Pneumoconiosis with a Sarcoid-Like Reaction Other Than Beryllium Exposure: a Case Report and Literature Review

Total Page:16

File Type:pdf, Size:1020Kb

Pneumoconiosis with a Sarcoid-Like Reaction Other Than Beryllium Exposure: a Case Report and Literature Review medicina Case Report Pneumoconiosis with a Sarcoid-Like Reaction Other than Beryllium Exposure: A Case Report and Literature Review Fumiko Hayashi 1, Takashi Kido 1,*, Noriho Sakamoto 1, Yoshiaki Zaizen 2, Mutsumi Ozasa 1,2, Mitsuru Yokoyama 3, Hirokazu Yura 1, Atsuko Hara 1 , Hiroshi Ishimoto 1, Hiroyuki Yamaguchi 1 , Taiga Miyazaki 4, Yasushi Obase 1, Yuji Ishimatsu 5, Yoshinobu Eishi 6, Junya Fukuoka 2 and Hiroshi Mukae 1 1 Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan; [email protected] (F.H.); [email protected] (N.S.); [email protected] (M.O.); [email protected] (H.Y.); [email protected] (A.H.); [email protected] (H.I.); [email protected] (H.Y.); [email protected] (Y.O.); [email protected] (H.M.) 2 Department of Pathology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8520, Japan; [email protected] (Y.Z.); [email protected] (J.F.) 3 Department of Anatomy, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishiku, Kitakyushu City, Fukuoka 807-8555, Japan; [email protected] 4 Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan; [email protected] 5 Department of Nursing, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8520, Japan; [email protected] 6 Department of Human Pathology, Tokyo Medical and Dental University, Yushima, Bunkyo-ku, Tokyo 113-8519, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-95-819-7273; Fax: +81-95-849-7285 Received: 12 October 2020; Accepted: 20 November 2020; Published: 22 November 2020 Abstract: Background: Chronic beryllium disease (CBD) is a granulomatous disease that resembles sarcoidosis but is caused by beryllium. Clinical manifestations similar to those observed in CBD have occasionally been reported in exposure to dusts of other metals. However, reports describing the clinical, radiographic, and pathological findings in conditions other than beryllium-induced granulomatous lung diseases, and detailed information on mineralogical analyses of metal dusts, are limited. Case presentation: A 51-year-old Japanese man with rapidly progressing nodular shadows on chest radiography, and a 10-year occupation history of underground construction without beryllium exposure, was referred to our hospital. High-resolution computed tomography showed well-defined multiple centrilobular and perilobular nodules, and thickening of the intralobular septa in the middle and lower zones of both lungs. No extrathoracic manifestations were observed. Pathologically, the lung specimens showed 5–12 mm nodules with dust deposition and several non-necrotizing granulomas along the lymphatic routes. X-ray analytical electron microscopy of the same specimens revealed aluminum, iron, titanium, and silica deposition in the lung tissues. The patient stopped smoking and changed his occupation to avoid further dust exposure; the chest radiography shadows decreased 5 years later. Conclusion: The radiological appearances of CBD and sarcoidosis are similar, although mediastinal or hilar lymphadenopathy is less common in CBD and is usually seen in the presence of parenchymal opacities. Extrathoracic manifestations are also rare. Despite limited evidence, these findings are similar to those observed in pneumoconiosis with a sarcoid-like reaction due to exposure to dust other than of beryllium. Aluminum is frequently detected in patients with pneumoconiosis with a sarcoid-like reaction and is listed as an inorganic agent in the etiology of sarcoidosis. It was also detected in our patient and may have contributed to the etiology. Medicina 2020, 56, 630; doi:10.3390/medicina56110630 www.mdpi.com/journal/medicina Medicina 2020, 56, x 630 FOR PEER REVIEW 22 of of 11 12 is listed as an inorganic agent in the etiology of sarcoidosis. It was also detected in our patient and Additionally,may have contributed our case suggests to the thatetio cessationlogy. Additionally, of dust exposure our case may contributesuggests that to improvement cessation ofunder dust exposurethe aforementioned may contribute conditions. to improvement under the aforementioned conditions. Keywords: aluminum;aluminum; berylliosis; berylliosis; chronic chronic beryllium beryllium disease; disease; pneumoconiosis; pneumoconiosis; sarcoidosis; sarcoidosis; sarcoid- likesarcoid-like reaction; reaction; X-ray analytical X-ray analytical electronelectron microscopy microscopy 1. Introduction Introduction Studies havehave shown shown that that exposure exposure to industrial to indust dustrial may dust lead tomay the developmentlead to the ofdevelopment granulomatous of granulomatouslung disease. Hardy lung and disease. Tabershaw Hardy have and described Tabershaw a granulomatous have described disease a granulomatous that resembles disease sarcoidosis that resemblesbut is caused sarcoidosis by beryllium, but is caused known by as beryllium, berylliosis known or chronic as berylliosis beryllium or disease chronic (CBD) beryllium [1]. Clinicaldisease (CBD)manifestations [1]. Clinical similar manifestations to those observed similar in to CBD those have observed occasionally in CBD been have reported occasionally in cases been of exposurereported into dustcases of of other exposure metals [to2– 13dust]. However, of other reports metals describing [2–13]. However, the clinical, reports radiographic, describing and pathologicalthe clinical, radiographic,findings of conditions and pathological other than findings beryllium-induced of conditions pneumoconiosis other than beryllium-induced with a sarcoid-like pneumoconiosis reaction, and withdetailed a sarcoid-like information reaction, on mineralogical and detailed analyses information of metal on dusts mineralogical are limited. analyses Herein, of wemetal report dusts a case are limited.of pneumoconiosis Herein, we withreport a sarcoid-likea case of pneumoconiosis reaction other with than a CBD sarcoid-like and review reaction similar other reported than CBD cases and in reviewthe literature. similar reported cases in the literature. 2. Case Case Presentation Presentation A 51-year-old, asymptomatic Japanese man wi withth rapidly progressing nodular shadows, as observed on chest radiography perf performedormed as part of his routine physical examinations, was referred to our hospital. Two Two years ago, hishis chestchest radiographradiograph hadhad revealedrevealed nono abnormalities.abnormalities. Small nodules had appeared a year later, mainly in both the lower lung fields fields (Figure 11A);A); however,however, hehe diddid notnot visitvisit a hospital. Further, Further, he reported a smoking history of 30 pack-years. As As a a civil civil engineer, he had been engaged in underground construction with welding, cutting, and drilling of reinforced concrete and metals for 10 years (between the ages of 41 and 51 years); though he had never used and/or and/or been exposed to beryllium. (A) Figure 1. Cont. Medicina 2020, 56, 630 3 of 12 Medicina 2020, 56, x FOR PEER REVIEW 3 of 11 (B) Figure 1. 1. (A(A) )Chest Chest radiograph radiograph 1 year 1 year prior prior to referral to referral to our to ourhospital, hospital, showing showing small small nodules nodules in both in theboth lower the lower lung lungfields. fields. (B) Chest (B) Chest radiograph radiograph on onadmission, admission, show showinging an an increase increase in in the the number number of of nodules in 1 year. The patient did not not display display clinical clinical respiratory respiratory sy symptomsmptoms such such as as dyspnea, dyspnea, exercise exercise intolerance, intolerance, or any other relevant manifestations upon referral to our hospital. The The patient’s patient’s body body temperature, temperature, pulse rate, and respiratory rate were 36.9 °C,◦C, 58 58 be beatsats/min,/min, and and 20 20 breaths/min, breaths/min, respectively. respectively. On chest auscultation, fine fine crackles were audible in the bilateral lower lung fields. fields. Clubbed fingers fingers were not observed. Laboratory Laboratory data data on on admission admission revealed revealed elevated elevated levels levels of of PR3-ANCA PR3-ANCA (15.4 (15.4 U/mL, U/mL, cutoff cutoff level:level: 3.5 3.5 U/mL). U/mL). Other Other representative representative tests tests for for coll collagenagen disease-related disease-related autoantibodies autoantibodies were were negative. negative. Serum levels levels of of angiotensin-conver angiotensin-convertingting enzyme, enzyme, carcinoembryonic carcinoembryonic antigen, antigen, KL-6, KL-6, and and sIL-2R sIL-2R were were in thein the normal normal range, range, and and the the results results of of interferon interferon-gamma-gamma release release assay assay were were negative. The The chest radiograph on admission showedshowed anan increaseincrease inin thethe numbernumber ofof nodules nodules compared compared with with those those found found 1 1year year previously previously (Figure (Figure1B). 1B). High-resolution computed computed tomography (HRCT) (HRCT) (Figure (Figure 22)) showedshowed well-definedwell-defined multiplemultiple centrilobular andand perilobularperilobular nodules, nodules, and and thickening thickening of theof the intralobular intralobular septa septa in the in middle the middle and lower and lowerzones
Recommended publications
  • No. 26705 MULTILATERAL Convention (No. 162) Concerning
    No. 26705 MULTILATERAL Convention (No. 162) concerning safety in the use of asbestos. Adopted by the General Conference of the International Labour Organisation at its seventy- second session, Geneva, 24 June 1986 Authentic texts: English and French. Registered by the International Labour Organisation on 27 June 1989. MULTILATERAL Convention (n° 162) concernant la sécurité dans l'utilisation de l'amiante. Adoptée par la Conférence générale de l'Organisation internationale du Travail à sa soixante- douzième session, Genève, 24 juin 1986 Textes authentiques : anglais et français. Enregistrée par l'Organisation internationale du Travail le 27 juin 1989. Vol. 1539, 1-26705 316______United Nations — Treaty Series • Nations Unies — Recueil des Traités 1989 CONVENTION1 CONCERNING SAFETY IN THE USE OF AS BESTOS The General Conference of the International Labour Organisation, Having been convened at Geneva by the Governing Body of the International Labour Office, and having met in its Seventy-second Session of 4 June 1986, and Noting the relevant international labour Conventions and Recommendations, and in particular the Occupational Cancer Convention and Recommendations, 1974,2 the Working Environment (Air Pollution, Noise and Vibration) Convention and Recommendation, 1977,3 the Occupational Safety and Health Convention and Recommendation, 1981,4 the Occupational Health Services Convention and Recommendation, 1985,3 the list of occupational diseases as revised in 1980 appended to the Employment Injury Benefits Convention, 1964,6 as well as the
    [Show full text]
  • Occupational Airborne Particulates
    Environmental Burden of Disease Series, No. 7 Occupational airborne particulates Assessing the environmental burden of disease at national and local levels Tim Driscoll Kyle Steenland Deborah Imel Nelson James Leigh Series Editors Annette Prüss-Üstün, Diarmid Campbell-Lendrum, Carlos Corvalán, Alistair Woodward World Health Organization Protection of the Human Environment Geneva 2004 WHO Library Cataloguing-in-Publication Data Occupational airborne particulates : assessing the environmental burden of disease at national and local levels / Tim Driscoll … [et al.]. (Environmental burden of disease series / series editors: Annette Prüss-Ustun ... [et al.] ; no. 7) 1.Dust - adverse effects 2.Occupational exposure 3.Asthma - chemically induced 4.Pulmonary disease, Chronic obstructive - chemically induced 5.Pneumoconiosis - etiology 6.Cost of illness 7.Epidemiologic studies 8.Risk assessment - methods 9.Manuals I.Driscoll, Tim. II.Prüss-Üstün, Annette. III.Series. ISBN 92 4 159186 2 (NLM classification: WA 450) ISSN 1728-1652 Suggested Citation Tim Driscoll, et al. Occupational airborne particulates: assessing the environmental burden of disease at national and local levels. Geneva, World Health Organization, 2004. (Environmental Burden of Disease Series, No. 7). © World Health Organization 2004 All rights reserved. Publications of the World Health Organization can be obtained from Marketing and Dissemination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 2476; fax: +41 22 791 4857; email: [email protected]).
    [Show full text]
  • When Is Asbestos Dangerous?
    When is Asbestos Dangerous? The most common way for asbestos fibers to enter the body is through breathing. In fact, asbestos containing material is not generally considered to be harmful unless it is releasing dust or fibers into the air where they can be inhaled or ingested. Many of the fibers will become trapped in the mucous membranes of the nose and throat where they can then be removed, but some may pass deep into the lungs, or, if swallowed, into the digestive tract. Once they are trapped in the body, the fibers can cause health problems. Asbestos is most hazardous when it is friable. The term "friable" means that the asbestos is easily crumbled by hand, releasing fibers into the air. Asbestos-containing ceiling tiles, floor tiles, undamaged laboratory cabinet tops, shingles, fire doors, siding shingles, etc. are not highly friable and will not typically release asbestos fibers unless they are disturbed or damaged in some way. Health Effects Since it is difficult to destroy asbestos fibers, the body cannot break them down or remove them once they are lodged in lung or body tissues. There are three primary diseases associated with asbestos exposure: Asbestosis Asbestosis is a serious, chronic, non-cancerous respiratory disease. Inhaled asbestos fibers aggravate lung tissues, which cause them to scar. The risk of asbestosis is minimal for those who do not work with asbestos; the disease is rarely caused by neighborhood or family exposure. Those who renovate or demolish buildings that contain asbestos may be at significant risk, depending on the nature of the exposure and precautions taken.
    [Show full text]
  • Exposure to Asbestos a Resource for Veterans, Service Members, and Their Families
    War Related Illness and Injury Study Center WRIISC Office of Public Health Department of Veterans Affairs EXPOSURE TO ASBESTOS A RESOURCE FOR VETERANS, SERVICE MEMBERS, AND THEIR FAMILIES WHAT IS ASBESTOS? other areas below deck for fire safety widely used in ship building and Asbestos is a fibrous mineral that purposes. ACMs also were used in construction materials during that occurs naturally in the environment. navigation rooms, sleeping quarters, time frame. There are six different types and mess halls. • Navy personnel who worked of asbestos fibers, each with a below deck before the early 1990s HOW ARE SERVICE MEMBERS somewhat different size, width, since asbestos was often used EXPOSED TO ASBESTOS? length, and shape. Asbestos minerals below deck and the ventilation have good heat resistant properties. Because asbestos has been so widely was often poor. used in our society, most people Given these characteristics, asbestos • Navy Seamen who were have been exposed to some asbestos has been used for a wide range of frequently tasked with removing at some point in time. Asbestos is manufactured goods, including damaged asbestos lagging in most hazardous when it is friable. building materials (roofing shingles, engine rooms and then using This means that the asbestos material ceiling and floor tiles, paper products, asbestos paste to re-wrap the is easily crumbled by hand, thus and asbestos cement products), pipes, often with no respiratory releasing fibers into the air. People friction products (automobile clutch, protection and no other personal are exposed to asbestos when ACMs brake, and transmission parts), heat- protective equipment especially are disturbed or damaged, and resistant fabrics, packaging, gaskets, if wet technique was not used in small asbestos fibers are dispersed and coatings.
    [Show full text]
  • National Programmes for Elimination of Asbestos-Related Diseases
    Outline for the Development of National Programmes for Elimination of Asbestos-Related Diseases Contacts for further information on development of national programmes for elimination of asbestos-related diseases: Programme for Safety and Health at Work and the Environment Department of Public Health, Environmental and (SAFEWORK) Social Determinants of Health (PHE) International Labour Organization (ILO) World Health Organization (WHO) 4, route des Morillons, CH-1211 Geneva 22, Switzerland 20, avenue Appia, CH1211, Geneva 22, E-mail: [email protected] Switzerland E-mail: [email protected] Copyright © International Labour Organization and World Health Organization 2007 The designations employed in ILO and WHO publications, which are in conformity with United Nations practice, and the presentation of material therein do not imply the expression of any opinion whatsoever on the part of the International Labour Office and the World Health Organization concerning the legal status of any country, area or territory or of its authorities, or concerning the delimitation of its frontiers. Reference to names of firms and commercial products and processes does not imply their endorsement by the International Labour Office or the World Health Organization, and any failure to mention a particular firm, commercial product or process is not a sign of disapproval. All reasonable precautions have been taken by the International Labour Office and the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either express or implied. The responsibility for the interpre- tation and use of the material lies with the reader. In no event shall the International Labour Office and the World Health Organization be liable for damages arising from its use.
    [Show full text]
  • Pneumoconiosis
    Prim Care Respir J 2013; 22(2): 249-252 PERSPECTIVE Pneumoconiosis *Paul Cullinan1, Peter Reid2 1 Consultant Physician, Royal Brompton and Harefield NHS Foundation Trust, London, UK 2 Consultant Physician, Western General Hospital, Edinburgh, UK Introduction Figure 1. Asbestosis; the HRCT scan shows the typical The pneumoconioses are parenchymal lung diseases that arise from picture of subpleural fibrosis (solid arrow); in addition inhalation of (usually) inorganic dusts at work. Some such dusts are there is diffuse, left-sided pleural thickening (broken biologically inert but visible on a chest X-ray or CT scan; thus, while arrow), characteristic too of heavy asbestos exposure they are radiologically alarming they do not give rise to either clinical disease or deficits in pulmonary function. Others – notably asbestos and crystalline silica – are fibrogenic so that the damage they cause is through the fibrosis induced by the inhaled dust rather than the dust itself. Classically these give rise to characteristic radiological patterns and restrictive deficits in lung function with reductions in diffusion capacity; importantly, they may progress long after exposure to the causative mineral has finished. In the UK and similar countries asbestosis is the commonest form of pneumoconiosis but in less developed parts of the world asbestosis is less frequent than silicosis; these two types are discussed in detail below. Other, rarer types of pneumoconiosis include stannosis (from tin fume), siderosis (iron), berylliosis (beryllium), hard metal disease (cobalt) and coal worker’s pneumoconiosis. Asbestosis Clinical scenario How is the diagnosis made? Asbestosis is the ‘pneumoconiosis’ that arises from exposure to A man of 78 reports gradually worsening breathlessness; he has asbestos in the workplace.1 The diagnosis is made when, on the no relevant medical history of note and has never been a regular background of heavy occupational exposure to any type of asbestos, smoker.
    [Show full text]
  • Are Serum Aluminum Levels a Risk Factor in the Appearance of Spontaneous Pneumothorax?
    Turk J Med Sci 2010; 40 (3): 459-463 Original Article © TÜBİTAK E-mail: [email protected] doi:10.3906/sag-0901-11 Are serum aluminum levels a risk factor in the appearance of spontaneous pneumothorax? Serdar HAN1, Rasih YAZKAN2, Bülent KOÇER3,*, Gültekin GÜLBAHAR3, Serdal Kenan KÖSE4, Koray DURAL3, Ünal SAKINCI3 Aim: To investigate the relationship between aluminum and spontaneous pneumothorax (SP) development. Materials and methods: A patient group and a control group were formed with 100 individuals in each. The serum aluminum levels of the groups were determined and statistically compared. Results: The mean serum aluminum levels were 5.6 ± 2.4 μg/L (1.6-11.9) and 23.2 ± 15.4 μg/L (2-81) in the control and SP groups, respectively (P < 0.001). The specificity and sensitivity of the measurement of aluminum level were 74.4% and 86.4% in the SP group. The risk of SP development was found to be 18 times higher in individuals with high serum levels of aluminum compared to that in individuals with low serum levels of aluminum. Conclusion: A high level of aluminum is a risk factor for the development of SP. Key words: Aluminum, pneumothorax, public health Spontan pnömotoraks gelişiminde serum aluminyum seviyeleri bir risk faktörü müdür? Amaç: Bu çalışmada spontan pnömotoraks (SP) gelişimi ile serum aluminyum düzeyleri arasındaki ilişkinin analiz edilmesi amaçlandı. Yöntem ve gereç: Yüz SP hastasından oluşan hasta grubunun yanı sıra 100 kişiden oluşan sağlıklı kontrol grubu çalışmaya dahil edildi. Gruplar serum aluminyum düzeyleri açısından istatistiksel olarak kıyaslandı. Bulgular: Ortalama serum aluminyum düzeyleri SP ve kontrol grupları için sırasıyla 5,6 ± 2,4 μg/L (1,6-11,9) ve 23,2 ± 15,4 μg/L (2-81) bulundu (P < 0,001).
    [Show full text]
  • Asbestos in Drinking-Water
    Asbestos in Drinking-water Background document for development of WHO Guidelines for Drinking-water Quality 14 December 2020 Version for public review © World Health Organization 202X Preface To be completed by WHO Secretariat Acknowledgements To be completed by WHO Secretariat Abbreviations used in the text A/C Asbestos-cement ATSDR Agency for Toxic Substances and Disease Registry (USA) CHO Chinese hamster ovary FT-IR Fourier-transform infrared spectroscopy GI Gastrointestinal LECR Lifetime excess cancer risk MFL Million Fibres per Litre PCM Phase contrast microscopy SHE Syrian hamster embryo SIR Standardised incidence ratio F-yr/mL Total number of fibres in one year per mL of air (More potential abbreviations) CI Confidence interval NTU Nephelometric turbidity units TEM Transmission electron microscopy SAED Selected-area electron diffraction ROS Reactive oxygen species Table of Contents 1.0 EXECUTIVE SUMMARY ..................................................................................................................................... 1 2.0 GENERAL DESCRIPTION .................................................................................................................................... 1 2.1 Identity ................................................................................................................................................................. 1 2.2 Physicochemical properties ................................................................................................................................. 1 2.3
    [Show full text]
  • Pneumoconiosis in Coalminers
    6I8 POSTGRADUATE MEDICAL JOURNAL December I949 Postgrad Med J: first published as 10.1136/pgmj.25.290.618 on 1 December 1949. Downloaded from IRVINE, L. G., SIMSON, F. W., and STRACHAN, A. S. (1930), NEW YORK STATE DEPARTMENT OF LABOUR (1949), Proc. Intern. Conf. on Silicosis in Johannesburg, I.L.O. Studies Monthly Review, 28, No. 4, April. and Reports, Series F. (Industrial Hygiene), No. I3, p. 259. PERRY, K. M. A. (1948), Proc. Ninth Intern. Cong. of Ind. Med., JONES, W. R. (I933), ,. of Hyg., 33, 307. London (in the press). KETTLE, E. H. (I932), Y. Path. and Bat., 35, 395. KETTLE, E. H. (I934), Ibid., 38, 20o. POLICARD, A. (1947), Proc. Conf. of the Institution of Mining KING, E. J. (I945), M.R.C. Special Report Series, No. 250, p. 73. Engineers and Institution of Mining and Metalurgy, London, KING, E. J. (I947) Occ. Med., 4, 26. P. 24. KING, E. J., WRI6HT, B. M., and RAY, S. C. (I949), Paper read ROGERS, E. (i944), Paper read to the British Tuberculosis Associa- to the Path. Soc., Great Britain, January, 1949. tion. McLAUGHLIN, A. I. G., ROGERS, E., and DUNHAM, K. C. (I949), Brit. 3Y. Ind. Med., 6, I84. SHAVER, C. G. (1948), Radiology, 50, 760. MINERS' PHTHISIS MEDICAL BUREAU OF SOUTH SHAVER, C. G., and RIDDELL, A. R. (I947), J. Id. Hyg. and AFRICA (1946), Report for the Three Years ending Jy 31, Tox., 29, 145. I944 (South African Government Printer). VORWALD, A. J., and CARR, J. W. (1938), Amer. J7. Path., 14,49. PNEUMOCONIOSIS IN COAL MINERS By J.
    [Show full text]
  • Progressive Plasterer's Pneumoconiosis Complicated By
    Kurosaki et al. BMC Pulmonary Medicine (2019) 19:6 https://doi.org/10.1186/s12890-018-0776-4 CASEREPORT Open Access Progressive plasterer’s pneumoconiosis complicated by fibrotic interstitial pneumonia: a case report Fumio Kurosaki1,2*, Tamiko Takemura3, Masashi Bando1, Tomonori Kuroki1,2, Toshio Numao2, Hiroshi Moriyama4 and Koichi Hagiwara1 Abstract Background: Although the prevalence of pneumoconiosis has been decreasing due to improvements in working conditions and regular health examinations, occupational hygiene measures are still being established. Plasterers encounter a number of hazardous materials that may be inhaled in the absence of sufficient protection. Case presentation: A 64-year-old man who plastered without any dust protection for more than 40 years was referred to our hospital with suspected interstitial pneumonia. Mixed dust pneumoconiosis and an unusual interstitial pneumonia (UIP) pattern with fibroblastic foci were diagnosed by video-assisted thoracoscopic surgery, and an elemental analysis detected elements included in plaster work materials. Despite the cessation of plaster work and administration of nintedanib, the patient developed advanced respiratory failure. Conclusion: Plasterers are at an increased risk of pneumoconiosis and may have a poor prognosis when complicated by the UIP pattern. Thorough dust protection and careful monitoring are needed. Keywords: Plasterer, Pneumoconiosis, Usual interstitial pneumonia, Elemental analysis Background unusual interstitial pneumonia (UIP) pattern, the cause of With energy transition from coal to oil and nuclear power, which was identified as plaster work by an elemental coal mines completely disappeared by the early first analysis. Therefore, plasterers need to take proper coun- decade of the 2000s in Japan. Furthermore, improvements termeasures for dust prevention and undergo regular in industrial hygiene and vocational education have examinations.
    [Show full text]
  • Nebulizers: Diagnosis Codes – Medicare Advantage Policy Appendix
    UnitedHealthcare® Medicare Advantage Policy Appendix: Applicable Code List Nebulizers: Diagnosis Codes This list of codes applies to the Medicare Advantage Policy Guideline titled Approval Date: September 8, 2021 Nebulizers. Applicable Codes The following list(s) of procedure and/or diagnosis codes is provided for reference purposes only and may not be all inclusive. The listing of a code does not imply that the service described by the code is a covered or non-covered health service. Benefit coverage for health services is determined by the member specific benefit plan document and applicable laws that may require coverage for a specific service. The inclusion of a code does not imply any right to reimbursement or guarantee claim payment. Other Policies and Guidelines may apply. Diagnosis Code Description For HCPCS Codes A7003, A7004, and E0570 A15.0 Tuberculosis of lung A22.1 Pulmonary anthrax A37.01 Whooping cough due to Bordetella pertussis with pneumonia A37.11 Whooping cough due to Bordetella parapertussis with pneumonia A37.81 Whooping cough due to other Bordetella species with pneumonia A37.91 Whooping cough, unspecified species with pneumonia A48.1 Legionnaires' disease B20 Human immunodeficiency virus [HIV] disease B25.0 Cytomegaloviral pneumonitis B44.0 Invasive pulmonary aspergillosis B59 Pneumocystosis B77.81 Ascariasis pneumonia E84.0 Cystic fibrosis with pulmonary manifestations J09.X1 Influenza due to identified novel influenza A virus with pneumonia J09.X2 Influenza due to identified novel influenza A virus with other
    [Show full text]
  • Differential Diagnosis of Granulomatous Lung Disease: Clues and Pitfalls
    SERIES PATHOLOGY FOR THE CLINICIAN Differential diagnosis of granulomatous lung disease: clues and pitfalls Shinichiro Ohshimo1, Josune Guzman2, Ulrich Costabel3 and Francesco Bonella3 Number 4 in the Series “Pathology for the clinician” Edited by Peter Dorfmüller and Alberto Cavazza Affiliations: 1Dept of Emergency and Critical Care Medicine, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan. 2General and Experimental Pathology, Ruhr-University Bochum, Bochum, Germany. 3Interstitial and Rare Lung Disease Unit, Ruhrlandklinik, University of Duisburg-Essen, Essen, Germany. Correspondence: Francesco Bonella, Interstitial and Rare Lung Disease Unit, Ruhrlandklinik, University of Duisburg-Essen, Tueschener Weg 40, 45239 Essen, Germany. E-mail: [email protected] @ERSpublications A multidisciplinary approach is crucial for the accurate differential diagnosis of granulomatous lung diseases http://ow.ly/FxsP30cebtf Cite this article as: Ohshimo S, Guzman J, Costabel U, et al. Differential diagnosis of granulomatous lung disease: clues and pitfalls. Eur Respir Rev 2017; 26: 170012 [https://doi.org/10.1183/16000617.0012-2017]. ABSTRACT Granulomatous lung diseases are a heterogeneous group of disorders that have a wide spectrum of pathologies with variable clinical manifestations and outcomes. Precise clinical evaluation, laboratory testing, pulmonary function testing, radiological imaging including high-resolution computed tomography and often histopathological assessment contribute to make
    [Show full text]