Compiling Standard ML to Java Bytecodes

Total Page:16

File Type:pdf, Size:1020Kb

Compiling Standard ML to Java Bytecodes Compiling Standard ML to Java Byteco des NickBenton Andrew Kennedy George Russell In Proceedings of the rd ACM SIGPLAN Conference on Functional Programming Septemb er Baltimore The following copyright notice is required by the ACM see httpwwwacmorgpubscopy righ tpol icy html c Copyright by the Asso ciation for Computing Machinery Inc Permission to make digital or hard copies of part or all of this work for p ersonal or classro om use is granted without fee provided that copies are not made or distributed for prot or commercial advantage and that copies b ear this notice and the full citation on the rst page Copyrights for comp onents of this work owned by others than ACM must b e honored Abstracting with credit is p ermitted To copy otherwise to republish to p ost on servers or to redistribute to lists requires prior sp ecic p ermission andor a fee Request p ermissions from Publications Dept ACM Inc fax or permissionsacmorg Compiling Standard ML to Java Byteco des Nick Benton Andrew Kennedy George Russell Persimmon IT Inc Cambridge UK fnickandrewgeorgegpersimmoncouk Abstract adoption of functional languages in real world applications and the situation is getting worse as more software has to MLJ compiles SML into veriercompliant Java byte op erate in a complex environment interacting with com co des Its features include typ echecked interlanguage work p onents written in a variety of languages p ossibly wrapp ed ing extensions which allow ML and Javacodetocall each up in a distributed comp onentarchitecture such as CORBA other automatic recompilation management compact com DCOM or JavaBeans piled co de and runtime p erformance which using a just in Because the semantic gap between Java and ML is time compiling Java virtual machine usually exceeds that smaller than that b etween C and ML and b ecause Java uses of existing sp ecialised byteco de interpreters for ML Notable a simple scheme for dynamic linking MLJ is able to make features of the compiler itself include wholeprogram optimi interlanguage working safe and straightforward MLJ co de sation based on rewriting compilation of p olymorphism by can not only call external Java metho ds but can also ma sp ecialisation a novel monadic intermediate language which nipulate Java ob jects and declare Java classes with metho ds expresses eect information in the typ e system and some in implemented in ML which can b e called from Java Thus teresting data representation choices the MLJ programmer can not only write applets in ML but also has instant access to standard libraries for and D orking graphics GUIs database access so ckets and netw Intro duction concurrency CORBA connectivity security servlets sound and so on as well as to a large and rapidlygrowing collec The success of Sun Microsystems Java language means tion of thirdpartycode that virtual machines executing Javas secure multi The interesting question is whether ML can b e compiled threaded garbagecollected byteco de and supp orted by a into Javabyteco des which are ecient enough to b e useful capable collection of standard library classes are now not Java itself is often criticised for being to o slow esp ecially just available for a wide range of architectures and op erat running co de which do es signicant amounts of allo cation ing systems but are actually installed on most mo dern ma and its byteco des were certainly not designed with compila chines The idea of compiling a functional language suchas tion of other languages in mind There is little opp ortunity ML into Javabyteco des is thus very app ealing as well as the for lowlevel backend trickery since wehave no control over obvious attraction of b eing able to run the same compiled the garbage collector heap layout etc and the requirement co de on any machine with a JVM the p otential b enets of that compiled classes pass the Javaverier places strict typ e interlanguage working b etween Java and ML are consider constraints on the co de we generate Furthermore current able Java virtual machines not only store activation records on Many existing compilers for functional languages have a xedsize stack but also fail to optimise tail calls Thus the ability to call external functions written in another lan the initial prosp ects for generating acceptably ecientJava guage usually C Unfortunately dierences in memory byteco des from a functional language did not lo ok go o d our mo dels and typ e systems make most of these foreign func rst very simpleminded lamb dacalculus to Java translator tion interfaces awkward to use limited in functionality and plus an early JVM ran the nb b enchmark times slower even typ eunsafe Consequently although there are for ex than Moscow ML and it was clear that a practical ML to ample go o d functional graphics libraries which call X Jav a byteco de compiler would have to do fairly extensive the typical functional programmer probably do esnt b other optimisations MLJ is still a workinprogress and there is to use a C language interface to call everyday library func scop e for signicant improvement in b oth compilation sp eed tions to say calculate an MD checksum manipulate a GIF and the generated co de in particular the currentversion le or access a database She thus either do es more w ork still only optimises simple tail calls but it is already quite than should b e necessaryorgives up and uses another lan usable on source programs of several thousand lines and pro guage This is surely a ma jor factor holding back the wider duces co de which with a go o d mo dern JVM usually out p erforms the p opular MoscowMLbyteco de interpreter To app ear in the rd ACM SIGPLAN Conference on Functional Programming Septemb er Baltimore Java A large subset of the new standard Basis Library has Overview b een implemented Compiler phases The interlanguage features bring Java typ es and val ues into ML whilst enforcing a separation b etween the two MLJ is intended for writing compact selfcontained appli though a Javatyp e and an ML typ e maywell end up the cations applets and software comp onents and do es not have same in the compiled co de External Java typ es maybe the usual SML interactive readevalprint top level Instead referred to in ML simply by using their Java names in quo it op erates much more like a traditional batch compiler The tation marks Thus structures which make up a pro ject are separately parsed typ echecked translated into our typ ed Monadic Interme javaawtGraphics int diate Language MIL see section and simplied These is the typ e of pairs whose rst comp onentisaJava ob ject separately compiled MIL terms are then linked together into representing a graphics context and whose second comp o one large MIL term which is extensively transformed b efore nentisanMLinteger An imp ortant subtlety is that whilst b eing translated into our lowlevel Basic Blo ckCodeBBC in Java all pointer reference typ es implicitly include the see section Finally the backend turns the BBC into a echose to make their quoted Javatyp e sp ecial value nullw collection of compiled Java class les whichby default are names in ML refer only to the nonnull values Where a placed in a single zip archive value of Java reference typ e t may b e passed from Javato This wholeprogram approach to compilation is unusual ML co de as the result of an external eld access or metho d though not unique It increases recompilation times call or as a parameter to a metho d implemented in ML considerably but do es allow us easily to pro duce much faster then that value is given the ML typ e t option with the and just as imp ortantly for applets smaller co de We value NONE corresp onding to Java null and values of the monomorphise the whole program and can p erform trans form SOMEv corresp onding to nonnull values Similarly formations suc h as inlining deadco de elimination arity we guarantee that anyMLvalue of typ e t option will b e raising and knownfunction call optimisation with no regard represented by the an element of the underlying Java class for mo dule b oundaries so there is no runtime cost asso ciated This complication allows the typ e system to catch statically with use of the mo dule system what would otherwise b e dynamic NullPointerExceptions App endix A contains an example of JVM co de generated and also gives the compiler more freedom in cho osing and byMLJ sharing data representations see Section The builtin structure Java includes ML synonyms for Compilation environment common Jav atyp es and co ercions b etween many equivalent MLJ can b e run entirely in batchmodeorasaninteractive ML and Javatyp es for example JavatoString which con recompilation environment Toplevel structures and signa verts a Java String into an ML string With one exception tures are stored onep erle as in Moscow ML MLJ fromWord these all generate no actual byteco des and are do esnt implement functors All compilation is driven by included just to separate the twotyp e systems securely in the need to pro duce one or more named Java class les for the source an application this is usually just the class containing the MLJ co de can p erform basic Java op erations such as eld main metho d whilst for an applet it is usually a sub class access metho d invo cation and ob ject creation by using a of javaawtApplet Once these ro ot classes and their ex collection of new keywords all of which start with an under p orted names have b een sp ecied the make command com score which ts well with the existing lexical structure piles links and optimises the required structures using
Recommended publications
  • Type-Safe Multi-Tier Programming with Standard ML Modules
    Experience Report: Type-Safe Multi-Tier Programming with Standard ML Modules Martin Elsman Philip Munksgaard Ken Friis Larsen Department of Computer Science, iAlpha AG, Switzerland Department of Computer Science, University of Copenhagen, Denmark [email protected] University of Copenhagen, Denmark [email protected] kfl[email protected] Abstract shared module, it is now possible, on the server, to implement a We describe our experience with using Standard ML modules and module that for each function responds to a request by first deseri- Standard ML’s core language typing features for ensuring type- alising the argument into a value, calls the particular function and safety across physically separated tiers in an extensive web applica- replies to the client with a serialised version of the result value. tion built around a database-backed server platform and advanced Dually, on the client side, for each function, the client code can client code that accesses the server through asynchronous server serialise the argument and send the request asynchronously to the requests. server. When the server responds, the client will deserialise the re- sult value and apply the handler function to the value. Both for the server part and for the client part, the code can be implemented in 1. Introduction a type-safe fashion. In particular, if an interface type changes, the The iAlpha Platform is an advanced asset management system programmer will be notified about all type-inconsistencies at com- featuring a number of analytics modules for combining trading pile
    [Show full text]
  • Four Lectures on Standard ML
    Mads Tofte March Lab oratory for Foundations of Computer Science Department of Computer Science Edinburgh University Four Lectures on Standard ML The following notes give an overview of Standard ML with emphasis placed on the Mo dules part of the language The notes are to the b est of my knowledge faithful to The Denition of Standard ML Version as regards syntax semantics and terminology They have b een written so as to b e indep endent of any particular implemen tation The exercises in the rst lectures can b e tackled without the use of a machine although having access to an implementation will no doubt b e b enecial The pro ject in Lecture presupp oses access to an implementation of the full language including mo dules At present the Edinburgh compiler do es not fall into this category the author used the New Jersey Standard ML compiler Lecture gives an introduction to ML aimed at the reader who is familiar with some programming language but do es not know ML Both the Core Language and the Mo dules are covered by way of example Lecture discusses the use of ML mo dules in the development of large programs A useful metho dology for programming with functors signatures and structures is presented Lecture gives a fairly detailed account of the static semantics of ML mo dules for those who really want to understand the crucial notions of sharing and signature matching Lecture presents a one day pro ject intended to give the student an opp ortunity of mo difying a nontrivial piece of software using functors signatures and structures
    [Show full text]
  • A Separate Compilation Extension to Standard ML
    A Separate Compilation Extension to Standard ML David Swasey Tom Murphy VII Karl Crary Robert Harper Carnegie Mellon {swasey,tom7,crary,rwh}@cs.cmu.edu Abstract The goal of this work is to consolidate and synthesize previ- We present an extension to Standard ML, called SMLSC, to support ous work on compilation management for ML into a formally de- separate compilation. The system gives meaning to individual pro- fined extension to the Standard ML language. The extension itself gram fragments, called units. Units may depend on one another in a is syntactically and conceptually very simple. A unit is a series of way specified by the programmer. A dependency may be mediated Standard ML top-level declarations, given a name. To the current by an interface (the type of a unit); if so, the units can be compiled top-level declarations such as structure and functor we add an separately. Otherwise, they must be compiled in sequence. We also import declaration that is to units what the open declaration is to propose a methodology for programming in SMLSC that reflects structures. An import declaration may optionally specify an inter- code development practice and avoids syntactic repetition of inter- face for the unit, in which case we are able to compile separately faces. The language is given a formal semantics, and we argue that against that dependency; with no interface we must compile incre- this semantics is implementable in a variety of compilers. mentally. Compatibility with existing compilers, including whole- program compilers, is assured by making no commitment to the Categories and Subject Descriptors D.3.3 [Programming Lan- precise meaning of “compile” and “link”—a compiler is free to guages]: Language Constructs and Features—Modules, pack- limit compilation to elaboration and type checking, and to perform ages; D.3.1 [Programming Languages]: Formal Definitions and code generation as part of linking.
    [Show full text]
  • Functional Programming (ML)
    Functional Programming CSE 215, Foundations of Computer Science Stony Brook University http://www.cs.stonybrook.edu/~cse215 Functional Programming Function evaluation is the basic concept for a programming paradigm that has been implemented in functional programming languages. The language ML (“Meta Language”) was originally introduced in the 1970’s as part of a theorem proving system, and was intended for describing and implementing proof strategies. Standard ML of New Jersey (SML) is an implementation of ML. The basic mode of computation in SML is the use of the definition and application of functions. 2 (c) Paul Fodor (CS Stony Brook) Install Standard ML Download from: http://www.smlnj.org Start Standard ML: Type ''sml'' from the shell (run command line in Windows) Exit Standard ML: Ctrl-Z under Windows Ctrl-D under Unix/Mac 3 (c) Paul Fodor (CS Stony Brook) Standard ML The basic cycle of SML activity has three parts: read input from the user, evaluate it, print the computed value (or an error message). 4 (c) Paul Fodor (CS Stony Brook) First SML example SML prompt: - Simple example: - 3; val it = 3 : int The first line contains the SML prompt, followed by an expression typed in by the user and ended by a semicolon. The second line is SML’s response, indicating the value of the input expression and its type. 5 (c) Paul Fodor (CS Stony Brook) Interacting with SML SML has a number of built-in operators and data types. it provides the standard arithmetic operators - 3+2; val it = 5 : int The Boolean values true and false are available, as are logical operators such as not (negation), andalso (conjunction), and orelse (disjunction).
    [Show full text]
  • Robert Harper Carnegie Mellon University
    The Future Of Standard ML Robert Harper Carnegie Mellon University Sunday, September 22, 13 Whither SML? SML has been hugely influential in both theory and practice. The world is slowly converging on ML as the language of choice. There remain big opportunities to be exploited in research and education. Sunday, September 22, 13 Convergence The world moves inexorably toward ML. Eager, not lazy evaluation. Static, not dynamic, typing. Value-, not object-, oriented. Modules, not classes. Every new language is more “ML-like”. Sunday, September 22, 13 Convergence Lots of ML’s and ML-like languages being developed. O’Caml, F#, Scala, Rust SML#, Manticore O’Caml is hugely successful in both research and industry. Sunday, September 22, 13 Convergence Rich typing supports verification. Polytyping >> Unityping Not all types are pointed. Useful cost model, especially for parallelism and space usage. Modules are far better than objects. Sunday, September 22, 13 Standard ML Standard ML remains important as a vehicle for teaching and research. Intro CS @ CMU is in SML. Lots of extensions proposed. We should consolidate advances and move forward. Sunday, September 22, 13 Standard ML SML is a language, not a compiler! It “exists” as a language. Stable, definitive criterion for compatibility. Having a semantics is a huge asset, provided that it can evolve. Sunday, September 22, 13 Standard ML At least five compatible compilers: SML/NJ, PolyML, MLKit, MosML, MLton, MLWorks (?). Several important extensions: CML, SML#, Manticore, SMLtoJS, ParallelSML (and probably more). Solid foundation on which to build and develop. Sunday, September 22, 13 The Way Forward Correct obvious shortcomings.
    [Show full text]
  • Standard ML Mini-Tutorial [1Mm] (In Particular SML/NJ)
    Standard ML Mini-tutorial (in particular SML/NJ) Programming Languages CS442 David Toman School of Computer Science University of Waterloo David Toman (University of Waterloo) Standard ML 1 / 21 Introduction • SML (Standard Meta Language) ⇒ originally part of the LCF project (Gordon et al.) • Industrial strength PL (SML’90, SML’97) ⇒ based formal semantics (Milner et al.) • SML “Basis Library” (all you ever wanted) ⇒ based on advanced module system • Quality compilers: ⇒ SML/NJ (Bell Labs) ⇒ Moscow ML David Toman (University of Waterloo) Standard ML 2 / 21 Features • Everything is built from expressions ⇒ functions are first class citizens ⇒ pretty much extension of our simple functional PL • Support for structured values: lists, trees, . • Strong type system ⇒ let-polymorphic functions ⇒ type inference • Powerful module system ⇒ signatures, implementations, ADTs,. • Imperative features (e.g., I/O) David Toman (University of Waterloo) Standard ML 3 / 21 Tutorial Goals 1 Make link from our functional language to SML 2 Provide enough SML syntax and examples for A2 • How to use SML/NJ interactive environment • How to write simple functional programs • How to define new data types • How to understand compiler errors • Where to find more information 3 Show type inference in action (so we understand what’s coming) David Toman (University of Waterloo) Standard ML 4 / 21 Getting started • Starting it up: sml in UNIX (click somewhere in W/XP) Example Standard ML of New Jersey, Version 110.0.7 [CM&CMB] - ⇒ great support in Emacs • Notation and simple
    [Show full text]
  • SML# JSON Support
    A Calculus with Partially Dynamic Records for Typeful Manipulation of JSON Objects∗ Atsushi Ohori1,2, Katsuhiro Ueno1,2, Tomohiro Sasaki1,2, and Daisuke Kikuchi1,3 1 Research Institute of Electrical Communication, Tohoku University Sendai, Miyagi, 980-8577, Japan {ohori,katsu,tsasaki,kikuchi}@riec.tohoku.ac.jp 2 Graduate School of Information Sciences, Tohoku University Sendai, Miyagi, 980-8579, Japan 3 Hitachi Solutions East Japan, Ltd. Sendai, Miyagi, 980-0014, Japan [email protected] Abstract This paper investigates language constructs for high-level and type-safe manipulation of JSON objects in a typed functional language. A major obstacle in representing JSON in a static type system is their heterogeneous nature: in most practical JSON APIs, a JSON array is a heterogeneous list consisting of, for example, objects having common fields and possibly some optional fields. This paper presents a typed calculus that reconciles static typing constraints and heterogeneous JSON arrays based on the idea of partially dynamic records originally proposed and sketched by Buneman and Ohori for complex database object manipulation. Partially dynamic records are dynamically typed records, but some parts of their structures are statically known. This feature enables us to represent JSON objects as typed data structures. The proposed calculus smoothly extends with ML-style pattern matching and record polymorphism. These results yield a typed functional language where the programmer can directly import JSON data as terms having static types, and can manipulate them with the full benefits of static polymorphic type-checking. The proposed calculus has been embodied in SML#, an extension of Standard ML with record polymorphism and other practically useful features.
    [Show full text]
  • Haskell-Like S-Expression-Based Language Designed for an IDE
    Department of Computing Imperial College London MEng Individual Project Haskell-Like S-Expression-Based Language Designed for an IDE Author: Supervisor: Michal Srb Prof. Susan Eisenbach June 2015 Abstract The state of the programmers’ toolbox is abysmal. Although substantial effort is put into the development of powerful integrated development environments (IDEs), their features often lack capabilities desired by programmers and target primarily classical object oriented languages. This report documents the results of designing a modern programming language with its IDE in mind. We introduce a new statically typed functional language with strong metaprogramming capabilities, targeting JavaScript, the most popular runtime of today; and its accompanying browser-based IDE. We demonstrate the advantages resulting from designing both the language and its IDE at the same time and evaluate the resulting environment by employing it to solve a variety of nontrivial programming tasks. Our results demonstrate that programmers can greatly benefit from the combined application of modern approaches to programming tools. I would like to express my sincere gratitude to Susan, Sophia and Tristan for their invaluable feedback on this project, my family, my parents Michal and Jana and my grandmothers Hana and Jaroslava for supporting me throughout my studies, and to all my friends, especially to Harry whom I met at the interview day and seem to not be able to get rid of ever since. ii Contents Abstract i Contents iii 1 Introduction 1 1.1 Objectives ........................................ 2 1.2 Challenges ........................................ 3 1.3 Contributions ...................................... 4 2 State of the Art 6 2.1 Languages ........................................ 6 2.1.1 Haskell ....................................
    [Show full text]
  • Using Domain Specific Language for Modeling and Simulation: Scalation As a Case Study
    Proceedings of the 2010 Winter Simulation Conference B. Johansson, S. Jain, J. Montoya-Torres, J. Hugan, and E. Yucesan,¨ eds. USING DOMAIN SPECIFIC LANGUAGE FOR MODELING AND SIMULATION: SCALATION AS A CASE STUDY John A. Miller Jun Han Maria Hybinette Department of Computer Science University of Georgia Athens, GA, 30602, USA ABSTRACT Progress in programming paradigms and languages has over time influenced the way that simulation programs are written. Modern object-oriented, functional programming languages are expressive enough to define embedded Domain Specific Languages (DSLs). The Scala programming language is used to implement ScalaTion that supports several popular simulation modeling paradigms. As a case study, ScalaTion is used to consider how language features of object-oriented, functional programming languages and Scala in particular can be used to write simulation programs that are clear, concise and intuitive to simulation modelers. The dichotomy between “model specification” and “simulation program” is also considered both historically and in light of the potential narrowing of the gap afforded by embedded DSLs. 1 INTRODUCTION As one learns simulation the importance of the distinction between “model specification” and “simulation program” is made clear. In the initial period (Nance 1996), the distinction was indeed important as models were expressed in a combination of natural language (e.g., English) and mathematics, while the simulation programs implementing the models were written in Fortran. The gap was huge. Over time, the gap has narrowed through the use of more modern general-purpose programming languages (GPLs) with improved readability and conciseness. Besides advances in general-purpose languages, the developers of Simulation Programming Languages (SPLs) have made major contributions.
    [Show full text]
  • The Definition of Standard ML, Revised
    The Definition of Standard ML The Definition of Standard ML (Revised) Robin Milner, Mads Tofte, Robert Harper and David MacQueen The MIT Press Cambridge, Massachusetts London, England c 1997 Robin Milner All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher. Printed and bound in the United States of America. Library of Congress Cataloging-in-Publication Data The definition of standard ML: revised / Robin Milner ::: et al. p. cm. Includes bibliographical references and index. ISBN 0-262-63181-4 (alk. paper) 1. ML (Computer program language) I. Milner, R. (Robin), 1934- QA76.73.M6D44 1997 005:1303|dc21 97-59 CIP Contents 1 Introduction 1 2 Syntax of the Core 3 2.1 Reserved Words . 3 2.2 Special constants . 3 2.3 Comments . 4 2.4 Identifiers . 5 2.5 Lexical analysis . 6 2.6 Infixed operators . 6 2.7 Derived Forms . 7 2.8 Grammar . 7 2.9 Syntactic Restrictions . 9 3 Syntax of Modules 12 3.1 Reserved Words . 12 3.2 Identifiers . 12 3.3 Infixed operators . 12 3.4 Grammar for Modules . 13 3.5 Syntactic Restrictions . 13 4 Static Semantics for the Core 16 4.1 Simple Objects . 16 4.2 Compound Objects . 17 4.3 Projection, Injection and Modification . 17 4.4 Types and Type functions . 19 4.5 Type Schemes . 19 4.6 Scope of Explicit Type Variables . 20 4.7 Non-expansive Expressions . 21 4.8 Closure .
    [Show full text]
  • Acme: a User Interface for Programmers Rob Pike AT&T Bell Laboratories Murray Hill, New Jersey 07974
    Acme: A User Interface for Programmers Rob Pike AT&T Bell Laboratories Murray Hill, New Jersey 07974 ABSTRACT A hybrid of window system, shell, and editor, Acme gives text-oriented applications a clean, expressive, and consistent style of interaction. Traditional window systems support inter- active client programs and offer libraries of pre-defined operations such as pop-up menus and buttons to promote a consistent user interface among the clients. Acme instead provides its clients with a fixed user interface and simple conventions to encourage its uniform use. Clients access the facilities of Acme through a file system interface; Acme is in part a file server that exports device-like files that may be manipulated to access and control the contents of its win- dows. Written in a concurrent programming language, Acme is structured as a set of communi- cating processes that neatly subdivide the various aspects of its tasks: display management, input, file server, and so on. Acme attaches distinct functions to the three mouse buttons: the left selects text; the mid- dle executes textual commands; and the right combines context search and file opening functions to integrate the various applications and files in the system. Acme works well enough to have developed a community that uses it exclusively. Although Acme discourages the traditional style of interaction based on typescript windows— teletypes—its users find Acme’s other services render typescripts obsolete. History and motivation The usual typescript style of interaction with Unix and its relatives is an old one. The typescript—an inter- mingling of textual commands and their output—originates with the scrolls of paper on teletypes.
    [Show full text]
  • Typeclasses Vs Traits Vs Protocols
    Concepts vs Typeclasses vs Traits vs Protocols Conor Hoekstra code_report #include Concepts vs Typeclasses vs Traits vs Protocols Conor Hoekstra code_report #include #include https://github.com/codereport/Talks #include ⌽≡⊢ #include ⌽≡⊢ #include ⌽≡⊢ #include ⌽≡⊢ #include ⌽≡⊢ #include ⌽≡⊢ #include ⌽≡⊢ #include http://rapids.ai https://www.youtube.com/codereport https://www.adspthepodcast.com https://www.meetup.com/Programming-Languages-Toronto-Meetup/ ⌽≡⊢ #include This is not a language war talk. This is not a language war talk. This is not a language war talk. This is not a language war talk. This is a language comparison talk. This is a language comparison talk. This is part 1 of 2. Agenda 1. Introduction 2. Generics / Parametric Polymorphism 3. Example #1 4. Example #2 5. Final Thoughts Introduction 2018-09: Haskell Introduction 2018-09: Haskell … 2019-12-08: Protocol Oriented Programming in Swift Introduction 2018-09: Haskell … 2019-12-08: Protocol Oriented Programming in Swift 2020-01-09: Magic Read Along “I watched a video today on Swift … about protocol oriented programming … and they basically just introduced typeclasses and they were like ‘We invented this, it’s amazing’” Hardy Jones & Brian Lonsdorf @st58 & @drboolean “I watched a video today on Swift … about protocol oriented programming … and they basically just introduced typeclasses and they were like ‘We invented this, it’s amazing’” Hardy Jones & Brian Lonsdorf @st58 & @drboolean Introduction 2018-09: Haskell … 2019-12-08: Protocol Oriented Programming in Swift 2020-01-09:
    [Show full text]