UNIVERSIDADE FEDERAL DO ABC

PROGRAMA DE PÓS-GRADUAÇÃO EM EVOLUÇÃO E DIVERSIDADE

Rodrigo dos Reis Santos

Orientador: Prof. Dr. Guilherme Cunha Ribeiro

Sistemática do gênero Zelandomyia Alexander (Diptera: : Limoniidae)

Santo André – SP

2019 Rodrigo dos Reis Santos

Sistemática do gênero Zelandomyia Alexander (Diptera: Tipulomorpha: Limoniidae)

Dissertação apresentada ao Programa de Pós-graduação em Evolução e Diversidade da Universidade Federal do ABC, como requisito parcial à obtenção do título de Mestre em Evolução e Diversidade. Linha de pesquisa Sistemática e Biogeografia.

Orientador: Prof. Dr. Guilherme Cunha Ribeiro.

Santo André – SP

2019

Agradecimentos

A todos do Laboratório de Evolução e Diversidade, especialmente ao Me. Daubian Santos e a Me. Stephanie Sampronha por suas considerações e sugestões taxonômicas e aos colegas Pedro Monteiro e Thiago Godoy, que ingressaram junto a mim e compartilharam muitas das mesmas adversidades.

Ao orientador Prof. Dr. Guilherme Cunha Ribeiro por ter tão prontamente aceitado o pedido de orientação e seu auxílio durante todo o desenvolvimento do projeto.

Aos meus pais, Cleuza Aparecida dos Reis Santos e João Carlos Manoel dos Santos e ao meu irmão Rafael dos Reis Santos, assim como tantos amigos que me acompanharam no processo e nas dificuldades, em especial Ada Freire, André Xavier Martinez, Felipe Kobayashi, Guilherme Souza Abel, Moisés Corrêa, Leonardo Oliveira, Lucas Storto e Maurício Neto.

À UFABC pela bolsa concedida durante toda a realização deste projeto.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) - Código de Financiamento 001. “Slowest of all is the fire of rust that burns at the steel. Yet give it some short centuries, and the high trestle that spans the canyon will be only a line of red soil on the slopes below”

(George R. Stewart; Earth Abides, 1949) Resumo O gênero Zelandomyia incluía 12 espécies, das quais 11 são endêmicas da Nova Zelândia e 1 do Chile, uma distribuição geográfica interessante dentro do contexto da disjunção do pacífico sul. No entanto, o gênero nunca havia sido revisado e as relações filogenéticas das espécies ainda eram desconhecidas. Este trabalho teve como objetivo revisar taxonomicamente as espécies do gênero Zelandomyia, e investigar suas relações filogenéticas a partir do estudo dos caracteres do imago. As 12 espécies previamente descritas foram redescritas e ilustradas e uma nova espécie da Nova Zelândia foi descrita. As espécies da Nova Zelândia não formam um grupo monofilético, sendo que a espécie chilena, Z. armigera, está mais proximamente relacionada a espécies da Nova Zelândia. Do ponto de vista biogeográfico, uma possível explicação seria a diversificação do gênero antes da ruptura da Gondwana.

Palavras-chave: Chile, filogenia, Limoniidae, Nova Zelândia, taxonomia. Abstract

The genus Zelandomyia included 12 species, of which 11 are endemic to New Zealand and 1 to Chile, an interesting geographic distribution within the context of the South Pacific disjunction. However, the genus had never been reviewed and the phylogenetic relationships of the species were still unknown. This work aimed to provide a taxonomic review of the species of the genus Zelandomyia, and investigate their phylogenetic relationships based on the study of characters of the imago. The 12 previously described species were redescribed and illustrated and a new species from New Zealand was described. New Zealand species do not form a monophyletic group, and the Chilean species, Z. armigera, is more closely related to New Zealand species. From the biogeographical point of view, one possible explanation would be the diversification of the genus before the break up Gondwana.

Keywords: Chile, phylogeny, Limoniidae, New Zealand, taxonomy. Lista de Ilustrações

Figure 1. Habitus of Zelandomyia species (lateral view). a) ♂, Z.otagensis (Alexander); b) ♂, Z.penthoptera (Alexander); c) ♀, Z. ruapehuensis (Alexander); d) ♀ Z. armigera (Alexander). 23 Figure 2. Head of Z. otagensis (Alexander) (lateral view). 24 Figure 3. Antenna of Z. armigera (Alexander) (dorsal view). 24 Figure 4. Thorax of Z. armigera (Alexander) (lateral view). 25 Figure 5. Photograph of the wing of Z. cinereipleura Alexander (lateral view). 26 Figure 6. Wing of Z. cinereipleura Alexander in detail (lateral view). 26 Figure 7. Ovopositor of Z. watti (Alexander) (lateral view). 27 Figure 8. Wing of Z. cinereipleura (Alexander) (lateral view). 30 Figure 9. Male terminalia of Z. cinereipleura (Alexander) dorsal view). 30 Figure 10. Wing of Z. deviata (Alexander) (lateral view). 31 Figure 11. Male terminalia of Z. deviata (Alexander) (dorsal view). 31 Figure 12. Wing of Z. ruapehuensis (Alexander) (lateral view). 33 Figure 13. Male terminalia of Z. ruapehuensis (Alexander) (dorsal view). 33 Figure 14. Wing of Z. watti (Alexander) (lateral view). 36 Figure 15. Male terminalia of Z. watti (Alexander) (lateral view). 37 Figure 16. Wing of Z. angusta (Alexander) (lateral view). 37 Figure 17. Male terminalia of Z. angusta (Alexander) (dorsal view). 38 Figure 18. Wing of Z. otagensis (Alexander) (lateral view). 40 Figure 19. Male terminalia of Z. otagensis (Alexander) (dorsal view). 40 Figure 20. Wing of Z. pygmaea Alexander (lateral view). 42 Figure 21. Wing of Z. pallidula (Alexander) (lateral view). 44 Figure 22. Male terminalia of Z. pallidula (Alexander) (dorsal view). 44 Figure 23. Wing of Z. penthoptera (Alexander) (lateral view). 46 Figure 24. Male terminalia of Z. penthoptera (Alexander) (dorsal view). 46 Figure 25. Wing of Z. tantula (Alexander) (lateral view). 48 Figure 26. gonocoxite of Z. tantula (Alexander) (dorsal view). 48 Figure 27. Wing of Z. atridorsum (Alexander) (lateral view). 50 Figure 28. Male terminalia of Z. atridorsum (Alexander) (dorsal view). 50 Figure 29. Wing of Z. armigera (Alexander) (lateral view). 53 Figure 30. Male terminalia of Z. armigera (Alexander) (dorsal view). 53 Figure 31. Wing of Z. sp. n. 1 (lateral view). 55 Figure 32. Male terminalia of Z. sp. n. 1 (dorsal view). 55 Figure 33. Strict consensus of the two most parsimonious trees (L = 61, Ci = 0.40, Ri = 0.56). Nodes within the ingroup are numbered 60 Figure 34. Single most parsimonious trees obtained in the analysis using Implied Weighs for k = 3 (L = 64, Ci = 0.39, Ri = 0.52) and k = 4 (L = 63, Ci = 0.39, Ri = 0.53). Respective k values indicated above the cladograms 60 Figure 35. Geographical distribution of genus Zelandomyia. Blue dots represent area of occurrence for the (Z. armigera + Z. pygmaea + Z. tantula) clade, whereas remaining species are represented by red dots . 64 Sumário Introdução 13 O gênero Zelandomyia Alexander, 1923 14 Relações biogeográficas entre o Sul da America do Sul e Nova Zelândia 14 Objetivos 14 Referências 16 Systematics of genus Zelandomyia Alexander (Diptera: Tipulomorpha: Limoniidae) 20 Abstract 20 Introduction 20 Material and Methods 21 Genus Zelandomyia Alexander, 1923 22 Descriptions 27 Zelandomyia cinereipleura Alexander, 1922 27 Zelandomyia deviata Alexander, 1922 28 Zelandomyia ruapehuensis Alexander, 1922 31 Zelandomyia watti Alexander, 1922 34 Zelandomyia angusta Alexander, 1923 35 Zelandomyia otagensis Alexander, 1923 38 Zelandomyia pygmaea Alexander, 1923 41 Zelandomyia pallidula Alexander, 1924 42 Zelandomyia penthoptera Alexander, 1924 45 Zelandomyia tantula Alexander, 1926 47 Zelandomyia atridorsum Alexander, 1932 49 Zelandomyia armigera Alexander, 1945 51 Zelandomyia sp. n. 1 54 Identification Key 56 Phylogenetic Analysis 57 Zoogeographical Considerations 63 References 65 Conclusões 68 Appendix I. Distribution maps of the Neozelandic species 69 Introdução

Os Tipulomorpha (Insecta: Diptera) são um grupo diverso e cosmopolita, sendo reconhecidas mais de 15.000 espécies distribuídas em aproximadamente 700 gêneros e subgêneros (Oosterbroek, 2018). Ocorrem com mais frequência em florestas e na presença de água doce, mas podem ser encontrados em vários outros tipos de habitat, incluindo desertos, ambientes marinhos e altas altitudes (Tokunaga, 1930; Alexander & Byers, 1981; Gelhaus, 2005; Hagvar et al., 2013). Considerando a ampla variedade de ambientes habitados por estes organismos, o conhecimento de registros paleontológicos de pelo menos 208 milhões de anos (Krzeminski, 1992; Krzeminski & Evenhuis, 2000) e o alto nível de endemismo observado em suas espécies (De Jong et al., 2008), este é um grupo muito promissor para estudos biogeográficos (Ribeiro & Eterovic, 2011)

No entanto, Tipulomorpha é um táxon de posição problemática na filogenia dos Diptera, não havendo clareza nas relações deste grupo, tanto entre os táxons que o compõe, como com relação aos demais grupos de Diptera (Yeates et al., 2007; Ribeiro, 2008). O posicionamento problemático deste grupo afeta diretamente no entendimento da evolução e diversificação dos Diptera, pois há autores sugerem que os Tipulomorpha seriam uma das primeiras linhagens a se diversificar, sendo o grupo irmão de todos dos demais Diptera ou estando próximo da base (Michelsen, 1996; Blagoderov et al., 2007; Sinclair et al., 2007), enquanto outras hipóteses sugerem Tipulomoprha como grupo irmão de Brachycera (Oosterbroek & Courtney, 1995; Yeates & Wiegmann, 1999).

Quanto à filogenia do grupo, são reconhecidas as famílias Trichoceridae, Tipulidae, Limoniidae, Pediciidae e Cylindrotomidae (Starý, 1992), havendo controversas quanto à inclusão de Trichoceridae (Yeates et al., 2007). Uma proposta alternativa sugere que Limoniidae seja um grupo parafilético (Oosterbrock & Theowald, 1991), com estudos recentes corroborando tal hipótese (Ahonen, 2008; Ribeiro, 2008; Petersen et al., 2010), havendo assim a necessidade de esforços taxonômicos para a revisão dos gêneros e subgêneros descritos originalmente nesta família. 13 O Gênero Zelandomiya Alexander, 1923

Zelandomiya Alexander (1923a) pertence à diversa família Limoniidae, subfamília Limnophilinae, com 12 espécies reconhecidas, das quais onze são endêmicas da Nova Zelândia e uma ocorre no Chile (Oosterbroek, 2018). Não há muita informação disponível na literatura sobre o gênero além das descrições originais das doze espécies, que por sua vez são problemáticas por não estarem sequer acompanhadas de ilustrações. Além disso, a descrição original do gênero foi feita a partir de espécimes do sexo feminino, que frequentemente são crípticas e não possuem tantos detalhes morfológicos úteis para a diagnose quanto os machos.

As espécies Z. angusta Alexander (1923b), Z. cinereipleura Alexander (1922a), Z. deviata Alexander (1922b), Z. ruapehuensis Alexander (1922c) e Z. watti Alexander (1922c) haviam sido descritas originalmente como pertencentes a Macquart (1834), mas foram incluídas em Zelandomyia devido a características da terminalia masculina. Algo similar ocorreu com Z. armigera (Alexander, 1945), que também havia sido originalmente descrita como pertencente ao gênero Limnophila até a inclusão de dados sobre a morfologia do macho adulto (Alexander, 1981). Nenhum outro trabalho de revisão taxômica deste grupo foi realizado até então e suas relações filogenéticas ainda são desconhecidas.

Relações biogeográficas entre Sul da América do Sul e Nova Zelândia

Entre as questões mais debatidas na Biogeografia Histórica atual estão as relações biogeográficas entre o Sul da América do Sul e a Australásia. Uma síntese dos padrões biogeográficos envolvendo estas áreas, com muitos exemplos de distribuição de diversos táxons, é apresentada e discutida detalhadamente por Heads (2014). Como demonstrado por Ribeiro e Eterovic (2011), a disjunção América do Sul-Nova Zelândia é um dos intrincados padrões de distribuição dos Tipulomorpha dentro de um padrão mais geral denominado de Traçado Biogeográfico do Pacífico Sul (Trans-Pacific Track: Crisp et al., 1999). Pelo menos 14 quatro gêneros e subgêneros de Tipulomorpha são encontrados exclusivamente nestas duas áreas. No entanto, todos estes táxons necessitam de revisões taxonômicas e estudos filogenéticos mais aprofundados para que possam ser utilizados de maneira mais efetiva, num contexto comparativo mais amplo, em algum tipo de análise biogeográfica. Um estudo realizado recentemente (Santos & Ribeiro, 2018) demonstra que um destes gêneros endêmicos (Aphrophila) constitui um agrupamento monofilético.

A relevância deste trabalho se dá não somente ao fato de a literatura atual ser pouco informativa, mas também porque as relações filogenéticas ainda não exploradas do gênero Zelandomiya podem ser informativas dentro de questões envolvendo a história biogeográfica do hemisfério sul.

Objetivos

Num contexto mais amplo, o problema científico maior no qual se insere este trabalho refere-se ao aprofundamento do estudo dos padrões de distribuição dentro do Traçado Biogeográfico do Pacífico Sul (Trans-Pacific Track), dando continuidade a uma linha de pesquisa do Laboratório de Sistemática e Diversidade da UFABC (LSD-UFABC). Iniciado em 2009 pelo orientador dessa dissertação, tal linha de pesquisa já trouxe resultados relevantes na discussão de fatores causais dos padrões de distribuição dos grupos nestas áreas (e.g., Ribeiro. G. C. 2009; Ribeiro. G. C & Eterovic, A. 2011; Ribeiro, G. C. et al., 2014; Santos & Ribeiro, 2018). Portanto, os resultados do estudo taxonômico e filogenético serão interpretados no contexto biogeográfico, considerando também as possíveis congruências e incongruências nos padrões de diversidade e distribuição de Zelandomyia com outros gêneros de distribuição semelhante, como Aphrophila.

O objetivo específico deste trabalho, a despeito de suas implicações mais amplas, é, no entanto, a revisão taxonômica das espécies do gênero Zelandomiya, bem como uma análise filogenética baseada nos dados morfológicos. As descrições das doze espécies nominais do gênero se mostram muito superficiais, não sendo

15 acompanhadas de quaisquer registros fotográficos ou ilustrações. Além disso, nenhum estudo de revisão taxonômica foi feito para estas espécies, tampouco análises filogenéticas deste gênero.

No caso de Zelandomyia, objeto direto deste estudo, algumas questões precisam ser respondidas. A primeira trata da monofilia do gênero. A segunda trata da relação da espécie Sul Americana com as espécies da Nova Zelândia. Seriam dois clados distintos? Alternativamente, seria a espécie Sul-Americana mais proximamente aparentada a algum subgrupo da Nova Zelândia? Respostas alternativas a estas questões indicam diferentes caminhos para a interpretação do padrão de diversificação temporal e espacial do grupo em questão.

Referências

Ahonen, S. (2008) Analysis of the crane (Diptera, ) subfamilies relationships using molecular sequence data. Master of Science Thesis, Department of Ecological and Environmental Science, University of Jyvaskyla. Finland, pp. 1–28.

Alexander, C. P. (1926) New or little-known Tipulidae (Diptera). XXX. Australasian species. Annals and Magazine of Natural History (9) 17: 65-83

Alexander, C. P. (1922a). New or little-known Tipulidae (Diptera). X. Australasian species. Annals and Magazine of Natural History (9) 9: 505-524

Alexander, C. P. (1922b). New or little-known Tipulidae (Diptera). XI. Australasian species. Annals and Magazine of Natural History (9) 10: 83-99

Alexander, C. P. (1922c) New or little-known Tipulidae (Diptera). VIII. Australasian species. Annals and Magazine of Natural History (9) 9: 145-160.

Alexander, C. P. (1923a) New or little-known Tipulidae (Diptera). XIII. Australasian species. Annals and Magazine of Natural History (9) 11: 97-111.

16 Alexander, C. P. (1923b) New or little-known Tipulidae (Diptera). XIV. Australasian species. Annals and Magazine of Natural History (9) 11: 193-208.

Alexander, C. P. (1923c). New or little-known Tipulidae (Diptera). XVIII. Australasian species. Annals and Magazine of Natural History (9) 12: 376-393

Alexander, C. P. (1945). New or insufficiently-known crane-flies from Chile (Family Tipulidae, Order Diptera). Part II. Agricultura Tecnica 5: 5-23.

Alexander, C. P. (1981). New or little-known Neotropical Tipulidae (Diptera). Revista Chilena de Entomologia 10: 17.

Alexander, C. P. & Byers, G. W. (1981). Tipulidae. In: McAlpine, J.F. et al. (eds), Manual of Nearctic Diptera. Vol. 1. Biosystematics Research Institute, Ottawa, Ontario, Monograph 27: 153-190.

Blagoderov, V.; Grimaldi, D. A.; Fraser, N. C. (2007). How time flies for flies: Diverse Diptera from the Triassic of Virginia and early radiation of the order. American Museum Novitatis 3572: 1-39.

Crisp, M. D.; West, J. G. & Linder, H. P. (1999) Biogeography of the terrestrial flora. Flora of Australia, Vol. 1 (ed. by A.E. Orchard), pp. 321–367. Australian Biological Resources Study, Canberra.

De Jong, H.; Oosterbroek, P.; Gelhaus, J.; Reusch, H.; Young, C. (2008). Global biodiversity of craneflies (Insecta, Diptera: Tipulidea or Tipulidae sensu lato) in freshwater. Hydrobiologia 595: 457-467.

Gelhaus, J. K. (2005). Systematics and biogeography of the desert crane subgenus Tipula (Eremotipula) Alexander (Diptera: Tipulidae). Memoirs of the American Entomological Society 46: 1-235.

Hagvar, S.; Hein, N.; Loeffler, J.; Lundmo, S.; Straumfors, P. (2013). New data on the distribution of Chionea Dalman, 1816 (Diptera, Limoniidae), and on habitat choice of C. araneoides Dalman, 1816 at high altitudes. Norwegian Journal of Entomology 60: 176-181.

17 Heads, M. (2014) Biogeography of Australasia: A Molecular Analysis. Cambridge University Press.

Krzeminski, W. (1992) Triassic and Lower Jurassic stages of Diptera evolution. Mitteilungen der Schweizerische Entomologische Gesellschaft, 65, 39–59.

Krzeminski, W. & Evenhuis, N. L. (2000). Review of Diptera palaeontological records. In: Papp, L.; Darvas, B. (eds), Contributions to a Manual of Palaearctic Diptera 1: 535-564.

Macquart, J. (1834). Histoire naturelle des Insectes. Dipteres. Tome premier. Roret, Paris: 1-578.

Michelsen, V. (1996). Neodiptera: New insights into the adult morphology and higher level phylogeny of Diptera (Insecta). Zoological Journal of the Linnaean Society 117: 71-102

Oosterbroek, P. (2018) Catalogue of the Craneflies of the World (Insecta, Diptera, , Tipuloidea). Available from: http://ccw.naturalis.nl/ (Acesso em 25 de Outubro de 2018)

Oosterbroek, P. & Courtney, G. (1995). Phylogeny of the nematocerous families of Diptera (Insecta). Zoological Journal of the Linnean Society, 115(3), 267-311.

Oosterbroek, P. & Theowald, B. (1991). Phylogeny of the Tipuloidea based on characters of larvae and pupae (Diptera, Nematocera) with an index to the literature except Tipulidae. Tijdschrift voor Entomologie, 134, 211-267.

Petersen, M. J., Bertone, M. A., Wiegmann, B. M., & Courtney, G. W. (2010). Phylogenetic synthesis of morphological and molecular data reveals new insights into the higher‐ level classification of Tipuloidea (Diptera). Systematic entomology, 35(3), 526-545.

Ribeiro. G. C. (2009). The Neotropical genus Stibadocerina Alexander and its phylogenetic relationship to other Stibadocerinae genera: further evidence on an ancestral trans-Pacific Biota. Systematic Entomology, 34: 324-333.

18 Ribeiro, G.C. & Eterovic, A. (2011) Neat and clear: 700 species of crane flies (Diptera: Tipulomorpha) link Southern South America and Australasia. Systematic Entomology, 36, 754–767.

Ribeiro, G. C.; Santos, C. M. D.; Olivieri, L. T.; Santos, D.; Berbert, J. M. & Eterovic, A. (2014). The world's biogeographical regions revisited: global patterns of endemism in Tipulidae (Diptera). Zootaxa, 3847 (2): 241-258.

Santos, D. & Ribeiro, G. C. (2018) Systematics of the genus Aphrophila Edwards with description of fifteen new species (Diptera: Tipulomorpha: Limoniidae). Zootaxa 4473: 1-75.

Sinclair, B. J.; Borkent, A.; Wood, D. M. (2007). The male genital tract and aedeagal components of the Diptera with a discussion of their phylogenetic significance. Zoological Journal of the Linnean Society 150: 711-742.

Starý, J. (1992) Phylogeny and classification of Tipulomorpha, with special emphasis on the family Limoniidae. Acta Zoologica Cracoviensia 35: 11-36.

Tokunaga, M. (1930). The morphological and biological studies on a new marine cranefly, Limonia (Dicranomyia) monostromia, from Japan. Memoirs of the College of Agriculture, Kyoto University 10: 1-93.

Yeates, D. K. & Wiegmann, B. M. (1999). Congruence and controversy: toward a higher-level phylogeny of Diptera. Annual review of entomology, 44(1), 397-428.

Yeates, D. K.; Wiegmann, B. M.; Courtney, G. W.; Meier, R.; Lambkin, C.; Pape, T. (2007). Phylogeny and systematics of Diptera: two decades of progress and prospects. Zootaxa 1668: 565-590

19 Systematics of the genus Zelandomyia Alexander (Diptera: Tipulomorpha: Limoniidae)

Rodrigo dos Reis Santos* & Guilherme Cunha Ribeiro

Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Av. dos Estados, 5001. Bairro Bangu, 09210-580, Santo André, SP, Brazil

* e-mail: [email protected]

Abstract

The genus Zelandomyia included 12 species, of which 11 are endemic to New Zealand and 1 to Chile, an interesting geographic distribution within the context of the South Pacific disjunction. However, the genus had never been revised and the phylogenetic relationships of the species were still unknown. This work aimed to taxonomically revise species of the genus Zelandomyia, and investigate their phylogenetic relationships from the study of imago characters. The 12 previously described species were redescribed and illustrated and a new species from New Zealand was described. New Zealand species do not form a monophyletic group, and the Chilean species, Z. armigera, is more closely related to New Zealand species. From the biogeographical point of view, one possible explanation would be the diversification of the genus before the Gondwana rupture.

Keywords: Chile, crane flies, New Zealand, phylogeny, taxonomy.

Introduction

The genus Zelandomyia was erected by Alexander (1923a) to allocate Z. pygmaea, which the author remarked as being the smallest Hexatomine (Limnophilinae, according to the system of classification used herein) fly known at the time. Zelandomyia is placed in the diverse family Limoniidae, within the subfamily Limnophilinae (Oosterbroek, 2018) and includes 12 nominal species, 1 endemic to

20 Chile and 11 endemic to New Zealand. However, knowledge on the group is reduced, being mainly restricted to the original descriptions of the species.

Zelandomyia shares a pattern of distribution with at least five other genera and subgenera of Tipulomorpha: Zelandotipula, Aphrophila, Limnophilella, Dicranomyia (Zelandoglochina) (Ribeiro & Eterovic, 2011), but also with many other taxonomic groups (see Heads, 2017), which makes it an interesting group to be studied in a biogeographical context. However, the systematics of the genus still has to be explored. Even the monophyly of the group has not yet been tested, and the biogeographical meaning of its geographical distribution cannot be interpreted in a comparative framework without knowledge of the interrelationships of the included species.

This paper provides a taxonomic review of the genus Zelandomyia with the description of one new species. An identification key is provided for all the 13 species considered valid in this review. In addition, we provide a phylogenetic analysis based on morphological characters from the wing venation and male terminalia.

Material and Methods

All specimens used in this study belong to the Alexander Collection of Crane Flies of the National Museum of Natural History, Smithsonian Institution, USA (USNM) The microscope slides examined were all originally prepared by C. P. Alexander. The terminology adopted for most of the structures follows McAlpine (1981), while Ribeiro (2006) is used for the male terminalia and de Jong (2017), for the interpretation of wing veins. Abbreviations used in figures are as follows: aed, aedeagus; aed apod, aedeagus apodeme; anepm, anepimeron; anepst, anepisternum; aprn, anteropronotum; c gonst, clasper of gonostylus; comp eye, compound eye; cer, cercus; cx, coxa; goncx, gonocoxite; goncx apod, gonocoxite apodema; hlt, haltere; hyp val, hypogynial valve; interb, interbase; l gonst, lobe of gonostylus; lbl, labellum; lp, lateral process; ltg, laterotergite kepm, katepimeron; kepst, katepisternum; mr, meron; mtanepst, metanepisternum; mtepm, metepimeron;

21 mtg, mediotergite; mtn, metanotum; ped, pedicel; plp, palpus; pm, paramere; ppm, postpronotum presct, prescutum; rst, rostrum; scp, scape; sct, scutum; sctl, scutellum; st, sternite; tg, tergite.

Photographs were taken with a Nikon DS-Ri1 digital camera attached to Nikon SMZ1000 (stereoscopic) and 80i (compound) microscope. Deep focus images were stacked with Combine ZP software. Measurements were taken with Carl Zeis AxioVision (Release 4.8) software. Illustrations were made in camera lucida. Details on examined specimens are provided under species descriptions. Geographical coordinates for locations are provided in square brackets.

The phylogenetic analysis was performed based on morphological data mostly from the wing and male terminalia. Phylogenetic trees were obtained through maximum parsimony using TNT 1.5 (Goloboff & Catalano, 2016), searching trees using both equal weighs and implied weighing (Goloboff, 1993). Equally weighted analysis was performed using Traditional Search method, running with 5000 replications using Tree Bisection Reconnection (TBR), saving 500 trees per replication and keeping the maximum possible number of trees in memory. The analysis with implied weighs was done under the same conditions for values of k ranging from 3 to 10.

Family LIMONIIDAE: Subfamily: LIMNONPHILINAE

Genus Zelandomyia Alexander, 1923

Zelandomyia Alexander, 1923a: 106. Type-species Zelandomyia pygmaea Alexander, 1923a (original designation).

General Morphology

The morphology of head, thorax and female terminalia is well conserved within the genus, and these structures are described below. The morphology of the male terminalia, on the other hand, is quite variable and is provided under the headings

22 dealing with the descriptions of the individual species, along with other features considered as really distinctive of species level taxa.

Habitus of several representative species is shown in Figure 1. Zelandomyia species have a small body size, with none of the currently known species reaching more than 7 mm of wing length.

Figure 1. Habitus of Zelandomyia species (lateral view). a) ♂, Z. otagensis (Alexander); b) ♂, Z. penthoptera (Alexander); c) ♀, Z. ruapehuensis (Alexander); d) ♀ Z. armigera (Alexander). Head (Fig. 2) is 1.4 times higher than long, rostrum shorter than the length of the rest of the head. Antenna (Fig. 3) with 14 flagellomeres, flagellum with verticils exceeding segments in length. Pedicel cylindrical, scape almost circular, 1.25 times 23 wider than long. First flagellomere ovoid, similar to pedicel in length, but proportions are 1.25 times longer than wide. Remaining flagellomeres ovoid, 2 times longer than wide. Maxillary palpus with four segments.

Figure 2. Head of Z. otagensis (Alexander) (lateral view).

Figure 3. Antenna of Z. armigera (Alexander) (dorsal view). Thorax (Fig. 4) almost as long as high. Thoracic sclerites as in Figure 4. Hind legs longer than anterior and m id legs, tibial spurs formula 1:2:2. 24 Wings (Fig. 5) with macrotrichia along longitudinal veins. Arculus complete. Pterostigma very faint, only slightly darkened than rest of wing. Vein Sc reaching wing margin at level of two thirds the length of Rs; Sc-r present. Rs originating proximal to the level A1 reaches the wing margin. R2+3+4, splitting into R2+3 and R4, usually similar to the basal deflection of R5 in length; R2 faint, sometimes absent; R3 and R4 often parallel to each other. r-m similar to the basal deflection of R5 in length (Fig. 6). Four medial veins present. Discal cell closed except in Z. pygmaea; m-m similar to basal section M3 in length. Cell m1 variable in size.

Figure 4. Thorax of Z. armigera (Alexander) (lateral view).

25 Figure 5. Photograph of the wing of Z. cinereipleura Alexander (lateral view).

Figure 6. Wing of Z. cinereipleura Alexander in detail (lateral view).

Ovipositor (Fig. 7) with tenth tergite ovoid, 2.5 times longer than the ninth tergite. Posterior area of eighth sclerite with pronounced lobes on each side. Hypogynial valve reaching midlength of cercus.

Male terminalia varying considerably between species (see figures accompanying individual species descriptions in the next section). Gonocoxite usually 1.75 times longer than wide, with a pronounced, sclerotized apodema. Gonostylus terminal and bifid: lobe usually 3 times longer than wide, narrowing towards the tip; clasper ca. 10 times longer than wide, narrowing gradually toward the tip. 26 Figure 7. Ovipositor of Z. watti (Alexander) (lateral view).

Descriptions

Zelandomyia cinereipleura Alexander, 1922

(Figs. 8-9)

Zelandomyia cinereipleura (Alexander, 1922a) (as Limnophila), p. 92 (description), Alexander (1929) (habitat), p. 185.

MATERIAL EXAMINED. Holotype. Zelandomyia cinereipleura Alexander, ♂, New Zealand, Canterbury, Mt. Grey [43° 07’ S, 172° 32’ E], 1200 – 1500 ft, 27-XI-1921, J. W. Campbell & S. Lindsay, Holotype 2319 (USNM). Part of specimen pinned and part in slide prepared by Charles Paul Alexander. Material identified by Charles Paul Alexander. Zelandomyia cinereipleura Alexander, ♂, New Zealand, North Island, Ohakune [39° 25’ S, 175° 23’ E], 2060 ft, 16-XI-1922, T. R. Harris, Met. 2319 (USNM); Zelandomyia cinereipleura, ♂, New Zealand, Otago, Glenorchy [44° 50’ S, 168° 25 E] 1200 ft, 23-XII-1923, O. S. Flint (USNM); Zelandomyia cinereipleura, ♂, New Zealand, Canterbury, Mt. Grey [43° 07’ S, 172° 32’ E], 23-II-1924, J. W. Campbell, Met. 2319 (USNM). Specimens in slides prepared by Charles Paul Alexander.

DESCRIPTION. ♂, Wing length: 4.8 mm. Wing width: 1.5 mm. ♀, Wing length: 5.6 mm.

27 Wing (Fig. 8). Vein Sc reaching the wing margin proximal to the level of the bifurcation of Rs; Rs with a more straightened basal deflection, originating proximal to the level where A1 reaches the wing margin; R2+3+4 as long as the basal deflection of R5; R2 faint; R3 slightly sinuous as it reaches the wing margin; length of M1 c.a. one third of M1+2; M4 and R1 reaching the wing margin on the same level.

Male terminalia (Fig. 9). Lateral margin of the clasper of gonostylus slightly sinuous; tips of the clasper of gonostylus sharp, non-bifid; lobes of gonostylus almost as long as the clasper; gonocoxite apodema well sclerotized, elongate and oblong shaped at the portion covering the interbases; interbases not fully forming a loop; anterior margin of the paramere and aedeagal sheath wide and rounded; lateral processes with bifid projections; length of the aedeagus c. a. less than half the length of the gonocoxite.

COLORATION. General coloration dark grey. Palpi and antennae black. Prothorax dark greyish brown, clearer laterally, pleura ashen-grey, prescutum with three ill-defined brown stripes. Legs with dark grey coxae, rest of leg brown. Halteres pale, wings greyish yellow, veins pale brown. Abdomen dark brown.

REMARKS. The female could not be located for measures, but a female allotopotype is present in the original literature.

Zelandomyia deviata Alexander, 1922

(Figs. 10-11)

Zelandomyia deviata (Alexander, 1922b) (as Limnophila), p. 516 (description).

MATERIAL EXAMINED. Holotype. Zelandomyia deviata Alexander, ♂, New Zealand, Westland, Greymouth [42° 27’ S, 171° 12’ E], sea level, 7-IX-1921, T. R. Harris, Holotype 2269 (USNM). Part of specimen pinned and part in slide prepared by Charles Paul Alexander. Material identified by Charles Paul Alexander. Zelandomyia deviata Alexander, ♀, New Zealand, Westland, Kumara [42° 37’ S, 171°

28 11’ E], 22-IX-1929, J. W. Campbell, Met. 2269 (USNM). Specimen in slide prepared by Charles Paul Alexander.

DESCRIPTION. ♂, Wing length: 5.6 mm. Wing width: 1.6 mm. ♀, Wing length: 6.5 mm. Wing width 2.0 mm.

Wing (Fig. 10). Vein Sc reaching the wing margin distal to the level of the bifurcation of Rs; Rs with a more straightened basal deflection, originating on the level where A1 reaches the wing margin; R2+3+4 as long as the basal deflection of R5;

R2 absent; R3 shifts upwards as it approaches the wing margin; length of M1 slightly longer than one third of M1+2; M4 and R1 reaching the wing margin on the same level.

Male Terminalia (Fig. 11). Lateral margin of the clasper of the gonostylus curved; tips of the claspers of the gonostylus sharp and bifid; gonocoxite c. a. 1.25 times longer than wide; gonocoxite apodema more heavily sclerotized at the anterior portion, with the area covering the interbases somewhat rectangular shaped; interbases not fully forming a loop; anterior margin of the paramere longer than the anterior margin of the aedeagal sheath; lateral processes with a short sclerotized projection touching the aedeagus; aedeagus longer than half the length of the gonocoxite.

COLORATION. General coloration light reddish brown. Palpi brownish black, antennae dark yellowish brown, Prothorax light brown, pleura light brownish yellow, prescutum light reddish brown. Legs with coxae light brownish yellow, remainder dark brown. Halteres yellow, wings yellowish subhyaline, iridescent, veins brownish yellow. Abdomen dark brown.

29 Figure 8. Wing of Z. cinereipleura (Alexander) (lateral view).

Figure 9. Male terminalia of Z. cinereipleura (Alexander) dorsal view.

30 Figure 10. Wing of Z. deviata (Alexander) (lateral view).

Figure 11. Male terminalia of Z. deviata (Alexander) (dorsal view). Zelandomyia ruapehuensis Alexander, 1922

31 (Figs. 12-13)

Zelandomyia ruapehuensis (Alexander, 1922c) (as Limnophila), p. 152 (desciption). (Alexander 1923c), p. 199 (habitat), (Alexander, 1929) p. 185 (habitat).

MATERIAL EXAMINED. Holotype. Zelandomyia ruapehuensis Alexander, ♀, New Zealand, North Island, Mt. Ruapehu [39° 16’ S, 175° 34’ E], alpine zone, I-1921, M. N. Watt, Holotype (USNM). Pinned specimen. Material identified by Charles Paul Alexander. Zelandomyia ruapehuensis Alexander, ♂, New Zealand, North Island, Ohakune [39° 25’ S, 175° 23’ E], 2060 ft, 14-XI-1922, T. R. Harris, Met. 2097 (USNM); Zelandomyia ruapehuensis Alexander, ♂, New Zealand, Westland, Rewanui [42° 22’ S, 171° 18’ E], 15-II-1923. T. R. Harris (USNM), Met. 2097; Zelandomyia ruapehuensis Alexander, ♂, New Zealand, Otago, Paradise [44° 43’ S, 168° 22’ E], 1200ft, 30-XII-1923, O. S. Flint, Met. 2097 (USNM). Specimens in slides prepared by Charles Paul Alexander.

DESCRIPTION. ♂, Wing length: 5.0 mm; Wing width: 1.5 mm. ♀, Wing length: 6.3 mm, Wing width: 1.6 mm

Wing (Fig. 12). Vein Sc reaching the wing margin proximal to the level of the bifurcation of Rs; Rs with a more straightened basal deflection, originating proximal to the level A1 reaches the wing margin; R2+3+4 as long as the basal deflection of R5;

R2 absent; R3 mostly parallel to R4; length of M1 c. a. half the length of M1+2; M4 reaching the wing margin proximal to the level R1 reaches the wing margin.

Male Terminalia (Fig. 13). Lateral margin of the claspers of gonostylus slightly sinuous; tips of the claspers of the gonostylus ending in short, curved hooks; lobes of gonostylus almost as long as the clasper; gonocoxite well sclerotized, with the area covering the interbases somewhat rectangular shaped; interbases fully forming a loop; anterior margin of the paramere and aedeagal sheath ellipsoid; lateral processes curved and pointed towards the aedeagus; aedeagus c.a half the length of the gonocoxite.

COLORATION. General coloration yellow. Palpi and antennae brownish yellow. Prothorax yellow, although slightly darkened, pleura yellow, prescutum with

32 three faint dark stripes. Legs clear yellow, darkening towards the tarsal segments. Halteres yellow, wings light yellow with veins brownish yellow. Abdomen with light yellow sternites and dark brown tergites.

Figure 12. Wing of Z. ruapehuensis (Alexander) (lateral view).

Figure 13. Male terminalia of Z. ruapehuensis (Alexander) (dorsal view). Zelandomyia watti Alexander, 1922

(Figs. 14-15)

33 Zelandomyia watti (Alexander, 1922c) (as Limnophila), p. 153 (desciption). (Alexander 1923c), p. 199 (habitat), (Alexander, 1929) p. 185 (habitat).

MATERIAL EXAMINED. Holotype. Zelandomyia watti Alexander, ♀, New Zealand, North Island, Mt. Ruapehu [39° 16’ S, 175° 34’ E], 4000 – 5000 ft, I-1921, M. N. Watt, Holotype 2098 (USNM). Part of specimen pinned and part in slide. Material identified by Charles Paul Alexander. Zelandomyia watti Alexander, ♂, New Zealand, Otago, Ben Lommond [45° 00’ S, 168° 36’ E], 4000 ft, 26-XII-1921, G. Howes, Met. 2098 (USNM); Zelandomyia watti Alexander, ♂, New Zealand, Otago, Queenstown [45° 01’ S, 169° 39’ E], 26-XII-1921, G. Howes, Met. 2098 (USNM); Zelandomyia watti Alexander, ♀, New Zealand, North Island, Ohakune [39° 25’ S, 175° 23’ E], 2060 ft, 13-XII-1922, T. R. Harris, Met. 2098 (USNM); Zelandomyia watti Alexander, ♂, New Zealand, Westland, Ross [42° 54’ S, 170° 48’ E], 21-II-1923. T. R. Harris, Met. 2098 (USNM). Specimens in slides prepared by Charles Paul Alexander.

DESCRIPTION. ♂, Wing length: 5.5 mm; Wing width: 1.8 mm. ♀, Wing length: 7.0 mm; Wing width: 2.2 mm.

Wing (Fig. 14). Vein Sc reaching the wing margin proximal to the level of the bifurcation of Rs; Rs with a more straightened basal deflection, originating proximal to the level A1 reaches the wing margin; R2+3+4 as long as the basal deflection of R5;

R2 faint; R3 mostly parallel to R4; length of M1 c. a. two thirds the length of M1+2, but see remarks below; M4 and R1 reaching the wing margin on the same level.

Male Terminalia (Fig. 15). Lateral margin of the claspers of the gonostylus slighthly sinuous; tips of the claspers of the gonostylus ending in short, pointed hooks; lobes of gonostylus shorter than the claspers; gonocoxite apodema well sclerotized, with the area covering the interbases wide and oblong shaped; interbases not forming a loop; anterior margin of the paramere and aedeagal sheath rounded; lateral processes with lobes on its medial margin at the height of the base of the aedeagus while the posterior end is sharp and straight; aedeagus c.a half the length of the gonocoxite; aedeagus sheath distinctively shaped with four lobes at its posterior end.

34 COLORATION. General coloration dark brown. Palpi brownish yellow, antennae brownish yellow. Prothorax greyish brown, pleura gray, scutum dark brown, prescutum unmarked. Legs yellow, metatarsi brownish yellow. Halteres yellow, wings greyish yellow, iridescent. Abdomen brown.

REMARKS. There was a sizeable difference when comparing the size of M1 in relation to M1+2 between males and females (♂: M1 = 0.4x M1+2; ♀ M1 = 0.6x M1+2).

Zelandomyia angusta Alexander, 1923

(Figs. 16-17)

Zelandomyia angusta (Alexander, 1923b) (as Limnophila), p. 200 (description).

MATERIAL EXAMINED. Holotype. Zelandomyia angusta Alexander, ♂, New Zealand, Canterbury, Purau [43° 38’ S, 172° 44’ E], 19-II-1922, J. W. Campbell, Holotype 2444 (USNM). Part of specimen pinned and part in slide prepared by Charles Paul Alexander. Material identified by Charles Paul Alexander. Zelandomyia angusta Alexander, ♂, New Zealand, Canterbury, Mt. Grey [43° 07’ S, 172° 32’ E], 23-II-1924, J. W. Campbell, Met. 2444 (USNM). Specimen in slide prepared by Charles Paul Alexander.

DESCRIPTION. ♂, Wing length: 4.5 mm; Wing width: 1.1 mm.

Wing (Fig. 16). Wings c.a. four times longer than wide; vein Sc reaching the wing margin proximal to the level of the bifurcation of Rs; Rs with a more curved basal deflection, originating proximal to the level A1 reaches the wing margin; R2+3+4 as long as the basal deflection of R5; R2 faint; R3 mostly parallel to R1; length of M1 c. a. one third the length of M1+2; M4 and R1 reaching the wing margin on the same level.

Male Terminalia (Fig. 17). Lateral margin of the claspers of the gonostylus slightly sinuous; claspers of the gonostylus almost rounded at the tips, with only a very subtle point sticking out; lobes of gonostylus as long as the claspers; gonocoxite apodema well sclerotized, with the area covering the interbases oblong shaped; interbases fully forming a loop; anterior margin of the paramere and aedeagal sheath

35 rounded; lateral processes subtly curved towards the aedeagus somewhat wide at the posterior end; aedeagus c.a half the length of the gonocoxite.

COLORATION. Legs obscure brownish yellow. Wings pale brownish yellow, iridescent. Abdomen brown.

REMARKS. The coloration of the thorax and head could not be described due to the state of the sole pinned specimen. Female unknown.

Figure 14. Wing of Z. watti (Alexander) (lateral view).

36 Figure 15. Male terminalia of Z. watti (Alexander) (lateral view).

Figure 16. Wing of Z. angusta (Alexander) (lateral view).

37 Figure 17. Male terminalia of Z. angusta (Alexander) (dorsal view).

Zelandomyia otagensis Alexander, 1923

(Figs. 18-19)

Zelandomyia otagensis (Alexander, 1923b) (as Limnophila), p. 200 (description).

MATERIAL EXAMINED. Holotype. Zelandomyia otagensis Alexander, ♂, New Zealand, Otago, Queenstown [45° 01’ S, 169° 39’ E], 26-XII-1921, G. Howes, Holotype (USNM). Part of specimen pinned and part in slide prepared by Charles

38 Paul Alexander. Paratype. Zelandomyia otagensis Alexander, ♂, New Zealand, Otago, Queenstown [45° 01’ S, 169° 39’ E], 26-XII-1921, G. Howes, Paratype 2398 (USNM) Zelandomyia otagensis Alexander, ♂, New Zealand, Otago, Queenstown [45° 01’ S, 169° 39’ E], 4-I-1922, G. Howes, Paratype 2398 (USNM). Material identified by Charles Paul Alexander. Zelandomyia otagensis Alexander, ♂, New Zealand, Westland, Waiho [43° 32’ S, 170° 10’ E], 30-I-1922, A. Tonnoir (USNM), Met. 2398. Specimens in slides prepared by Charles Paul Alexander.

DESCRIPTION. ♂, Wing length: 6.2 mm; Wing width: 2.0 mm.

Wing (Fig. 18). Vein Sc reaching the wing margin proximal to the level of the bifurcation of Rs; Rs with a more straightened basal deflection, originating proximal to the level A1 reaches the wing margin; R2+3+4 as long as the basal deflection of R5;

R2 absent; R3 mostly parallel to R1; length of M1 c. a. one third the length of M1+2; M4 and R1 reaching the wing margin on the same level.

Male Terminalia (Fig. 19). Lateral margin of the claspers of the gonostylus slightly sinuous; tips of the claspers of the gonostylus ending in dulled points; lobes of gonostylus as long as the claspers; gonocoxite apodema well sclerotized, with the area covering the interbases elongate and oblong shaped; interbases fully forming a loop; anterior margin of the paramere and aedeagal sheath oblong; lateral processes almost straight, with a very subtle curvature towards the aedeagus; aedeagus c.a half the length of the gonocoxite.

COLORATION. General coloration dark brown. Palpi brown, antennae brown, first two segments light brown. Prothorax dark brown, pleura grayish brown, scutum brown, prescutum with indistinct dark stripes. Legs brownish yellow. Halteres yellow, wings greyish yellow. Abdomen dark brown.

REMARKS. Female unknown.

39 Figure 18 Wing of Z. otagensis (Alexander) (lateral view).

Figure 19. Male terminalia of Z. otagensis (Alexander) (dorsal view).

40 Zelandomyia pygmaea Alexander, 1923

(Fig. 20)

Zelandomyia pygmaea (Alexander, 1923a), p. 106 (description).

MATERIAL EXAMINED. Holotype. Zelandomyia pygmaea Alexander, ♀, New Zealand, North Island, Ohakune [39° 25’ S, 175° 23’ E], 28-I-1922, T. R. Harris, Holotype 2414 (USNM). Part of specimen pinned and part in slide prepared by Charles Paul Alexander. Material identified by Charles Paul Alexander. Zelandomyia pygmaea Alexander, ♀, New Zealand, Westland, Waiho [43° 32’ S, 170° 10’ E], 30-I-1922, A. Tonnoir, Met. 2414 (USNM). Specimen in slide prepared by Charles Paul Alexander.

DESCRIPTION. Wing length: ♀, 3.5 mm; Wing width: ♀, 1.0 mm.

Wing (Fig. 20). Vein Sc reaching the wing margin proximal to the level of the bifurcation of Rs; Rs with a more curved basal deflection, originating on the same level A1 reaches the wing margin; R2+3+4 longer than the basal deflection of R5; R2 absent; R3 distinctively arc shaped; length of M1 c. a. one third the length of M1+2; cross-vein m-m absent; M4 and R1 reaching the wing margin on the same level.

COLORATION. General coloration pale brownish yellow. Palpi pale brown, antennae reddish brown. Prothorax and pleura pale brownish yellow, prescutum unmarked. Legs with coxae and trochanters yellow, remainder pale brown. Halters pale, wings with a faint greyish yellow tinge. Abdomen pale brownish yellow.

REMARKS. While the male is currently unknown, the lack of cross-vein m-m is unlike any other species within the genus. Due to the state of the pinned specimen, coloration is as described originally by C. P. Alexander.

41 Figure 20. Wing of Z. pygmaea Alexander (lateral view).

Zelandomyia pallidula Alexander, 1924

(Figs. 21-22)

Zelandomyia pallidula (Alexander, 1924a), p. 301 (descrpition).

MATERIAL EXAMINED. Holotype. Zelandomyia pallidula Alexander, ♂, New Zealand, Westland, Greymouth, Coral Creek Track [42° 24’ S, 171° 15’ E], 13-II- 1923, T. R. Harris, Holotype (USNM). Pinned specimen. Paratype. Zelandomyia pallidula Alexander, ♂, New Zealand, Westland, Rewanui [42° 22’ S, 171° 18’ E], 15- II-1923, T. R. Harris, Paratype 2938 (USNM); Zelandomyia pallidula Alexander, ♂, New Zealand, Westland, Ross [42° 54’ S, 170° 48’ E], 21-II-1923, T. R. Harris, Paratype 2938 (USNM). Specimen in slide prepared by Charles Paul Alexander.

DESCRIPTION. ♂, Wing length: 4.6 mm; Wing width: 1.4 mm. ♀, Wing length: 5.5 mm

Wing (Fig. 21). Vein Sc reaching the wing margin on the level of the bifurcation of Rs; Rs with a more straightened basal deflection, originating proximal to the level

A1 reaches the wing margin; R2+3+4 as long as the basal deflection of R5; R2 absent; R3 mostly parallel to R1 and R4; length of M1 c. a. one third the length of M1+2; M4 and reaching the wing margin proximal to the level R1 reaches the wing margin.

42 Male Terminalia (Fig. 22). Lateral margin of the claspers of the gonostylus rounded; tips of the claspers of the gonostylus rounded; lobes of gonostylus as long as the claspers; gonocoxite apodema sclerotized only in the area connecting with the interbases and parameres, with the area covering the interbases oblong shaped; interbases fully forming a loop; anterior margin of the paramere and aedeagal sheath ellipsoid; lateral processes faintly sclerotized, joined lower than the tip of the aedeagus; aedeagus c.a less than half the length of the gonocoxite.

COLORATION. General coloration pale yellow. Palpi brownish yellow, antennae brownish yellow, Prothorax brownish yellow, pleura pale yellow, scutum unmarked, prescutum pale brownish yellow. Legs obscure yellow, coxae brownish yellow. Halteres pale yellow, wings pale yellow, iridescent, veins pale brown. Abdomen reddish brown.

REMARKS. The female could not be located for measures, but an allotype is present in the original literature.

43 Figure 21. Wing of Z. pallidula (Alexander) (lateral view).

Figure 22. Male terminalia of Z. pallidula (Alexander) (dorsal view).

44 Zelandomyia penthoptera Alexander, 1924 (Figs. 23-24)

Zelandomyia penthoptera (Alexander, 1924b), p. 371 (description).

MATERIAL EXAMINED. Holotype. Zelandomyia penthoptera Alexander, ♂, New Zealand, North Island, Ohakune [39° 25’ S, 175° 23’ E], 2060 ft, 23-III-1923, T. R. Harris, Holotype (USNM). Pinned specimen. Paratype. Zelandomyia penthoptera Alexander, ♂, New Zealand, North Island, Ohakune [39° 25’ S, 175° 23’ E], 2060 ft, 31-III-1923 Harris (USNM); Zelandomyia penthoptera Alexander, ♂, New Zealand, North Island, Ohakune [39° 25’ S, 175° 23’ E], 6-IV-1923, T. R. Harris, 2716 (USNM) Material identified by Charles Paul Alexander. Zelandomyia penthoptera Alexander, ♂, New Zealand, North Island, Mt. Ruapehu [39° 16’ S, 175° 34’ E], 4000 – 4500 ft, 20-I-1924, T. R. Harris, Met. 2716 (USNM). Specimens in slides prepared by Charles Paul Alexander.

DESCRIPTION. ♂, Wing length: 5.2 mm; Wing width: 1.4 mm.

Wing (Fig. 23). Vein Sc reaching the wing margin distal to the level of the bifurcation of Rs; Rs with a more curved basal deflection, originating on the same level A1 reaches the wing margin; R2+3+4 as long as the basal deflection of R5; R2 faint;

R3 mostly parallel to R4; length of M1 c. a. two thirds the length of M1+2; M4 reaching the wing margin proximal to the level R1 reaches the wing margin.

Male Terminalia (Fig. 24). Lateral margin of the claspers of the gonostylus slightly sinuous; tips of the claspers of the gonostylus ending in short rounded hooks; lobes of gonostylus shorter than the claspers; gonocoxite apodema more sclerotized latereally, with the area covering the interbases wide rectangular shaped; interbases not fully forming a loop; anterior margin of the paramere and aedeagal sheath ellipsoid; lateral processes, joined near medially in relation to the aedeagus and with two horn shaped projections; aedeagus c.a half the length of the gonocoxite

COLORATION. General coloration brownish black. Palpi black, antennae black, Prothorax black, pleura grey pruinose, scutum unmarked, prescutum reddish

45 brown. Legs obscure reddish brown. Halteres dark brown, wings with a strong brown tinge, veins dark brown. Abdomen brownish black.

REMARKS. Female unknown.

Figure 23. Wing of Z. penthoptera (Alexander) (lateral view).

Figure 24. Male terminalia of Z. penthoptera (Alexander) (dorsal view). Zelandomyia tantula Alexander, 1926 46 (Figs. 25-26)

Zelandomyia tantula (Alexander, 1926), p 73 (description).

MATERIAL EXAMINED. Holotype. Zelandomyia tantula Alexander, ♂, New Zealand, Westland, Rewanui [42° 22’ S, 171° 18’ E], 15-II-1923, T. R. Harris, Holotype 3045 (USNM). Part of specimen pinned and part in slide prepared by Charles Paul Alexander. Allotype. Zelandomyia tantula Alexander, ♀, New Zealand, Westland, Rewanui [42° 22’ S, 171° 18’ E], 15-II-1923, T. R. Harris, Allotype 3045 (USNM). Specimen in slide prepared by Charles Paul Alexander.

DESCRIPTION. ♂, Wing length: 3.5 mm; Wing width: 1.0 mm. ♀, Wing length: 3.8 mm; Wing width: 1.2 mm.

Wing (Fig. 25). Vein Sc reaching the wing margin proximal to the level of the bifurcation of Rs; Rs with a more curved basal deflection, originating on the same level A1 reaches the wing margin; R2+3+4 longer than the basal deflection of R5; R2 faint; R3 arced; length of M1 c. a. one third the length of M1+2; M4 and R1 reaching the wing margin on the same level.

Male Terminalia (Fig. 26). Lateral margin of the claspers of the gonostylus curved; tips of the claspers of the gonostylus sharp and bifid; lobes of gonostylus as long as the claspers; gonocoxyte with rounded projection at the base of its medial margin; gonocoxite apodema well sclerotized, except at the portion connecting to the parameres, area covering the interbases thin and ellipsoid; interbases fully forming a loop; anterior margin of the paramere and aedeagal sheath ellipsoid; aedeagus c.a half the length of the gonocoxite

COLORATION. General coloration brownish yellow. Palpi brown, antennae reddish brown. Prothorax and pleura brownish yellow, prescutum unmarked. Legs with coxae and trochanters yellow, remainder obscure yellow. Halteres pale, wings with a brownish yellow tinge. Abdomen brownish yellow.

REMARKS. There was too much overlapping of structures in the holotype slide, thus it was only possible to faithfully illustrate the gonocoxite.

47 Figure 25. Wing of Z. tantula (Alexander) (lateral view).

Figure 26. Gonocoxite of Z. tantula (Alexander) (dorsal view).

48 Zelandomyia atridorsum Alexander, 1932

(Figs. 27-28)

Zelandomyia atridorsum (Alexander, 1932), p. 462 (description, habitat)

MATERIAL EXAMINED. Holotype. Zelandomyia atridorsum Alexander, ♂, New Zealand, Canterbury, Mt. Grey [43° 07’ S, 172° 32’ E], 2000 ft, 19-III-1922, J. W. Campbell, Holotype (USNM). Part of specimen pinned and part in slide prepared by Charles Paul Alexander. Material identified by Charles Paul Alexander. Zelandomyia cinereipleura, ♂, New Zealand, Auckland, Swanson [36° 51’ S, 174° 34’ E], 20-VII-1950, W. E. Lomp. Specimen in slide prepared by Charles Paul Alexander.

DESCRIPTION. ♂, Wing length: 5.3 mm; Wing width: 1.6 mm.

Wing (Fig. 27). Vein Sc reaching the wing margin proximal to the level of the bifurcation of Rs; Rs with a more curved basal deflection, originating proximal to the level A1 reaches the wing margin; R2+3+4 as long as the basal deflection of R5; cross- vein r-m noticeably longer than the basal deflection of R5; R2 faint; R3 mostly parallel to R1; length of M1 c. a. one third the length of M1+2; M4 reaching the wing margin proximal to the level R1 reaches the wing margin.

Male Terminalia (Fig. 28). Lateral margin of the claspers of the gonostylus unique in its convex curvature; tips of the claspers of the gonostylus rounded; lobes of gonostylus as long as the claspers; gonocoxite apodema well sclerotized anteriorly, area covering the interbases wide and rounded; interbases fully forming a loop, said loop being distinctively wide laterally; anterior margin of the paramere and aedeagal sheath oblong; lateral processes joined medially in relation to the aedeagus; aedeagus c.a half the length of the gonocoxite

COLORATION. General coloration brownish black. Palpi dark brown, antennae brown. Prothorax dark brown, pleura dark brown, scutum unmarked, prescutum shiny black. Legs with coxae obscure yellow, remainder brownish yellow. Halteres pale, wings grayish yellow. Abdomen brownish black.

49 REMARKS. One specimen in slide was incorrectly identified aby C. P. Alexander as Z. cinereipleura Alexander, but its wings has the longer r-m and the male terminalia is identical the that of Z. atridorsum Alexander. Female unknown.

Figure 27. Wing of Z. atridorsum (Alexander) (lateral view).

Figure 28. Male terminalia of Z. atridorsum (Alexander) (dorsal view).

50 Zelandomyia armigera Alexander, 1945

(Figs. 29-30)

Zelandomyia armigera (Alexander, 1945) (as Limnophila), p. 20 (description, fig. 10: wing); (Alexander, 1981), p. 17 (description).

MATERIAL EXAMINED. Holotype. Zelandomyia armigera Alexander, ♀, Chile, Araucania, Angol [37° 48’ S, 72° 42’ W], 23-XII-1940, D. S. Bullock, Holotype (USNM). Part of specimen pinned and part in slide prepared by Charles Paul Alexander. Material identified by Charles Paul Alexander. Zelandomyia armigera Alexander, ♂, Chile, Chiloe Island, Aucar [42° 10’ S, 73° 30’ W], 10-I-1952, Luis E. Peña, Met. 8231 (USNM); Zelandomyia armigera Alexander, ♂, Chile, Arauco, Nahuelbuta [37° 47’ S, 72° 59’ W], 15-I-1954, Luis E. Peña, Met 8231 (USNM); Zelandomyia armigera Alexander, ♂, Chile, Los Lagos, Mt. Osorno, La Picada [41° 03’ S, 72° 25’ W], 14-III-1957, Luis E. Peña, Met. 8231 (USNM); Zelandomyia armigera Alexander, 5 ♂, Chile, Chiloe Island, Rio Caiheuco [42° 18’ S, 73° 45’ W], 10/20-II-1957, Luis E. Peña, Met. 8231 (USNM); Zelandomyia armigera Alexander, ♂, Chile, Magallanes, Rio Tres Brazos [53° 17’ S, 71° 05’ W], 9-I-1966, O. S. Flint, Met. 8231 (USNM). Specimens in slides prepared by Charles Paul Alexander.

DESCRIPTION. ♂, Wing length: 5.3 mm; Wing width: 1.6 mm. ♀, Wing length: 4.8 mm; Wing width: 1.4 mm.

Wing (Fig. 29). Vein Sc reaching the wing margin proximal to the level of the bifurcation of Rs; Rs with a more curved basal deflection, originating on the same level A1 reaches the wing margin; R2+3+4 longer than the basal deflection of R5; R2 faint; R3 slightly sinuous; length of M1 c. a. one third the length of M1+2; M4 reaching the wing margin distal to the level R1 reaches the wing margin.

Male Terminalia (Fig. 30). Lateral margin of the claspers of the gonostylus curved; tips of the claspers of the gonostylus rounded, with a sharp point sticking out laterally; lobes of gonostylus as long as the claspers; gonocoxite apodema thin, long and oblong; interbases not fully forming a loop and seeminlgy upside down (see remarks); parameres hook shaped at the area connecting with the interbases;

51 anterior margin of the paramere and aedeagal sheath rounded; lateral processes, joined medially in relation to the aedeagus; aedeagus ca. shorter than half the length of the gonocoxite

COLORATION. General coloration dark brown. Palpi black, antennae brownish black. Prothorax dark brown, pleura dark brown, scutum unmarked, prescutum dark brown. Legs obscure yellow. Halteres pale yellow, wings grayish subhyaline, veins brownish yellow. Abdomen dark brownish yellow.

REMARKS. Some specimens had sc-r branching slightly further away from the tip, but the overall pattern of other veins remained the same. All of the specimens in slides were damaged to the point the connection between the interbases, gonocoxite and parameres as difficult to interpret, thus the structures were illustrated separately.

52 Figure 29. Wing of Z. armigera (Alexander) (lateral view).

Figure 30. Male terminalia of Z. armigera (Alexander) (dorsal view).

53 Zelandomyia sp. n. 1

(Figs. 31-32)

MATERIAL EXAMINED. Holotype. Zelandomyia pallidula Alexander, ♂, New Zealand, Westland, Waiho [43° 32’ S, 170° 10’ E], 16-I-1922, Tonnoir (USNM). Specimen in slide prepared by Charles Paul Alexander. Material identified by Charles Paul Alexander. Zelandomyia pallidula Alexander, ♂, New Zealand, Westland, Waiho [43° 32’ S, 170° 10’ E], 17-I-1922, Tonnoir (USNM).; Zelandomyia ruapehuensis Alexander, ♂, New Zealand, North Island, Ohakune [39° 25’ S, 175° 23’ E], 2060 ft, 14-XI-1922, Harris (USNM); 2 Zelandomyia ruapehuensis Alexander, ♂, New Zealand, North Island, Ohakune [39° 25’ S, 175° 23’ E], 2060 ft, 22-XI-1922, Harris (USNM); Zelandomyia ruapehuensis Alexander, ♂, New Zealand, Westland, Greymouth, Coral Creek Track [42° 24’ S, 171° 15’ E], 13-II-1923, Harris (USNM); 2 Zelandomyia ruapehuensis Alexander, ♂, New Zealand, Otago, Paradise [44° 43’ S, 168° 22’ E], 1200ft, 30-XII-1923 Harris (USNM). Specimen in slide prepared by Charles Paul Alexander. Specimen in slide prepared by Charles Paul Alexander.

DESCRIPTION. ♂, Wing length: 5.6 mm; Wing width: 1.7 mm.

Wing (Fig. 31). Vein Sc reaching the wing margin on the same level of the bifurcation of Rs; Rs with a more straightened basal deflection, originating proximal to the level A1 reaches the wing margin; R2+3+4 as long as the basal deflection of R5;

R2 absent; R3 mostly parallel to R1 and R4; length of M1 c. a. half the length of M1+2; M4 reaching the wing margin proximal to the level R1 reaches the wing margin.

Male Terminalia (Fig. 32). Lateral margin of the claspers of the gonostylus slightly sinuous; tips of the claspers of the gonostylus ending in short, pointed hooks; lobes of gonostylus shorter than the clasper; gonocoxite c. a. 3x longer than wide; gonocoxite apodema partially sclerotized, with the area covering the interbases somewhat rectangular shaped; interbases fully forming a loop; anterior margin of the paramere and aedeagal sheath ellipsoid; lateral processes curved, wide and pointed towards the aedeagus; aedeagus c.a half the length of the gonocoxite.

54 REMARKS. Specimens were originally identfied as Z. pallidula Alexander and Z. ruapehuensis Alexander likely due to similarities of wing venation patterns, however the shape of the claspers of the gonostylus and the distinct elongate gonocoxite justify the identity of this new species. Coloration could not be described due to all specimens being on microscope slides.

Figure 31. Wing of Z. sp. n. 1 (lateral view).

Figure 32. Male terminalia of Z. sp. n. 1 (dorsal view).

55 Identification key

1) Vein A1 reaching the wing margin on the same level of the origin of Rs (Figs. 10, 23, 29)…………….………………………………………………………………………2

Vein A1 reaching the wing margin distal to the level of the origin of Rs (Figs. 8, 14, 16, 18, 31)…………………………………………………………………....…………..6

2) Vein Sc reaching the wing margin on the same level or distal to the bifurcation of Rs (Figs.10, 23)………….………………………………………………………………..3 Vein Sc reaching the wing margin proximal to the level of the bifurcation of Rs (Figs. 20, 25, 29)………………………………….……………………………....………….4

3) Vein R3 mostly parallel to vein R1 (Fig. 10)……………...……...………Z. deviata

Vein R3 mostly parallel to vein R4 (Fig. 23)……………...…..…...Z. penthoptera

4) Cross-vein m-m absent (Fig. 20)……………………...………………Z. pygmaea

Cross-vein m-m present (Fig. 29)………………………………………….……….5

5) Vein R3 sinuous (Fig. 29), gonocoxite apodema without lateral projection Fig. 30)…………………………………………………..………………………...….Z. armigera

Vein R3 straight (Fig. 25), gonocoxite apodema with lateral projection (Fig. 26) ………………………………………………………...………………...…………..Z. tantula

6) Basal deflection of vein Rs curved (Figs. 16, 27)……………….………………..7

Basal deflection of vein Rs. straight (Figs. 8, 18, 31)…………………………….8

7) Cross-vein r-m longer than the basal deflection of R5 (Fig. 27)....Z. atridorsum

Cross-vein r-m shorter than the basal deflection of R5 (Fig. 16)…....Z. angusta

8) Veins R1 and M4 reaching the wing margin on the same level (Figs. 8, 14)...... 9

Vein R1 reaching the wing margin distal to the level M4 reaches the wing margin (Figs. 21, 31)……………………………………………………………………….11

56 9) Interbases curl into a full loop (Fig. 19)……………………………...Z. otagensis

Interbases do not curl into a full loop (Fig. 15)…………………………………..10

10) Aedeagus sheath with four lobes on its posterior margin, lateral processes parallel to the aedeagus (Fig. 15)…………………………………………………..Z. watti

Aedeagus sheath without lobes on its posterior margin, lateral processes turn perpendicular to the aedeagus (Fig. 9)……………………….………...Z. cinereipleura

11) Lateral margin of the clasper of the gonostylus curved, lateral process connected medially in relation to the aedeagus (Fig. 22)……………..…….Z. pallidula

Lateral margin of the clasper of the gonostylus sinuous, lateral processes connected apically in relation to the aedeagus (Fig. 13)…………….………………...12

12) Gonocoxite c.a. 3x longer than wide, claspers of gonostylus with sharp hooked tips (Fig. 32)……………………………………………..………………………...Z. sp. n. 1

Gonocoxite c.a. 1.75x longer than wide, claspers of gonostylus with rounded hooked tips (Fig. 13)….…………………………………………………..Z. ruapehuensis

Phylogenetic analysis

The data matrix with 18 terminal taxa and 18 characters is shown below in Table I. The outgroups chosen for analysis were the limnophilinae fasciapenne Say 1823, Tinemyia margaritfera Hutton 1900, Tonnoirella gemella Alexander 1928, Edwardsomyia chiloensis Alexander 1929 and Chilelimnophila lyra Alexander 1952. The morphological characters of the outgroups were studied through the literature (taxonomic reviews and phylogenetic studies) (Edwards, 1923; Ribeiro, 2007, 2008; Gelhaus & Ruggeri, 2012)

Antennae

1) Number of flagellomeres: (0) 13; (0) 14. [1]

57 Wing

2) Point where vein M4 reaches the margin: (0) on the same level where R1 reaches the wing margin; (1) proximal to the level where R1 reaches the wing margin. [5]

3) Origin of vein Rs: (0) proximal to the level where A1 reaches the wing margin; (1) on the same level where A1 reaches the wing margin. [3]

4) Vein R2+3+4: (0) similar in length to the basal deflection of R5; (1) longer than the basal deflection of R5. [3]

5) Vein R3: (0) straight along its length; (1) sinuous along its length; (2) Arced. [5]

6) Vein R2: (0) clearly visible; (1) faint; (2) absent. [5]

7) Proportion between veins M1 and M1+2: (0) M1 ca. half the length of M1+2; (1) M1 ca. two thirds the length of M1+2; (2) M1 ca. one third the length of M1+2. [5]

8) Point where vein Sc reaches the wing margin: (0) at the same level of the bifurcation of Rs; (1) distal to the bifurcation of Rs; (2) proximal to the bifurcation of Rs. [4]

9) Basal deflection of vein Rs: (0) straightened (Fig. 14); (1) curved (Fig. 16). [2]

Male terminalia

10) Interbase curled: (0) absent; (1) incomplete (Fig. 11); (2) full (Fig. 13). [4]

11) Anterior margin of the paramere and aedeagal sheath: (0) narrow; (1) wide. [3]

12) Length of lobe of gonostylus in relation to the clasper of gonostylus: (0) similar; (1) shorter. [3]

13) Shape of the tip of clasper of gonostylus: (0) Pointed hook (Fig. 15); (1) Rounded hook (Fig. 13); (2) Rounded and hookless (Fig. 28) (3) bifid (Fig. 11). [6]

14) Lateral margin of the clasper of gonostylus: (0) curved (Fig. 11); (1) sinuous (Fig. 15). [4]

15) Setae in the clasper of gonostylus: (0) present (clasper of gonostylus hairy); (1) absent (clasper of gonostylus glabrous). [1]

16) Medial projection of the gonocoxite apodema: (0) absent; (1) present. [2]

58 17) Sclerotization of the Aedeagal sheath: (0) light; (1) heavy. [3]

18) Connection of the lateral processes of the sheat of aedeagus in relation to the aedeagus: (0) apical (Fig. 9); (1) medial (Fig. 24). [2]

Table I. Data matrix for phylogenetic analysis 000000000111111111 123456789012345678 Epiphragma fasciapenne 000000000000000000 Tinemyia margaritifera 1?01010000000000?0 Edwardsomyia chiloensis 1111001100100000?0 Tonnoirella gemella 1?????1??000-000?0 Chilelimnophila lyra 100112201000-11000 Z. pygmaea 101122221????????? Z. armigera 101111221?00101011 Z. ruapehuensis 110002120200101110 Z. pallidula 110002200200211100 Z. tantula 10112122120031110? Z. otagensis 100002220210001110 Z. watti 100001020111001111 Z. angusta 100001221210211110 Z. atridorsum 110001221210211101 Z. cinereipleura 100011220110001110 Z. deviata 101022200100311110 Z. penthoptera 111001011101111111 Z. sp. n. 1 110002220201001110

The parsimony analysis with Equal Weights yielded two most parsimonious trees of 60 steps, Consistency Index (Ci) = 0.41 and Retention index (Ri) = 0.56. The strict consensus of both cladograms is shown below (Fig. 33). The synapomorphies and homoplasies for each clade are discussed below, with character state changes displayed within the brackets. The analysis using Implied Weighing for k values ranging from 5 to 10 resulted in a single most parsimonious tree with the same topology as shown in Fig. 33. However, both k = 3 and k = 4 produced different results (Fig. 34). These results place Z. armigera outside of Zelandomyia and as a sister group to Chilielimnophila lyra. While this hypothesis questions the monophyly of Zelandomyia, it may just as well be the result of a bias towards convergent wing venation characters in both groups. For discussion, we have opted for the tree which remained consistent both in the Equal Weighing and Impied Weighing with k ranging from 5 to 10. 59 Figure 33. Strict consensus of the two most parsimonious trees (L = 61, Ci = 0.40, Ri = 0.56) obtained under Equal Weights. Nodes within the ingroup are numbered.

Figure 34. Single most parsimonious trees obtained in the analysis using Implied Weighs for k = 3 (L = 64, Ci = 0.39, Ri = 0.52) and k = 4 (L = 63, Ci = 0.39, Ri = 0.53). Respective k values indicated above the cladograms.

60 Node 1 [Synapomorphy – 1: 0 > 1] This node includes Zelandomyia and most outgroups. The clade is supported by the fourteen of flagellomeres in the antennae (Ch. 1) and the purpose of this character is to provide stability at the base of the tree. Node 2: [Synapomorphies – 6: 0 > 2; 7: 0 > 2; 14: 0 > 1; 15: 0 > 1] This node includes Zelandomyia and the outgroup Chilelimnophila lyra. The clade is supported by the length of M1 being ca. one third the length of M1+2 (Ch. 7) and the lack of setae in the claspers of the gonostylus (Ch. 15). The sinuous shape of the claspers of the gonostylus (Ch. 14) could be considered further evidence to support this clade, but it has a certain degree of homoplasy as evidenced by Nodes 5 and 10. As for the loss of vein R2, it is highly homoplastic feature within the Tipulomorpha (see Ribeiro, 2008). Node 3: [Synapomorphies – 4: 0 > 1; 10: 0 > 2; 16: 0 > 1] This node defines the genus Zelandomyia. The clade is supported by the distinctive curled interbases (Ch. 10) and the sclerotized medial projection of the gonocoxyte apodema (Ch. 16). While this may be a small amount of sinapomorphies, Limnophilinae are notorious for sharing several plesiomorphic features (see Ribeiro,

2008). Incidentally, the similar length between vein segment R2+3+4 and the basal deflection of R5 (Ch. 4) is a plesiomorphic in relation to Epiphragma fasciapenne. Node 4: [Synapomorphy – 17: 0 > 1] This node is supported by the heavily sclerotized paramere and lateral process (Ch. 17), however this character can be considered dubious as it was not possible to properly evaluate its state in most of the outgroups. Additionally, this character reverses to its plesiomorphic state in Z. atridorsum and Z. tantula. Node 5: [Synapomorphy – 8: 0 > 2; 14: 1 > 0] This node is supported by vein Sc reaching the margin proximal to the point of bifurcation of Rs (Ch. 8). This character is stable within the species in this clade. The curved lateral margin of the claspers supports this clade, though it’s a reversion.

61 Node 6: [Synapomorphy – 2: 0 > 1]

This node is only supported by the highly homoplastic character Ch.2 (L = 5,

Ci = 0.2, Ri = 0.2): vein M4 reaching the wing margin proximal to the level R1 reaches the wing margin.

Node 7: [Synapomorphy – 11: 1 > 0]

This node is only supported by the wider curvature of the paramere and aedeagal sheath (Ch. 11), which is homoplastic between the ingroup and Edwardsomyia chiloensis. This character also suffers a reversal in node 12.

Node 8: [Synapomorphy – 6: 2 > 1]

This node is supported by the presence of a faint vein R2 (Ch. 6). However, the occurrence of this vein alone is already highly homoplastic within the Tipulomorpha (Ribeiro, 2008).

Node 9: [Synapomorphy – 10: 2 > 1]

This node is supported by the interbases not fully forming a loop (Ch. 10). However, this character also occurs independently in Z. deviata and Z. penthoptera.

Node 10: [Synapomorphy – 9: 0 > 1; 13: 0 > 2; 14: 0 > 1]

This node is supported by the curved basal deflection of Rs (Ch. 9), the rounded, hookless tips of the clasper of gonostylus (Ch. 13) and the connected lateral processes of the aedeagal sheath (Ch. 16). While the changes in the tips of the clasper appear to occur independently throughout the Zelandomyia phylogeny, the curved basal deflection of Rs and the connected lateral processes are only homoplastic in relation to Chilelimnophila lyra and Zelandomyia watti respectively, while remaining stable within this clade.

Node 11: [Synapomorphy – 18: 0 > 1]

This node is supported by the joined lateral processes of the sheath of the aedeagus (Ch. 18), a character only shared with Z. watti.

62 Node 12: [Synapomorphy – 3: 0 > 1; 11: 0 > 1; 13: 2 > 1]

This node is supported by the vein Rs originating on the level A1 reaches the wing margin (Ch. 3), the rounded hooked tips of the clasper of gonostylus (Ch. 13) and the narrow anterior margin of the paramere and aedeagal sheath (Ch. 11). As discussed above, the tips of the clasper of the gonostylus suffered several changes within the phylogeny, and the narrow anterior margin of the paramere and aedeagal sheath is a plesiomoprhy. However, vein Rs originating proximal to the level A1 reaches the wing margin is well conserved within this clade, though it occurs independently in Z. deviata and the outgroup Edwardsomyia chiloensis.

Node 13: [Synapomorphy – 4: 1 > 0]

This node is supported by vein segment R2+3+4 longer than the basal deflection of R5 (Ch. 4). Although this is a plesiomorphic character, this is the only clade within Zelandomyia sharing this trait. As the male of Z. pygmaea is currently unknown, it is difficult ascertain the relationships of this species and the others in and out of this clade, as wing characters in this genus are often plesiomorphic and homoplastic, where as the male terminalia provides more information through several unique characters.

Zoogeographical Considerations

In New Zealand, all of the Zelandomyia species occur at least in one location of the South Island, with the exception of Z. penthoptera which is found exclusively on the North Island. Most of the species in the clade formed by node 5 occur in at least one location in the North Island, but Z. otagensis, Z. angusta, Z. atridorsum and Z. tantula remain restricted to the South Island. One interesting aspect of the distribution of the species in the South Island is that almost all of them occur in at least one location on the west side, except for Z. angusta, Z. atridorsum and Z. cinereipleura, which occur on the east side instead. This overall pattern might be the result of how the shores of the South Island are divided by the Southern Alps.

The global distribution of Zelandomyia (Fig. 35) when compared with the clades obtained in the phylogeny (Fig. 33) did not result in clearly distinguished 63 clades for New Zealand and South America (with the South American species nested within the New Zealand grade). This finding can be interpreted as congruent with the hypothesis of pre-rift vicariance as the main driving force of diversification of the Tipulomorpha in the South Pacific (Ribeiro & Eterovic, 2011; Santos & Ribeiro, 2018). It is worth stressing that the rifting of southern continents was a process that took place over tens of millions of years before total break-up and separation, and greatly altered the landscape and allowed for differentiation in a variety of groups, including (Heads, 2017).

Figure 35. Geographical distribution of genus Zelandomyia. Blue dots represent area of occurrence for the (Z. armigera + Z. pygmaea + Z. tantula) clade, whereas remaining species are represented by red dots.

The Islands of modern New Zealand were once part of the southern supercontinent Gondwana, sitting in relative geographical proximity to Australia, Antarctica and South America during the Mesozoic, starting their separation during the Late Cretaceous (Mortimer et al., 2017). Although we lack fossil evidence pertaining specifically to Zelandomyia, the Tipuloidea are estimated to date as far as the Middle Triassic (ca. 242-247 Ma.) (Lukashevich & Ribeiro, 2019) and there are known extant Limoniidae which have existed since the Cretaceous (Lukashevich, 2009). It is entirely possible that Zelandomyia may have existed at that time, or even earlier, suggesting the diversification of Chilean and Zealandic species preceded the separation of Gondwana.

64 Acknowledgements

We thank Me. Daubian Santos for comments and suggestions. Rodrigo dos Reis Santos was financially supported by UFABC (Federal University of the ABC)

References

Alexander, C. P. (1922a). New or little-known Tipulidae (Diptera). X. Australasian species. Annals and Magazine of Natural History (9) 9: 505-524

Alexander, C. P. (1922b). New or little-known Tipulidae (Diptera). XI. Australasian species. Annals and Magazine of Natural History (9) 10: 83-99

Alexander, C. P. (1922c) New or little-known Tipulidae (Diptera). VIII. Australasian species. Annals and Magazine of Natural History (9) 9: 145-160.

Alexander, C. P. (1923a) New or little-known Tipulidae (Diptera). XIII. Australasian species. Annals and Magazine of Natural History (9) 11: 97-111.

Alexander, C. P. (1923b) New or little-known Tipulidae (Diptera). XIV. Australasian species. Annals and Magazine of Natural History (9) 11: 193-208.

Alexander, C. P. (1923c) New or little-known Tipulidae (Diptera). XIII. Australasian species. Annals and Magazine of Natural History (9) 11: 97-111.

Alexander, C. P. (1924a) New or little-known Tipulidae (Diptera). XXIV. Australasian species. Annals and Magazine of Natural History (9) 14: 289-306

Alexander, C. P. (1924b) New or little-known Tipulidae (Diptera). XXI. Australasian species. Annals and Magazine of Natural History (9) 13: 359-380

Alexander, C. P. (1926) New or little-known Tipulidae (Diptera). XXX. Australasian species. Annals and Magazine of Natural History (9) 17: 65-83

Alexander, C. P. (1929) Tipuloidea of the Tongariro national Park and Ohakune District, New Zealand (Diptera). Philippine Journal of Science, 38, 157–199.

65 Alexander, C. P. (1932). New or little-known Tipulidae from New Zealand (Order Diptera). Part II. Records of the Canterbury Museum 3: 459-467.

Alexander, C. P. (1945). New or insufficiently-known crane-flies from Chile (Family Tipulidae, Order Diptera). Part II. Agricultura Tecnica 5: 5-23.

Edwards, F. W. (1923). A preliminary revision of the crane-flies of New Zealand (Anisopodidae, Tanyderidae, Tipulidae). Transactions and Proceedings of the New Zealand Institute 54: 265-352.

Gelhaus, J. K.; Ruggeri, A. (2012). A review of the genus Epiphragma (Diptera: Tipulidae s.l.) in North America (including Mexico). Canadian Entomologist 144: 353-375.

Goloboff, P.A. (1993) Estimating character weights during tree search. Cladistics, 9, 83–91.

Goloboff, P.A. & Catalano, S.A. (2016) TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics, 32, 221–238.

Heads, M. (2017) Biogeography and Evolution in New Zealand. CRC Press, Boca Raton, 635 pp. de Jong, H. (2017) Limoniidae and Tipulidae. In: Kirk-Spriggs, A. H. & Sinclair, B. J. (eds.), Manual of Afrotropical Diptera. Vol 2. Nematocerous Diptera and Lower Brachycera. Suricata 5. South African National Biodiveristy Institute, Pretoria, pp 427-477.

Lukashevich E. D. (2009). Limoniidae (Diptera) in the Upper Jurassic of Shar Teg, Mongolia. Zoosymposia, 3, 131–154

Lukashevich, E. D.; Ribeiro, G. C. (2019). Mesozoic fossils and the phylogeny of Tipulomorpha (Insecta: Diptera). Journal of Systematic Palaeontology, 2018: 1- 18.

McAlpine, J.F. (1981) Morphology and terminology—adults. In: McAlpine, J.F., Peterson, B.V., Shewell, G.E., Teskey, H.J., Vocheroth, J.R. & Wood, D.M.

66 (Eds.), Manual of Nearctic Diptera. Vol. 1. Agriculture Canada, Ottawa, pp. 9– 63.

Oosterbroek, P. (2018) Catalogue of the Craneflies of the World (Insecta, Diptera, Nematocera, Tipuloidea). Available from: http://ccw.naturalis.nl/ (accessed October 25th 2018)

Ribeiro, G.C. (2006) Homology of the gonostylus parts in crane flies, with emphasis on the families Tipulidae and Limoniidae (Diptera, Tipulomorpha). Zootaxa, 1110, 47–57.

Ribeiro, G. C. (2007). A review of the monotypic genus Chilelimnophila Alexander (Diptera: Tipulomorpha: Limoniidae). Papeis Avulsos de Zoologia 47: 203-211.

Ribeiro, G.C. & Eterovic, A. (2011) Neat and clear: 700 species of crane flies (Diptera: Tipulomorpha) link Southern South America and Australasia. Systematic Entomology, 36, 754–767.

67 Conclusões  A identificação e classificação correta de Zelandomyia requer o uso de caracteres da terminália masculina, pois há um grande número de plesiomorfias e convergências no restante de sua morfologia, incluindo as asas.  Embora muito similar a Z. pallidula e Z. ruapehuensis, a particularidade dos longos gonocoxitos por si só já justifica a identidade de Z. sp. n. 1 como uma espécie distinta.  A descoberta do macho de Z. pygmaea é essencial para a resolução das relações de parentesco entre esta espécie e os demais Zelandomyia.  Os padrões zoogeográficos observados em Zelandomyia sugerem que a diversificação do grupo antecede a separação da Gondwana, tanto no contexto global entre as espécies neozelandesas e a espécie chilena, como no contexto local com a separação de espécies nas regiões leste e o oeste da Ilha Sul.

68 Appendix I. Distribution maps of the Neozelandic species

69 Appendix I. (continued)

70