NP-Completeness Results for Edge Modification Problems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On Computing Longest Paths in Small Graph Classes
On Computing Longest Paths in Small Graph Classes Ryuhei Uehara∗ Yushi Uno† July 28, 2005 Abstract The longest path problem is to find a longest path in a given graph. While the graph classes in which the Hamiltonian path problem can be solved efficiently are widely investigated, few graph classes are known to be solved efficiently for the longest path problem. For a tree, a simple linear time algorithm for the longest path problem is known. We first generalize the algorithm, and show that the longest path problem can be solved efficiently for weighted trees, block graphs, and cacti. We next show that the longest path problem can be solved efficiently on some graph classes that have natural interval representations. Keywords: efficient algorithms, graph classes, longest path problem. 1 Introduction The Hamiltonian path problem is one of the most well known NP-hard problem, and there are numerous applications of the problems [17]. For such an intractable problem, there are two major approaches; approximation algorithms [20, 2, 35] and algorithms with parameterized complexity analyses [15]. In both approaches, we have to change the decision problem to the optimization problem. Therefore the longest path problem is one of the basic problems from the viewpoint of combinatorial optimization. From the practical point of view, it is also very natural approach to try to find a longest path in a given graph, even if it does not have a Hamiltonian path. However, finding a longest path seems to be more difficult than determining whether the given graph has a Hamiltonian path or not. -
Interval Completion with Few Edges∗
Interval Completion with Few Edges∗ Pinar Heggernes Christophe Paul Department of Informatics CNRS - LIRMM, and University of Bergen School of Computer Science Norway McGill Univ. Canada [email protected] [email protected] Jan Arne Telle Yngve Villanger Department of Informatics Department of Informatics University of Bergen University of Bergen Norway Norway [email protected] [email protected] ABSTRACT Keywords We present an algorithm with runtime O(k2kn3m) for the Interval graphs, physical mapping, profile minimization, following NP-complete problem [8, problem GT35]: Given edge completion, FPT algorithm, branching an arbitrary graph G on n vertices and m edges, can we obtain an interval graph by adding at most k new edges to G? This resolves the long-standing open question [17, 6, 24, 1. INTRODUCTION AND MOTIVATION 13], first posed by Kaplan, Shamir and Tarjan, of whether Interval graphs are the intersection graphs of intervals of this problem could be solved in time f(k) nO(1). The prob- the real line and have a wide range of applications [12]. lem has applications in Physical Mapping· of DNA [11] and Connected with interval graphs is the following problem: in Profile Minimization for Sparse Matrix Computations [9, Given an arbitrary graph G, what is the minimum number 25]. For the first application, our results show tractability of edges that must be added to G in order to obtain an in- for the case of a small number k of false negative errors, and terval graph? This problem is NP-hard [18, 8] and it arises for the second, a small number k of zero elements in the in both Physical Mapping of DNA and Sparse Matrix Com- envelope. -
A Subexponential Parameterized Algorithm for Proper Interval Completion
A subexponential parameterized algorithm for Proper Interval Completion Ivan Bliznets1 Fedor V. Fomin2 Marcin Pilipczuk2 Micha l Pilipczuk2 1St. Petersburg Academic University of the Russian Academy of Sciences, Russia 2Department of Informatics, University of Bergen, Norway ESA'14, Wroc law, September 9th, 2014 Bliznets, Fomin, Pilipczuk×2 SubExp for PIC 1/17 Proper interval graphs: graphs admitting an intersection model of intervals on a line s.t. no interval contains any other interval. Unit interval graphs: graphs admitting an intersection model of unit intervals on a line. PIG = UIG. (Proper) interval graphs Interval graphs: graphs admitting an intersection model of intervals on a line. Bliznets, Fomin, Pilipczuk×2 SubExp for PIC 2/17 Unit interval graphs: graphs admitting an intersection model of unit intervals on a line. PIG = UIG. (Proper) interval graphs Interval graphs: graphs admitting an intersection model of intervals on a line. Proper interval graphs: graphs admitting an intersection model of intervals on a line s.t. no interval contains any other interval. Bliznets, Fomin, Pilipczuk×2 SubExp for PIC 2/17 PIG = UIG. (Proper) interval graphs Interval graphs: graphs admitting an intersection model of intervals on a line. Proper interval graphs: graphs admitting an intersection model of intervals on a line s.t. no interval contains any other interval. Unit interval graphs: graphs admitting an intersection model of unit intervals on a line. Bliznets, Fomin, Pilipczuk×2 SubExp for PIC 2/17 (Proper) interval graphs Interval graphs: graphs admitting an intersection model of intervals on a line. Proper interval graphs: graphs admitting an intersection model of intervals on a line s.t. -
Combinatorial Optimization and Recognition of Graph Classes with Applications to Related Models
Combinatorial Optimization and Recognition of Graph Classes with Applications to Related Models Von der Fakult¨at fur¨ Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von Diplom-Mathematiker George B. Mertzios aus Thessaloniki, Griechenland Berichter: Privat Dozent Dr. Walter Unger (Betreuer) Professor Dr. Berthold V¨ocking (Zweitbetreuer) Professor Dr. Dieter Rautenbach Tag der mundlichen¨ Prufung:¨ Montag, den 30. November 2009 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfugbar.¨ Abstract This thesis mainly deals with the structure of some classes of perfect graphs that have been widely investigated, due to both their interesting structure and their numerous applications. By exploiting the structure of these graph classes, we provide solutions to some open problems on them (in both the affirmative and negative), along with some new representation models that enable the design of new efficient algorithms. In particular, we first investigate the classes of interval and proper interval graphs, and especially, path problems on them. These classes of graphs have been extensively studied and they find many applications in several fields and disciplines such as genetics, molecular biology, scheduling, VLSI design, archaeology, and psychology, among others. Although the Hamiltonian path problem is well known to be linearly solvable on interval graphs, the complexity status of the longest path problem, which is the most natural optimization version of the Hamiltonian path problem, was an open question. We present the first polynomial algorithm for this problem with running time O(n4). Furthermore, we introduce a matrix representation for both interval and proper interval graphs, called the Normal Interval Representation (NIR) and the Stair Normal Interval Representation (SNIR) matrix, respectively. -
Parallel Gaussian Elimination with Linear Fill
Parallelizing Elimination Orders with Linear Fill Claudson Bornstein Bruce Maggs Gary Miller R Ravi ;; School of Computer Science and Graduate School of Industrial Administration Carnegie Mellon University Pittsburgh PA Abstract pivoting step variable x is eliminated from equa i This paper presents an algorithm for nding parallel tions i i n elimination orders for Gaussian elimination Viewing The system of equations is typically represented as a system of equations as a graph the algorithm can be a matrix and as the pivots are p erformed some entries applied directly to interval graphs and chordal graphs in the matrix that were originally zero may b ecome For general graphs the algorithm can be used to paral nonzero The number of new nonzeros pro duced in lelize the order produced by some other heuristic such solving the system is called the l l Among the many as minimum degree In this case the algorithm is ap dierent orders of the variables one is typically chosen plied to the chordal completion that the heuristic gen so as to minimize the ll Minimizing the ll is desir erates from the input graph In general the input to able b ecause it limits the amount of storage needed to the algorithm is a chordal graph G with n nodes and solve the problem and also b ecause the ll is strongly m edges The algorithm produces an order with height correlated with the total number of op erations work p erformed at most O log n times optimal l l at most O m and work at most O W G where W G is the Gaussian elimination can also b e viewed -
Treewidth and Pathwidth of Permutation Graphs
Treewidth and pathwidth of permutation graphs Citation for published version (APA): Bodlaender, H. L., Kloks, A. J. J., & Kratsch, D. (1992). Treewidth and pathwidth of permutation graphs. (Universiteit Utrecht. UU-CS, Department of Computer Science; Vol. 9230). Utrecht University. Document status and date: Published: 01/01/1992 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. -
Classes of Perfect Graphs
This paper appeared in: Discrete Mathematics 306 (2006), 2529-2571 Classes of Perfect Graphs Stefan Hougardy Humboldt-Universit¨atzu Berlin Institut f¨urInformatik 10099 Berlin, Germany [email protected] February 28, 2003 revised October 2003, February 2005, and July 2007 Abstract. The Strong Perfect Graph Conjecture, suggested by Claude Berge in 1960, had a major impact on the development of graph theory over the last forty years. It has led to the definitions and study of many new classes of graphs for which the Strong Perfect Graph Conjecture has been verified. Powerful concepts and methods have been developed to prove the Strong Perfect Graph Conjecture for these special cases. In this paper we survey 120 of these classes, list their fundamental algorithmic properties and present all known relations between them. 1 Introduction A graph is called perfect if the chromatic number and the clique number have the same value for each of its induced subgraphs. The notion of perfect graphs was introduced by Berge [6] in 1960. He also conjectured that a graph is perfect if and only if it contains, as an induced subgraph, neither an odd cycle of length at least five nor its complement. This conjecture became known as the Strong Perfect Graph Conjecture and attempts to prove it contributed much to the developement of graph theory in the past forty years. The methods developed and the results proved have their uses also outside the area of perfect graphs. The theory of antiblocking polyhedra developed by Fulkerson [37], and the theory of modular decomposition (which has its origins in a paper of Gallai [39]) are two such examples. -
Parameterized Complexity of Induced Graph Matching on Claw-Free Graphs
Parameterized Complexity of Induced Graph Matching on Claw-Free Graphs∗ Danny Hermelin† Matthias Mnich‡ Erik Jan van Leeuwen§ Abstract The Induced Graph Matching problem asks to find k disjoint induced subgraphs isomorphic to a given graph H in a given graph G such that there are no edges between vertices of different subgraphs. This problem generalizes the classical Independent Set and Induced Matching problems, among several other problems. We show that In- duced Graph Matching is fixed-parameter tractable in k on claw-free graphs when H is a fixed connected graph, and even admits a polynomial kernel when H is a complete graph. Both results rely on a new, strong, and generic algorithmic structure theorem for claw-free graphs. Complementing the above positive results, we prove W[1]-hardness of Induced Graph Matching on graphs excluding K1,4 as an induced subgraph, for any fixed complete graph H. In particular, we show that Independent Set is W[1]-hard on K1,4-free graphs. Finally, we consider the complexity of Induced Graph Matching on a large subclass of claw-free graphs, namely on proper circular-arc graphs. We show that the problem is either polynomial-time solvable or NP-complete, depending on the connectivity of H and the structure of G. 1 Introduction A graph is claw-free if no vertex in the graph has three pairwise nonadjacent neighbors, i.e. if it does not contain a copy of K1,3 as an induced subgraph. The class of claw-free graphs contains several well-studied graph classes such as line graphs, unit interval graphs, de Bruijn graphs, the complements of triangle-free graphs, and graphs of several polyhedra and polytopes. -
The Wonderful World of Chordal Graphs
The Wonderful World of Chordal Graphs Martin Charles Golumbic University of Haifa, Israel The 32nd European Conference on Combinatorial Optimization, ECCO XXXII, Malta, 2019 Preamble In 1970, Claude Berge published the original French version his fundamental and perhaps most important book, Graphes et Hypergraphes. To many graph theorists, its chapters were saplings ready to be cultivated into the vast forest that we know today. As we enter this 50th (Jubilee) anniversary year, we celebrate Le Bois de Berge with its mathematical palms, pines and poplars, firs, fruit and ficuses, oaks, maples and cacti. One of those sapling chapters was on Perfect Graphs. Berge challenged us with his Perfect Graph Conjecture, and surveyed its core subclasses: comparability graphs, interval graphs, and triangulated (chordal) graphs. —citing Fulkerson, Gallai, Ghouila-Houri, Gilmore, Hoffman, Hojós, Lovász. By the time the English version appeared in 1973, more sprouts could have been added to the blossoming family —Benzer, Dirac, Fishburn, Gavril, Roberts, Rose, Trotter. However, these and others would wait until 1980, when my own book Algorithmic Graph Theory and Perfect Graphs first appeared. —a direct outgrowth of Berge’s inspiring chapter. Triangulated graphs – also known as rigid circuit graphs (Dirac), acyclic graphs (Lekkerkerker and Boland) But it was Fanica Gavril who coined the term chordal graphs. A graph G is a chordal graph, if every cycle in G of length greater than or equal to 4 has a chord, that is, an edge connecting two vertices that are not consecutive on the cycle. NOT a chordal graph This IS a It has many copies of C4 chordal graph Fanica Gavril: “I knew that these graphs occurred before as triangulated graphs, but the term triangulated was also used for maximal planar graphs, implying the statement, ‘some planar triangulated graphs are not triangulated graphs’ (like the complete wheels). -
Permutations and Permutation Graphs
Permutations and permutation graphs Robert Brignall Schloss Dagstuhl, 8 November 2018 1 / 25 Permutations and permutation graphs 4 1 2 6 3 8 5 7 • Permutation p = p(1) ··· p(n) • Inversion graph Gp: for i < j, ij 2 E(Gp) iff p(i) > p(j). • Note: n ··· 21 becomes Kn. • Permutation graph = can be made from a permutation 2 / 25 Permutations and permutation graphs 4 1 2 6 3 8 5 7 • Permutation p = p(1) ··· p(n) • Inversion graph Gp: for i < j, ij 2 E(Gp) iff p(i) > p(j). • Note: n ··· 21 becomes Kn. • Permutation graph = can be made from a permutation 2 / 25 Ordering permutations: containment 1 3 5 2 4 < 4 1 2 6 3 8 5 7 • ‘Classical’ pattern containment: s ≤ p. • Translates to induced subgraphs: Gs ≤ind Gp. • Permutation class: a downset: p 2 C and s ≤ p implies s 2 C. • Avoidance: minimal forbidden permutation characterisation: C = Av(B) = fp : b 6≤ p for all b 2 Bg. 3 / 25 Ordering permutations: containment 1 3 5 2 4 < 4 1 2 6 3 8 5 7 • ‘Classical’ pattern containment: s ≤ p. • Translates to induced subgraphs: Gs ≤ind Gp. • Permutation class: a downset: p 2 C and s ≤ p implies s 2 C. • Avoidance: minimal forbidden permutation characterisation: C = Av(B) = fp : b 6≤ p for all b 2 Bg. 3 / 25 Ordering permutations: containment 1 3 5 2 4 < 4 1 2 6 3 8 5 7 • ‘Classical’ pattern containment: s ≤ p. • Translates to induced subgraphs: Gs ≤ind Gp. • Permutation class: a downset: p 2 C and s ≤ p implies s 2 C. -
Permutation Graphs --- an Introduction
Introduction Optimization problems Recognition Encoding all realizers Conclusion Permutation graphs | an introduction Ioan Todinca LIFO - Universit´ed'Orl´eans Algorithms and permutations, february 2012 1/14 Introduction Optimization problems Recognition Encoding all realizers Conclusion Permutation graphs 1 23 4 2 3 4 1 5 6 5 6 • Optimisation algorithms use, as input, the intersection model (realizer) • Recognition algorithms output the intersection(s) model(s) 2/14 Introduction Optimization problems Recognition Encoding all realizers Conclusion Plan of the talk 1. Relationship with other graph classes 2. Optimisation problems : MaxIndependentSet/MaxClique/Coloring ; Treewidth 3. Recognition algorithm 4. Encoding all realizers via modular decomposition 5. Conclusion 3/14 Introduction Optimization problems Recognition Encoding all realizers Conclusion Definition and basic properties 2 1 6 5 4 3 1 23 4 2 3 4 1 5 6 5 6 1 5 6 3 2 4 • Realizer:( π1; π2) • One can "reverse" the realizer upside-down or right-left : (π1; π2) ∼ (π2; π1) ∼ (π1; π2) ∼ (π2; π1) • Complements of permutation graphs are permutation graphs. ! Reverse the ordering of the bottoms of the segments : (π1; π2) ! (π1; π2) 4/14 Introduction Optimization problems Recognition Encoding all realizers Conclusion Definition and basic properties 2 1 6 5 4 3 1 23 4 5 6 1 5 6 3 2 4 • Realizer:( π1; π2) • One can "reverse" the realizer upside-down or right-left : (π1; π2) ∼ (π2; π1) ∼ (π1; π2) ∼ (π2; π1) • Complements of permutation graphs are permutation graphs. ! Reverse the ordering of the bottoms of the segments : (π1; π2) ! (π1; π2) 4/14 Introduction Optimization problems Recognition Encoding all realizers Conclusion Definition and basic properties 2 1 6 5 4 3 1 23 4 5 6 4 2 3 6 5 1 • Realizer:( π1; π2) • One can "reverse" the realizer upside-down or right-left : (π1; π2) ∼ (π2; π1) ∼ (π1; π2) ∼ (π2; π1) • Complements of permutation graphs are permutation graphs. -
Functigraphs: an Extension of Permutation Graphs
136 (2011) MATHEMATICA BOHEMICA No. 1, 27–37 FUNCTIGRAPHS: AN EXTENSION OF PERMUTATION GRAPHS Andrew Chen, Moorhead, Daniela Ferrero, San Marcos, Ralucca Gera, Monterey, Eunjeong Yi, Galveston (Received June 7, 2009) Abstract. Let G1 and G2 be copies of a graph G, and let f : V (G1) → V (G2) be a function. Then a functigraph C(G, f)=(V,E) is a generalization of a permutation graph, where V = V (G1) ∪ V (G2) and E = E(G1) ∪ E(G2) ∪ {uv : u ∈ V (G1), v ∈ V (G2), v = f(u)}. In this paper, we study colorability and planarity of functigraphs. Keywords: permutation graph, generalized Petersen graph, functigraph MSC 2010 : 05C15, 05C10 1. Introduction and definitions Throughout this paper, G = (V (G), E(G)) stands for a non-empty, simple and connected graph with order |V (G)| and size |E(G)|. For a given graph G and S ⊆ V (G), we denote by S the subgraph of G induced by S. The distance, d(u, v), between two vertices u and v in G is the number of edges on a shortest path between u and v in G. A graph G is planar if it can be embedded in the plane. A connected graph, with order at least 3, is outerplanar if it can be embedded in the plane so that all its vertices lie on the exterior region [2]. A vertex v in a connected graph G is a cut-vertex of G if G − v is disconnected. A (vertex) proper coloring of G is an assignment of labels, traditionally called colors, to the vertices of a graph such that no two adjacent vertices share the same color.