40 Huntly Street, Inverness, IV3 5HR, UK; 4 RSPB Centre for Conservation Science, The Lodge, Sandy, Bedfordshire SG19 2DL, UK Abstract Generalist predators may exert levels of predation on particular prey that result in, or contribute to, decline of that prey species. Bioenergetics models have been used to estimate the rates of consumption of Leach’s Storm Petrels Oceanodroma leucorhoa (45 g) and European Storm Petrels Hydrobates pelagicus (25 g) by Great Skuas Stercorarius skua on St Kilda (Western Isles, UK) and Hermaness (Shetland, UK). The models require estimates of the number of indigestible pellets produced from each individual storm petrel consumed, which have previously been determined by captive feeding trials or examination of pellets cast by free-living birds, but which have not discriminated between the two storm petrel species. Here we use information from dissection of 427 Great Skua pellets collected on Hirta (St Kilda, UK) and Mousa (Shetland, UK) to provide empirical estimates of the pellet:prey ratios for Leach’s and European Storm Petrels separately. We found that pellet:prey ratios were similar for collections of the ‘standing crop’ of pellets accumulated over the entire breeding season and samples of pellets cast within the preceding five days.
    [Show full text]
  • The Outer Hebrides
    THE OUTER HEBRIDES “After over 22 years of leading trips to the Outer Hebrides, the sheer beauty of the landscape and incredible wildlife these islands hold is as special to me as the very first time I visited all those years ago. Every new visit just makes me appreciate the unique and fabulous wildlife and birdlife of the islands even more. I can’t wait to get back out there!” Craig Round Dates Fri 6 - Sat 14 May 2022 Corncrakes rasp from fields and Snipe drum overhead, Price £2,295 in a watery landscape that the modern world has passed by, Deposit £450 Single Supp £300 on these timeless low-lying islands at Britain’s Atlantic edge. Leaders Craig Round and Sally Nowell Successful Corncrake watching every time, on over 40 trips! Weather Though usually quite dry, these islands Nesting waders in farmland that’s vanished elsewhere can experience all the seasons during Mile after mile of unspoilt white beaches and azure seas one trip and can be windy (5°-20°C) Wonderful for raptors, rare skuas and Short-eared Owl Walking Coastal walks on uneven terrain of up to 2 miles. Walking boots recommended Summer plumage Great Northern and other divers with trainers suitable on some occasions. White-tailed Eagle, Dotterel, Pomarine Skua and Otter Collapsible/telescopic walking poles could be useful for this trip. With our own two expert guides to the Western Isles Meals All included from dinner on Day 1 to breakfast on Day 9 We overnight on Friday in Inverness, by wind-blown shell sand and in the evenings the 1-2 to give us an early start for our journey sunset from the hotel can be truly beautiful, with Insects Biting insects are unlikely to be a problem down through the Great Glen and across the Isle of a backdrop chorus of ‘drumming’ displaying Snipe Accom Double, twin and single rooms Skye to Uig, before catching a ferry to Lochmaddy and calling Redshank overhead.
    [Show full text]
  • Pirates of the Oceans 12 13 13 14 Skuas Are the Pirates of the Bird World
    1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 SKUAS 9 10 10 11 11 12 Pirates of the oceans 12 13 13 14 Skuas are the pirates of the bird world. Like gulls with a killer 14 15 15 16 instinct,instinct, skuasskuas shareshare manymany characterscharacters withwith terrestrialterrestrial birdsbirds ofof prey,prey, allow-allow- 16 17 17 18 inging interestinginteresting insightsinsights intointo thethe biologybiology ofof birdbird predators.predators. 18 19 19 20 InIn thisthis feature,feature, thethe FitzPatrickFitzPatrick Institute’sInstitute’s PeterPeter RyanRyan exploresexplores thethe 20 21 21 22 varied and often contradictory world of skuas. 22 23 23 24 24 25 25 26 26 27 27 28 28 29 29 30 30 31 31 32 32 33 33 34 34 35 35 36 36 37 37 38 38 39 A pair of Sub-Antarctic 39 40 Skuas giving the 40 41 characteristic long- 41 42 call display with 42 43 raisedraised wings.wings. 43 44 ONNO HUYSER 44 45 45 46 46 47 47 48 48 49 49 50 50 51 51 52 52 53 53 54 54 55 55 56 56 57 57 58 58 59 59 60 60 61 61 62 62 63 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 ONNO HUYSER WARWICK TARBOTON 18 18 19 Above A pair of Sub-Antarctic Skuas sitting peacefully next to a dozing Chinstrap Penguin Pygoscelis antarctica, but other birds 19 20 have to watch out when skuas are around, or they may find themselves losing a meal, their eggs and chicks, or even their lives.
    [Show full text]
  • Partial Migration in the Mediterranean Storm Petrel Hydrobates Pelagicus Melitensis
    Lago et al.: Partial migration in Mediterranean Storm Petrel 105 PARTIAL MIGRATION IN THE MEDITERRANEAN STORM PETREL HYDROBATES PELAGICUS MELITENSIS PAULO LAGO*, MARTIN AUSTAD & BENJAMIN METZGER BirdLife Malta, 57/28 Triq Abate Rigord, Ta’ Xbiex XBX 1120, Malta *([email protected]) Received 27 November 2018, accepted 05 February 2019 ABSTRACT LAGO, P., AUSTAD, M. & METZGER, B. 2019. Partial migration in the Mediterranean Storm Petrel Hydrobates pelagicus melitensis. Marine Ornithology 47: 105–113. Studying the migration routes and wintering areas of seabirds is crucial to understanding their ecology and to inform conservation efforts. Here we present results of a tracking study carried out on the little-known Mediterranean Storm Petrel Hydrobates pelagicus melitensis. During the 2016 breeding season, Global Location Sensor (GLS) tags were deployed on birds at the largest Mediterranean colony: the islet of Filfla in the Maltese Archipelago. The devices were retrieved the following season, revealing hitherto unknown movements and wintering areas of this species. Most individuals remained in the Mediterranean throughout the year, with birds shifting westwards or remaining in the central Mediterranean during winter. However, one bird left the Mediterranean through the Strait of Gibraltar and wintered in the North Atlantic. Our results from GLS tracking, which are supported by data from ringed and recovered birds, point toward a system of partial migration with high inter-individual variation. This highlights the importance of trans-boundary marine protection for the conservation of vulnerable seabirds. Key words: Procellariformes, movement, geolocation, wintering, Malta, capture-mark-recovery INTRODUCTION The Mediterranean Storm Petrel has been described as sedentary, because birds are present in their breeding areas throughout the year The Mediterranean Storm Petrel Hydrobates pelagicus melitensis is (Zotier et al.
    [Show full text]
  • SHOREBIRDS (Charadriiformes*) CARE MANUAL *Does Not Include Alcidae
    SHOREBIRDS (Charadriiformes*) CARE MANUAL *Does not include Alcidae CREATED BY AZA CHARADRIIFORMES TAXON ADVISORY GROUP IN ASSOCIATION WITH AZA ANIMAL WELFARE COMMITTEE Shorebirds (Charadriiformes) Care Manual Shorebirds (Charadriiformes) Care Manual Published by the Association of Zoos and Aquariums in association with the AZA Animal Welfare Committee Formal Citation: AZA Charadriiformes Taxon Advisory Group. (2014). Shorebirds (Charadriiformes) Care Manual. Silver Spring, MD: Association of Zoos and Aquariums. Original Completion Date: October 2013 Authors and Significant Contributors: Aimee Greenebaum: AZA Charadriiformes TAG Vice Chair, Monterey Bay Aquarium, USA Alex Waier: Milwaukee County Zoo, USA Carol Hendrickson: Birmingham Zoo, USA Cindy Pinger: AZA Charadriiformes TAG Chair, Birmingham Zoo, USA CJ McCarty: Oregon Coast Aquarium, USA Heidi Cline: Alaska SeaLife Center, USA Jamie Ries: Central Park Zoo, USA Joe Barkowski: Sedgwick County Zoo, USA Kim Wanders: Monterey Bay Aquarium, USA Mary Carlson: Charadriiformes Program Advisor, Seattle Aquarium, USA Sara Perry: Seattle Aquarium, USA Sara Crook-Martin: Buttonwood Park Zoo, USA Shana R. Lavin, Ph.D.,Wildlife Nutrition Fellow University of Florida, Dept. of Animal Sciences , Walt Disney World Animal Programs Dr. Stephanie McCain: AZA Charadriiformes TAG Veterinarian Advisor, DVM, Birmingham Zoo, USA Phil King: Assiniboine Park Zoo, Canada Reviewers: Dr. Mike Murray (Monterey Bay Aquarium, USA) John C. Anderson (Seattle Aquarium volunteer) Kristina Neuman (Point Blue Conservation Science) Sarah Saunders (Conservation Biology Graduate Program,University of Minnesota) AZA Staff Editors: Maya Seaman, MS, Animal Care Manual Editing Consultant Candice Dorsey, PhD, Director of Animal Programs Debborah Luke, PhD, Vice President, Conservation & Science Cover Photo Credits: Jeff Pribble Disclaimer: This manual presents a compilation of knowledge provided by recognized animal experts based on the current science, practice, and technology of animal management.
    [Show full text]
  • Flexibility of Foraging Strategies of the Great Skua Stercorarius Skua Breeding in the Largest Colony in the Barents Sea Region Dariusz Jakubas1* , Lech M
    Jakubas et al. Frontiers in Zoology (2018) 15:9 https://doi.org/10.1186/s12983-018-0257-x RESEARCH Open Access Flexibility of foraging strategies of the great skua Stercorarius skua breeding in the largest colony in the Barents Sea region Dariusz Jakubas1* , Lech M. Iliszko1, Hallvard Strøm2, Halfdan H. Helgason2 and Lech Stempniewicz1 Abstract Background: Foraging strategies of seabird species often vary considerably between and within individuals. This variability is influenced by a multitude of factors including age, sex, stage of annual life cycle, reproductive status, individual specialization and environmental conditions. Results: Using GPS-loggers, we investigated factors affecting foraging flight characteristics (total duration, maximal range, total distance covered) of great skuas Stercorarius skua of known sex breeding on Bjørnøya, Svalbard, the largest colony in the Barents Sea region. We examined influence of sex (females are larger than males), phase of breeding (incubation, chick-rearing), reproductive status (breeders, failed breeders) and bird ID (they are known for individual foraging specialization). Our analyses revealed that only bird ID affected foraging flight characteristics significantly, indicating a high degree of plasticity regardless of sex, reproductive status or phase of breeding. We recognized three main groups of individuals: 1) those preying mainly on other seabirds in the breeding colonies (6%), 2) those foraging at sea (76%) and kleptoparasiting other seabirds and/or foraging on fish and/or offal discarded by fishing vessels, and 3) those alternating between preying on other seabirds in breeding colonies and foraging at sea (18%). Despite marked size sexual dimorphism, we found no apparent sex differences in flight characteristics.
    [Show full text]
  • 1.5.5.1 Special Request, Advice January 2012 ECOREGION
    1.5.5.1 Special request, Advice January 2012 ECOREGION General advice SUBJECT EcoQO for seabird populations in OSPAR regions II and III Advice Summary ICES collated and analysed the data for the EcoQO indicator on breeding seabird population trends in OSPAR regions II and III. A first assessment has been made for Region II. ICES estimates that the proposed EcoQO indicator was not achieved in 1991–1993, 2004, 2006, and 2008–2010. ICES advises that additional effort is required to collect and include additional breeding seabird data for this region, both for species already included in the EcoQO indicator and for several other species (Northern fulmar, Northern gannet, great skua, and Atlantic puffin). ICES advises that the trend analyses for Region II should not be limited to one method (e.g. TRIM); ideally several methods should be employed, including those used for Region III. For Region III, ICES estimates that the proposed EcoQO indicator was not achieved in 1986, 1989–1992, and in consecutive years during 2002–2010, with an increasing number of species failing to meet the target. ICES advises that special attention is given to a number of species such as Northern fulmar, Arctic skua, European shag, herring gull, black-legged kittiwake, and roseate tern. Request • to review and make recommendations on a draft Ecological Quality Objective (EcoQO) on Seabird Population Trends in OSPAR Region II (Greater North Sea) (to be developed in the course of 2010), the processes that have derived it and that could be used to update values on the EcoQO indicator. The review should include (but not be limited to): (i) the degree to which appropriate and available data have been used; and (ii) the reliability that OSPAR might place on values derived from the EcoQO indicator; • to provide an updated assessment of the seabird population trends in OSPAR Region III in relation to the draft EcoQO indicator on Seabird Population Trends in OSPAR Region III (Celtic Seas) and make any relevant recommendations.
    [Show full text]
  • Alpha Codes for 2168 Bird Species (And 113 Non-Species Taxa) in Accordance with the 62Nd AOU Supplement (2021), Sorted Taxonomically
    Four-letter (English Name) and Six-letter (Scientific Name) Alpha Codes for 2168 Bird Species (and 113 Non-Species Taxa) in accordance with the 62nd AOU Supplement (2021), sorted taxonomically Prepared by Peter Pyle and David F. DeSante The Institute for Bird Populations www.birdpop.org ENGLISH NAME 4-LETTER CODE SCIENTIFIC NAME 6-LETTER CODE Highland Tinamou HITI Nothocercus bonapartei NOTBON Great Tinamou GRTI Tinamus major TINMAJ Little Tinamou LITI Crypturellus soui CRYSOU Thicket Tinamou THTI Crypturellus cinnamomeus CRYCIN Slaty-breasted Tinamou SBTI Crypturellus boucardi CRYBOU Choco Tinamou CHTI Crypturellus kerriae CRYKER White-faced Whistling-Duck WFWD Dendrocygna viduata DENVID Black-bellied Whistling-Duck BBWD Dendrocygna autumnalis DENAUT West Indian Whistling-Duck WIWD Dendrocygna arborea DENARB Fulvous Whistling-Duck FUWD Dendrocygna bicolor DENBIC Emperor Goose EMGO Anser canagicus ANSCAN Snow Goose SNGO Anser caerulescens ANSCAE + Lesser Snow Goose White-morph LSGW Anser caerulescens caerulescens ANSCCA + Lesser Snow Goose Intermediate-morph LSGI Anser caerulescens caerulescens ANSCCA + Lesser Snow Goose Blue-morph LSGB Anser caerulescens caerulescens ANSCCA + Greater Snow Goose White-morph GSGW Anser caerulescens atlantica ANSCAT + Greater Snow Goose Intermediate-morph GSGI Anser caerulescens atlantica ANSCAT + Greater Snow Goose Blue-morph GSGB Anser caerulescens atlantica ANSCAT + Snow X Ross's Goose Hybrid SRGH Anser caerulescens x rossii ANSCAR + Snow/Ross's Goose SRGO Anser caerulescens/rossii ANSCRO Ross's Goose
    [Show full text]