Etna Aten Thera

Total Page:16

File Type:pdf, Size:1020Kb

Etna Aten Thera THERA THIRA SANTORINI – ETNA ATEN ETC. 1 1 1 Estant assis de nuict secret estude IS the very first line soul being sits of a night, covertly researching ATEN SET ETNA DUST SET S ATEN (asteroid) SET ETNA DUST (the great Pall) SECRET SECT ANTEDATES Centuries SECRET SECT would be those of the babel of many tongues: we ATTESTED U.N SECRETE (hide) CINCTURES STAIDNESS have been calling them the Anun.naki, Titans, Giants, Oannes… SADISTS ASSIST ANT - INDUCES SECRET TEST S is the sky rune for those from Ursa Major direction. It CITES SATANISTS ASSISTED UN or “CITES also is the Celtic zodiac rune for April 15 – May 12 U. N. SATANISTS ASSISTED” CINCTURE’S stability…the equator? The asteroid belt? Cinctures plural of cinc·ture (Noun) A girdle or belt. A ring at either end of a column shaft. (This also sounds like the ‘Haoma’ of Zoro.aster. U = ‘heavenly’ from the word Uranite… ‘N’ is the sky rune for the constellation Eridanus, meaning Enki (an Anu) who could be the SADISTS The “ANT” would be the Mantids of Cassiopeia, the hubrid breeding program, see beneath here 8 21 3 Passant le pont mil milles embleront Passing the bridge the amphibians will dispatch a million (star-gate) see the Haoma on the right. The mantid in red circle ON (Oannes) TRANSPOSE ILL PLANET - NOT EMBLEMS or EMBLEMS TRANSPOSE ILL PLANET (Earth) – NOT the ON TRANSPOSABLE MILL (Milky Way) PLANET NOT PASS RIM - NOBLE LOBSTERMEN RESEMBLE PAST PATRON So the Oannes/Enki/Anu may be involved in moving Earth to the new orbit which is not past the edge of our solar system. EMBLEMS are the stars, or those with the ICON (V). NOBLE is in Libra/October. TRANSPOSABLE MILL means across the universe 3 25 4 V (Andromeda) PORT (carried) SEER (Nostradamus PARAGENESIS (the order of form) PROCTOR (V) UPSIDE The sperm donor INTO PARAGENESIA GENRES RAPPORT (gen. engineering) abductee painted CONDITION IN U (astronomical) Q (orbit) many pictures of CONTRA (against) PROP (normal order) his abduction SEEING SPADE ICON INCORPORATION So is Cassiopeia in league with Andromeda Council? experiences Or are they under scrutiny by the Andromeda Council? Note the mantid NOSTRADAMUS ‘SAW’ THE ICON. 3 25 – the « ICON » forum quatrain Qui au Royaume Navarrois parviendra Who will attain to the kingdom of Navarre (the orbiting planetoid Quand le Sicile et Naples seront joints When Sicily and Naples will be joined: (due to Etna’s great rending Bigore et Landres par Foix loron tiendra (It) Will encompass Bigorre and Landes through Foix and Oloron D'un qui d'Espaigne sera par trop conjoint. Of one who will be too closely allied with Spain (Ferdinand-blonds) 9 35 see 3 25 Et Ferdinand blonde sera descorte And blond Ferdinand (king) will be detached (observer) TALL WHITE Quitter la fleur, suivre le Macedon, To abandon the flower, (Earth) to follow the Macedonian: (warrior) Au grand besoin faillira sa routte, In great need his course will fail (they have a DNA failure) Et marchera contre le Myrmidon And will run opposing the Myrmidons (ant people/mantids) 2 40 1 Un peu apres non point longue intervalle Shortly afterwards, without a very long interval TELLURIAN PAUPER POINT (to) LOTION PERSON TELLURIAN = worldly PAUPER (collator) LOTION PERSON: greys URANITE - UTERINE PUPAE ILL NATURE URANITE of the heavens or the skies EUROPEAN - PERSIA UUINTER AGE - UUINTER AGE = ice age UNITES ENTIRE UUATERLINE (ice) 1 4 1 Par l'univers sera faict un monarque One king will be made in the universe – NANAR (8 85) UNIVERSAL SUPER LVNAR NURSERIES SUPER LVNAR NURSERIES the orbiting planetoid RAN IN QR Q … fear Norma A (Dec 22) RAN (god) in queer orbit: their orbit is elliptical around the moon FEAR ROMAN PULVINAR As stated in 3 25 (ICON forum) FEAR EMPTY THRONE can mean SEAFARERS AFRICA E U rain q exactly that but throne also means in Libra. Cassiopeia was the REASSURE PARQS SUN ROUSE (goes orange) crowned queen, so this could allude to an empty planetoid. (I had just today made enquiries of an abductee about this) and AFRICA to EUROPEAN UNION rain all round (permanent) See what the abductee Angie said last page QORAN QUARAN SEAFARERS are the Oannes The pulvinar nuclei (nuclei pulvinares) are a collection of nuclei located in the pulvinar-thalamus. The pulvinar part is the most posterior region of the thalamus. In Ancient Roman religion a pulvinar was an "empty throne" or cushioned couch for occupation by a deity. The pulvinar is usually grouped as one of the lateral thalamic nuclei. The word is derived from the Latin pulvinus for "cushion". The thalamus has multiple functions. It may be thought of as a kind of switchboard of information. It is generally believed to act as a relay between a variety of subcortical areas and the cerebral cortex. In particular, every sensory system (with the exception of the olfactory system) H Parks & A UUebber© NOSTRADAMUS MT ETNA AND THERA Page 1 2 43 1 Durant l'estoille chevelue apparente During the appearance of the bearded star ANT PARENT RESULT UNRELATED NUDE PUPA ANT PARENT these are the Mantids of the Cassiopeia nursery ATEN RATTLED… STELLA UUHEEL APPEAR TURNED APPEAR TURNED… is this a huge hologram? Because of: CONSTELLATION UNALTERED …NOT~CELESTIAL NOT~CELESTIAL TILE ENRAPTURED - DREUU UPPER APPEAL TILE of the false rapture DREUU UPPER APPEAL (pray) Peer upuuard apple leap – pure uurapped (rapture) Pure rapture apple is a Friday… leap is in Scorpio 2 59 1 Classe Gauloise par appuy de grande garde LOUISE the name of any asteroid ASGA’D APPRAISE LOUISE - POLARISE , UPPED In Norse religion, Asgard is one of the Nine Worlds (Ennead) ASSUAGE DANGER SCALES REED AGENDA (harvest and is the place of the Norse Gods (Vanir = Cassiopeia planet) EULOGIAS (skull & bones) ARRANGE DEGRADE OIL USAGE SCALES pun for the reptilians & Libra REED Oct 28 – Nov 24 APPEARS PERSIA (Iran) CLASS Unready (Note – in Scorpio…see above) 1 20 1 Tours, Oriens, Blois, Angers, Reims et Nantes All cities/towns in France. Pathway between Tours and Reims? ATEN SETS ETNA LISBON LANES BOIL SET A similar method on the same path has been mentioned before OUR MEISTERSINGER TESTAMENTS GNOSIA OUR MEISTERSINGER master of these works is also the STATEMENTS STATE TIME’S ROLES RIMESTER who joins with the O.R. (Andromeda Council) O. R, STATESMEN, RIMESTERS TESTAMENT: (to this) GNOSIA knowledge, the statements of which REASSIGN BOLIS ROUTES (plural) include knowledge of using time. LANES = Ocean currents ATEN is an asteroid – any asteroid. SET is Easter. BOLIS ROUTES: the asteroid co-ordinates are being re-arranged, not without effect STATESMEN IN OTHER LINES ARE THE PLEIADEIANS Angers Coordinates is 47.4736° N, 0.5542° W Blois Coordinates is 47.5939° N, 1.3281° E Nantes Coordinates is 47º13'05"N, 1.33° 10 W Reims Coordinates is 49.2581° N, 4.0322° E Bearn Bigorre : 46°57′N Longitude: 7°27′E (249 miles apart if it means Berne) in distress through fire from the sky Geographically, Bigorre consists of two distinct areas: the plains to the north around Tarbes rising into the foothills and the high mountain slopes to the south, rising to the Pic du Midi de Bigorre ANCONA ITALY AUCH SOUTHWEST FRANCE BABEL - IRAQ BERGUNDY CAMPAGNA COMPANIA SOUTH WEST ITALY FOIX – SOUTH WEST FRANCE GENOA HUNGARY NICE, MONACO, PISA LONDON MALTA MT OLYMPUS NARBONNE SOUTH EAST FRANCE NEGREPONT NEW YORK NIMES PARIS PO RHODES ROME SPAIN TIBER TOURS WEEP MILAN, WEEP LUCCA AND FLORENCE CLOSER LOOK AT THE AREAS TO BE HIT BY THE ASTEROID “TOUTATIS” (?) WHICH WAS RE- DISCOVERED LATE 1988 WITH A FOUR YEAR ORBIT Formerly named “Arathusa” METEORITE ~ COMET 2 30 To the Romans through Babel This was done direct from the towns named by Nostradamus When a bearded star will fall in Artois PATHWAYS: BABEL TO ROME" = IRAQ TOWARDS ITALY SUSA SIENA BOEOTRIA ERETRIA VIVIERS TOURNON MONTFERRAND PRADELLES 1:66 AUCH LECTOURE MIRANDE 1:46 TOURS ORLEANS BLOIS ANGERS REIMS NANTES 1:20 TOWARDS AQUITAINE BY BRITISH ISLES" 2:1 PISA ASTI FERRARA TURIN CEVENNES MTNS STH FRANCE OVERLOOKS THE RHONE CORINTH (SOUTH WEST ATHENS) EPHESUS (WEST TURKEY) H Parks & A UUebber© NOSTRADAMUS MT ETNA AND THERA Page 2 5. 98 see 2.3 and go to 10 100 4 RENNES in footnotes At the forty-eighth climacteric degree, NORTH & WEST FRANCE (RENNES, ORLEANS) At the end of Cancer very great dryness: July 22nd Fish in sea, river, lake boiled hectic LAKE BOILED HECTIC Béarn, Bigorre in distress through fire from the sky. ASTEROID HIT? 2. 3 see 5.98 Because of the solar heat on the sea ASTEROID HIT? From Negrepont the fishes half cooked: NEAR GREECE/ITALY The inhabitants will come to cut them, When food will fail in Rhodes and Genoa. From da Vinci: Creatures of the water will die in boiling water. (Nostradamus 5 98 “sea lake river boiled hectic”) It shall seem to men that they see new destructions in the sky, and the flames descending there from shall seem to have taken night and to flee away in terror; they shall hear creatures of every kind speaking human language; (Off Worlders) EITHER METHANE AFIRE AND/OR “RAY GUNS” they shall run in a moment, in person, to divers parts of the world without moving (by STAGE GATE) amidst the darkness they shall see the most radiant splendours. (The darkness in the stage gate – looking out) or the darkness of the SACK CLOTH when all “colours will be the same”. O marvel of mankind! What frenzy has thus impelled you! You shall hold converse with animals of every species, and they with you in human language.
Recommended publications
  • Occultation Evidence for a Satellite of the Trojan Asteroid (911) Agamemnon Bradley Timerson1, John Brooks2, Steven Conard3, David W
    Occultation Evidence for a Satellite of the Trojan Asteroid (911) Agamemnon Bradley Timerson1, John Brooks2, Steven Conard3, David W. Dunham4, David Herald5, Alin Tolea6, Franck Marchis7 1. International Occultation Timing Association (IOTA), 623 Bell Rd., Newark, NY, USA, [email protected] 2. IOTA, Stephens City, VA, USA, [email protected] 3. IOTA, Gamber, MD, USA, [email protected] 4. IOTA, KinetX, Inc., and Moscow Institute of Electronics and Mathematics of Higher School of Economics, per. Trekhsvyatitelskiy B., dom 3, 109028, Moscow, Russia, [email protected] 5. IOTA, Murrumbateman, NSW, Australia, [email protected] 6. IOTA, Forest Glen, MD, USA, [email protected] 7. Carl Sagan Center at the SETI Institute, 189 Bernardo Av, Mountain View CA 94043, USA, [email protected] Corresponding author Franck Marchis Carl Sagan Center at the SETI Institute 189 Bernardo Av Mountain View CA 94043 USA [email protected] 1 Keywords: Asteroids, Binary Asteroids, Trojan Asteroids, Occultation Abstract: On 2012 January 19, observers in the northeastern United States of America observed an occultation of 8.0-mag HIP 41337 star by the Jupiter-Trojan (911) Agamemnon, including one video recorded with a 36cm telescope that shows a deep brief secondary occultation that is likely due to a satellite, of about 5 km (most likely 3 to 10 km) across, at 278 km ±5 km (0.0931″) from the asteroid’s center as projected in the plane of the sky. A satellite this small and this close to the asteroid could not be resolved in the available VLT adaptive optics observations of Agamemnon recorded in 2003.
    [Show full text]
  • Occultation Newsletter Volume 8, Number 4
    Volume 12, Number 1 January 2005 $5.00 North Am./$6.25 Other International Occultation Timing Association, Inc. (IOTA) In this Issue Article Page The Largest Members Of Our Solar System – 2005 . 4 Resources Page What to Send to Whom . 3 Membership and Subscription Information . 3 IOTA Publications. 3 The Offices and Officers of IOTA . .11 IOTA European Section (IOTA/ES) . .11 IOTA on the World Wide Web. Back Cover ON THE COVER: Steve Preston posted a prediction for the occultation of a 10.8-magnitude star in Orion, about 3° from Betelgeuse, by the asteroid (238) Hypatia, which had an expected diameter of 148 km. The predicted path passed over the San Francisco Bay area, and that turned out to be quite accurate, with only a small shift towards the north, enough to leave Richard Nolthenius, observing visually from the coast northwest of Santa Cruz, to have a miss. But farther north, three other observers video recorded the occultation from their homes, and they were fortuitously located to define three well- spaced chords across the asteroid to accurately measure its shape and location relative to the star, as shown in the figure. The dashed lines show the axes of the fitted ellipse, produced by Dave Herald’s WinOccult program. This demonstrates the good results that can be obtained by a few dedicated observers with a relatively faint star; a bright star and/or many observers are not always necessary to obtain solid useful observations. – David Dunham Publication Date for this issue: July 2005 Please note: The date shown on the cover is for subscription purposes only and does not reflect the actual publication date.
    [Show full text]
  • Observations from Orbiting Platforms 219
    Dotto et al.: Observations from Orbiting Platforms 219 Observations from Orbiting Platforms E. Dotto Istituto Nazionale di Astrofisica Osservatorio Astronomico di Torino M. A. Barucci Observatoire de Paris T. G. Müller Max-Planck-Institut für Extraterrestrische Physik and ISO Data Centre A. D. Storrs Towson University P. Tanga Istituto Nazionale di Astrofisica Osservatorio Astronomico di Torino and Observatoire de Nice Orbiting platforms provide the opportunity to observe asteroids without limitation by Earth’s atmosphere. Several Earth-orbiting observatories have been successfully operated in the last decade, obtaining unique results on asteroid physical properties. These include the high-resolu- tion mapping of the surface of 4 Vesta and the first spectra of asteroids in the far-infrared wave- length range. In the near future other space platforms and orbiting observatories are planned. Some of them are particularly promising for asteroid science and should considerably improve our knowledge of the dynamical and physical properties of asteroids. 1. INTRODUCTION 1800 asteroids. The results have been widely presented and discussed in the IRAS Minor Planet Survey (Tedesco et al., In the last few decades the use of space platforms has 1992) and the Supplemental IRAS Minor Planet Survey opened up new frontiers in the study of physical properties (Tedesco et al., 2002). This survey has been very important of asteroids by overcoming the limits imposed by Earth’s in the new assessment of the asteroid population: The aster- atmosphere and taking advantage of the use of new tech- oid taxonomy by Barucci et al. (1987), its recent extension nologies. (Fulchignoni et al., 2000), and an extended study of the size Earth-orbiting satellites have the advantage of observing distribution of main-belt asteroids (Cellino et al., 1991) are out of the terrestrial atmosphere; this allows them to be in just a few examples of the impact factor of this survey.
    [Show full text]
  • Binary Asteroids and the Formation of Doublet Craters
    ICARUS 124, 372±391 (1996) ARTICLE NO. 0215 Binary Asteroids and the Formation of Doublet Craters WILLIAM F. BOTTKE,JR. Division of Geological and Planetary Sciences, California Institute of Technology, Mail Code 170-25, Pasadena, California 91125 E-mail: [email protected] AND H. JAY MELOSH Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona 85721 Received April 29, 1996; revised August 14, 1996 found we could duplicate the observed fraction of doublet cra- At least 10% (3 out of 28) of the largest known impact craters ters found on Earth, Venus, and Mars. Our results suggest on Earth and a similar fraction of all impact structures on that any search for asteroid satellites should place emphasis Venus are doublets (i.e., have a companion crater nearby), on km-sized Earth-crossing asteroids with short-rotation formed by the nearly simultaneous impact of objects of compa- periods. 1996 Academic Press, Inc. rable size. Mars also has doublet craters, though the fraction found there is smaller (2%). These craters are too large and too far separated to have been formed by the tidal disruption 1. INTRODUCTION of an asteroid prior to impact, or from asteroid fragments dispersed by aerodynamic forces during entry. We propose that Two commonly held paradigms about asteroids and some fast rotating rubble-pile asteroids (e.g., 4769 Castalia), comets are that (a) they are composed of non-fragmented after experiencing a close approach with a planet, undergo tidal chunks of rock or rock/ice mixtures, and (b) they are soli- breakup and split into multiple co-orbiting fragments.
    [Show full text]
  • ~XECKDING PAGE BLANK WT FIL,,Q
    1,. ,-- ,-- ~XECKDING PAGE BLANK WT FIL,,q DYNAMICAL EVIDENCE REGARDING THE RELATIONSHIP BETWEEN ASTEROIDS AND METEORITES GEORGE W. WETHERILL Department of Temcltricrl kgnetism ~amregie~mtittition of Washington Washington, D. C. 20025 Meteorites are fragments of small solar system bodies (comets, asteroids and Apollo objects). Therefore they may be expected to provide valuable information regarding these bodies. How- ever, the identification of particular classes of meteorites with particular small bodies or classes of small bodies is at present uncertain. It is very unlikely that any significant quantity of meteoritic material is obtained from typical ac- tive comets. Relatively we1 1-studied dynamical mechanisms exist for transferring material into the vicinity of the Earth from the inner edge of the asteroid belt on an 210~-~year time scale. It seems likely that most iron meteorites are obtained in this way, and a significant yield of complementary differec- tiated meteoritic silicate material may be expected to accom- pany these differentiated iron meteorites. Insofar as data exist, photometric measurements support an association between Apollo objects and chondri tic meteorites. Because Apol lo ob- jects are in orbits which come close to the Earth, and also must be fragmented as they traverse the asteroid belt near aphel ion, there also must be a component of the meteorite flux derived from Apollo objects. Dynamical arguments favor the hypothesis that most Apollo objects are devolatilized comet resiaues. However, plausible dynamical , petrographic, and cosmogonical reasons are known which argue against the simple conclusion of this syllogism, uiz., that chondri tes are of cometary origin. Suggestions are given for future theoretical , observational, experimental investigations directed toward improving our understanding of this puzzling situation.
    [Show full text]
  • Precise Astrometry and Diameters of Asteroids from Occultations – a Data-Set of Observations and Their Interpretation
    MNRAS 000,1–22 (2020) Preprint 14 October 2020 Compiled using MNRAS LATEX style file v3.0 Precise astrometry and diameters of asteroids from occultations – a data-set of observations and their interpretation David Herald 1¢, David Gault2, Robert Anderson3, David Dunham4, Eric Frappa5, Tsutomu Hayamizu6, Steve Kerr7, Kazuhisa Miyashita8, John Moore9, Hristo Pavlov10, Steve Preston11, John Talbot12, Brad Timerson (deceased)13 1Trans Tasman Occultation Alliance, [email protected] 2Trans Tasman Occultation Alliance, [email protected] 3International Occultation Timing Association, [email protected] 4International Occultation Timing Association, [email protected] 5Euraster, [email protected] 6Japanese Occultation Information Network, [email protected] 7Trans Tasman Occultation Alliance, [email protected] 8Japanese Occultation Information Network, [email protected] 9International Occultation Timing Association, [email protected] 10International Occultation Timing Association – European Section, [email protected] 11International Occultation Timing Association, [email protected] 12Trans Tasman Occultation Alliance, [email protected] 13International Occultation Timing Association, deceased Accepted XXX. Received YYY; in original form ZZZ ABSTRACT Occultations of stars by asteroids have been observed since 1961, increasing from a very small number to now over 500 annually. We have created and regularly maintain a growing data-set of more than 5,000 observed asteroidal occultations. The data-set includes: the raw observations; astrometry at the 1 mas level based on centre of mass or figure (not illumination); where possible the asteroid’s diameter to 5 km or better, and fits to shape models; the separation and diameters of asteroidal satellites; and double star discoveries with typical separations being in the tens of mas or less.
    [Show full text]
  • Asteroids Do Have Satellites 289
    Merline et al.: Asteroids Do Have Satellites 289 Asteroids Do Have Satellites William J. Merline Southwest Research Institute Stuart J. Weidenschilling Planetary Science Institute Daniel D. Durda Southwest Research Institute Jean-Luc Margot California Institute of Technology Petr Pravec Astronomical Institute of the Academy of Sciences of the Czech Republic Alex D. Storrs Towson University After years of speculation, satellites of asteroids have now been shown definitively to exist. Asteroid satellites are important in at least two ways: (1) They are a natural laboratory in which to study collisions, a ubiquitous and critically important process in the formation and evolu- tion of the asteroids and in shaping much of the solar system, and (2) their presence allows to us to determine the density of the primary asteroid, something which otherwise (except for certain large asteroids that may have measurable gravitational influence on, e.g., Mars) would require a spacecraft flyby, orbital mission, or sample return. Binaries have now been detected in a variety of dynamical populations, including near-Earth, main-belt, outer main-belt, Tro- jan, and transneptunian regions. Detection of these new systems has been the result of improved observational techniques, including adaptive optics on large telescopes, radar, direct imaging, advanced lightcurve analysis, and spacecraft imaging. Systematics and differences among the observed systems give clues to the formation mechanisms. We describe several processes that may result in binary systems, all of which involve collisions of one type or another, either physi- cal or gravitational. Several mechanisms will likely be required to explain the observations. 1. INTRODUCTION sons between, for example, asteroid taxonomic types and our inventory of meteorites.
    [Show full text]
  • Asteroids Do Have Satellites
    Asteroids Do Have Satellites William J. Merline Southwest Research Institute (Boulder) Stuart J. Weidenschilling Planetary Science Institute Daniel D. Durda Southwest Research Institute (Boulder) Jean-Luc Margot California Institute of Technology Petr Pravec Astronomical Institute AS CR, Ondrejoˇ v, Czech Republic and Alex D. Storrs Towson University After years of speculation, satellites of asteroids have now been shown definitively to exist. Asteroid satellites are important in at least two ways: (1) they are a natural laboratory in which to study collisions, a ubiquitous and critically important process in the formation and evolution of the asteroids and in shaping much of the solar system, and (2) their presence allows to us to determine the density of the primary asteroid, something which otherwise (except for certain large asteroids that may have measurable gravitational influence on, e.g., Mars) would require a spacecraft flyby, orbital mission, or sample return. Satellites or binaries have now been detected in a variety of dynamical populations, including near- Earth, Main Belt, outer Main-Belt, Trojan, and trans-Neptunian. Detection of these new systems has been the result of improved observational techniques, including adaptive op- tics on large telescopes, radar, direct imaging, advanced lightcurve analysis, and spacecraft imaging. Systematics and differences among the observed systems give clues to the for- mation mechanisms. We describe several processes that may result in binary systems, all of which involve collisions of one type or another, either physical or gravitational. Several mechanisms will likely be required to explain the observations. 1 1 INTRODUCTION 1.1 Overview Discovery and study of small satellites of asteroids or double asteroids can yield valuable infor- mation about the intrinsic properties of asteroids themselves and about their history and evolution.
    [Show full text]
  • Occultation Newsletter Volume 8, Number 4
    Volume 12, Number 1 January 2005 $5.00 North Am./$6.25 Other International Occultation Timing Association, Inc. (IOTA) In this Issue Article Page The Largest Members Of Our Solar System – 2005 . 4 Resources Page What to Send to Whom . 3 Membership and Subscription Information . 3 IOTA Publications. 3 The Offices and Officers of IOTA . .11 IOTA European Section (IOTA/ES) . .11 IOTA on the World Wide Web. Back Cover ON THE COVER: Steve Preston posted a prediction for the occultation of a 10.8-magnitude star in Orion, about 3° from Betelgeuse, by the asteroid (238) Hypatia, which had an expected diameter of 148 km. The predicted path passed over the San Francisco Bay area, and that turned out to be quite accurate, with only a small shift towards the north, enough to leave Richard Nolthenius, observing visually from the coast northwest of Santa Cruz, to have a miss. But farther north, three other observers video recorded the occultation from their homes, and they were fortuitously located to define three well- spaced chords across the asteroid to accurately measure its shape and location relative to the star, as shown in the figure. The dashed lines show the axes of the fitted ellipse, produced by Dave Herald’s WinOccult program. This demonstrates the good results that can be obtained by a few dedicated observers with a relatively faint star; a bright star and/or many observers are not always necessary to obtain solid useful observations. – David Dunham Publication Date for this issue: July 2005 Please note: The date shown on the cover is for subscription purposes only and does not reflect the actual publication date.
    [Show full text]
  • Binary Asteroids in the Near-Earth Synchronous and Asynchronous to the Satellites Population As Well
    Asteroid Systems: Binaries, Triples, and Pairs Jean-Luc Margot University of California, Los Angeles Petr Pravec Astronomical Institute of the Czech Republic Academy of Sciences Patrick Taylor Arecibo Observatory Benoˆıt Carry Institut de Mecanique´ Celeste´ et de Calcul des Eph´ em´ erides´ Seth Jacobson Coteˆ d’Azur Observatory In the past decade, the number of known binary near-Earth asteroids has more than quadrupled and the number of known large main belt asteroids with satellites has doubled. Half a dozen triple asteroids have been discovered, and the previously unrecognized populations of asteroid pairs and small main belt binaries have been identified. The current observational evidence confirms that small (.20 km) binaries form by rotational fission and establishes that the YORP effect powers the spin-up process. A unifying paradigm based on rotational fission and post-fission dynamics can explain the formation of small binaries, triples, and pairs. Large(&20 km) binaries with small satellites are most likely created during large collisions. 1. INTRODUCTION composition and internal structure of minor plan- ets. Binary systems offer opportunities to mea- 1.1. Motivation sure thermal and mechanical properties, which are generally poorly known. Multiple-asteroid systems are important be- The binary and triple systems within near- cause they represent a sizable fraction of the aster- Earth asteroids (NEAs), main belt asteroids oid population and because they enable investiga- (MBAs), and trans-Neptunian objects (TNOs) ex- tions of a number of properties and processes that hibit a variety of formation mechanisms (Merline are often difficult to probe by other means. The et al. 2002c; Noll et al.
    [Show full text]
  • The Planetary and Lunar Ephemeris DE 421
    IPN Progress Report 42-178 • August 15, 2009 The Planetary and Lunar Ephemeris DE 421 William M. Folkner,* James G. Williams,† and Dale H. Boggs† The planetary and lunar ephemeris DE 421 represents updated estimates of the orbits of the Moon and planets. The lunar orbit is known to submeter accuracy through fitting lunar laser ranging data. The orbits of Venus, Earth, and Mars are known to subkilometer accu- racy. Because of perturbations of the orbit of Mars by asteroids, frequent updates are needed to maintain the current accuracy into the future decade. Mercury’s orbit is determined to an accuracy of several kilometers by radar ranging. The orbits of Jupiter and Saturn are determined to accuracies of tens of kilometers as a result of spacecraft tracking and modern ground-based astrometry. The orbits of Uranus, Neptune, and Pluto are not as well deter- mined. Reprocessing of historical observations is expected to lead to improvements in their orbits in the next several years. I. Introduction The planetary and lunar ephemeris DE 421 is a significant advance over earlier ephemeri- des. Compared with DE 418, released in July 2007,1 the DE 421 ephemeris includes addi- tional data, especially range and very long baseline interferometry (VLBI) measurements of Mars spacecraft; range measurements to the European Space Agency’s Venus Express space- craft; and use of current best estimates of planetary masses in the integration process. The lunar orbit is more robust due to an expanded set of lunar geophysical solution parameters, seven additional months of laser ranging data, and complete convergence.
    [Show full text]
  • New Determination of the Mass of Pallas
    A&A 365, 627–630 (2001) Astronomy DOI: 10.1051/0004-6361:20000023 & c ESO 2001 Astrophysics New determination of the mass of Pallas E. Goffin Aartselaarstraat 14, 2660 Hoboken, Belgium e-mail: [email protected] Received 13 September 2000 / Accepted 6 October 2000 Abstract. Until very recently, the mass of minor planet 2 Pallas had been determined from its gravitational effects on only 1 Ceres and the planet Mars. An independent confirmation was therefore highly desirable. This paper presents individual mass determinations based on close encounters with 16 other minor planets, as well −10 as a simultaneous solution using all objects. The resulting value for the mass of Pallas, (1.17 0.03) 10 M , essentially confirms the result from Ceres alone. Key words. astrometry – minor planets, asteroids – planets and satellites: individual: 2 Pallas 1. Introduction from perturbations on 8 minor planets, but retained only the results from 582 Olympia and 9 Metis for his final The first determination ever of the mass of Pallas was result. made by Schubart (1974). He revised it in Schubart (1975) Here I present new mass determinations of Pallas, both and later gave a better value (Schubart & Matson 1979) individual and simultaneous, based on close encounters using an improved value for the mass of Vesta. His work with several other minor planets. was based on the near 1:1 mean-motion resonance be- tween the orbits of Ceres and Pallas. This resulted in a series of moderately close approaches in the first part of 2. Minor planet selection and observations the 19th century, leaving observable gravitational effects Possible candidates for mass determinations were selected in the co-ordinates of both minor planets.
    [Show full text]