Brane-World Gravity

Total Page:16

File Type:pdf, Size:1020Kb

Brane-World Gravity Living Rev. Relativity, 13, (2010), 5 LIVINGREVIEWS http://www.livingreviews.org/lrr-2010-5 (Update of lrr-2004-7) in relativity Brane-World Gravity Roy Maartens Institute of Cosmology & Gravitation University of Portsmouth Portsmouth PO1 3FX, U.K. email: [email protected] http://research.icg.port.ac.uk/members Kazuya Koyama Institute of Cosmology & Gravitation University of Portsmouth Portsmouth PO1 3FX, U.K. email: [email protected] http://research.icg.port.ac.uk/members Accepted on 6 September 2010 Published on 14 September 2010 Abstract The observable universe could be a 1+3-surface (the \brane") embedded in a 1+3+d- dimensional spacetime (the \bulk"), with Standard Model particles and fields trapped on the brane while gravity is free to access the bulk. At least one of the d extra spatial dimensions could be very large relative to the Planck scale, which lowers the fundamental gravity scale, possibly even down to the electroweak (∼ TeV) level. This revolutionary picture arises in the framework of recent developments in M theory. The 1+10-dimensional M theory encompasses the known 1+9-dimensional superstring theories, and is widely considered to be a promising potential route to quantum gravity. At low energies, gravity is localized at the brane and general relativity is recovered, but at high energies gravity \leaks" into the bulk, behaving in a truly higher-dimensional way. This introduces significant changes to gravitational dynamics and perturbations, with interesting and potentially testable implications for high-energy astro- physics, black holes, and cosmology. Brane-world models offer a phenomenological way to test some of the novel predictions and corrections to general relativity that are implied by M theory. This review analyzes the geometry, dynamics and perturbations of simple brane-world mod- els for cosmology and astrophysics, mainly focusing on warped 5-dimensional brane-worlds based on the Randall{Sundrum models. We also cover the simplest brane-world models in which 4-dimensional gravity on the brane is modified at low energies { the 5-dimensional Dvali{Gabadadze{Porrati models. Then we discuss co-dimension two branes in 6-dimensional models. This review is licensed under a Creative Commons Attribution-Non-Commercial-NoDerivs 3.0 Germany License. http://creativecommons.org/licenses/by-nc-nd/3.0/de/ Imprint / Terms of Use Living Reviews in Relativity is a peer reviewed open access journal published by the Max Planck Institute for Gravitational Physics, Am M¨uhlenberg 1, 14476 Potsdam, Germany. ISSN 1433-8351. This review is licensed under a Creative Commons Attribution-Non-Commercial-NoDerivs 3.0 Germany License: http://creativecommons.org/licenses/by-nc-nd/3.0/de/ Because a Living Reviews article can evolve over time, we recommend to cite the article as follows: Roy Maartens and Kazuya Koyama, \Brane-World Gravity", Living Rev. Relativity, 13, (2010), 5. [Online Article]: cited [<date>], http://www.livingreviews.org/lrr-2010-5 The date given as <date> then uniquely identifies the version of the article you are referring to. Article Revisions Living Reviews supports two ways of keeping its articles up-to-date: Fast-track revision A fast-track revision provides the author with the opportunity to add short notices of current research results, trends and developments, or important publications to the article. A fast-track revision is refereed by the responsible subject editor. If an article has undergone a fast-track revision, a summary of changes will be listed here. Major update A major update will include substantial changes and additions and is subject to full external refereeing. It is published with a new publication number. For detailed documentation of an article's evolution, please refer to the history document of the article's online version at http://www.livingreviews.org/lrr-2010-5. 14 September 2010: Inserted subsections on numerical solutions in Sections 6 and 7 and five figures. Added new Subsection 2.2 on the Randall{Sundrum model in string theory. Added new Section 9 on Dvali{Gabadadze{Porrati models and nine figures. Added new Section 10 on 6-dimensional models and one figure. Added about 100 new references. Page 7: Extended a paragraph moved here from the end of Section 1.2. Page 15: Added Subsection 2.2 \RS model in string theory". Page 43: Added two paragraphs discussing the neglection of backreaction due to metric per- turbations in the bulk. Page 60: Added Subsection 6.5 \Full numerical solutions". Page 69: Removed former Figure 11: Damping of brane-world gravity waves on horizon re- entry due to massive mode generation. Page 70: Added Subsection 7.2 \Full numerical solutions". Page 79: Added Section 9 \DGP Models". Page 90: Added Section 10 \6-Dimensional Models". Contents 1 Introduction 7 1.1 Heuristics of higher-dimensional gravity ........................ 7 1.2 Brane-worlds and M theory ............................... 8 1.3 Heuristics of KK modes ................................. 10 2 Randall{Sundrum Brane-Worlds 12 2.1 KK modes in RS 1-brane ................................ 13 2.2 RS model in string theory ................................ 15 3 Covariant Approach to Brane-World Geometry and Dynamics 17 3.1 Field equations on the brane .............................. 18 3.2 5-dimensional equations and the initial-value problem . 20 3.3 The brane viewpoint: A 1 + 3-covariant analysis .................... 21 3.4 Conservation equations .................................. 23 3.5 Propagation and constraint equations on the brane . 26 4 Gravitational Collapse and Black Holes on the Brane 30 4.1 The black string ..................................... 30 4.2 Taylor expansion into the bulk ............................. 31 4.3 The \tidal charge" black hole .............................. 32 4.4 Realistic black holes ................................... 33 4.5 Oppenheimer{Snyder collapse gives a non-static black hole . 33 4.6 AdS/CFT and black holes on 1-brane RS-type models . 35 5 Brane-World Cosmology: Dynamics 38 5.1 Brane-world inflation ................................... 40 5.2 Brane-world instanton .................................. 46 5.3 Models with non-empty bulk .............................. 47 6 Brane-World Cosmology: Perturbations 50 6.1 1 + 3-covariant perturbation equations on the brane . 51 6.2 Metric-based perturbations ............................... 52 6.3 Density perturbations on large scales .......................... 54 6.4 Curvature perturbations and the Sachs{Wolfe effect . 57 6.5 Full numerical solutions ................................. 60 6.6 Vector perturbations ................................... 65 6.7 Tensor perturbations ................................... 66 7 Gravitational Wave Perturbations in Brane-World Cosmology 67 7.1 Analytical approaches .................................. 67 7.2 Full numerical solutions ................................. 70 8 CMB Anisotropies in Brane-World Cosmology 73 8.1 The low-energy approximation ............................. 74 8.2 The simplest model .................................... 76 9 DGP Models: Modifying Gravity at Low Energies 79 9.1 `Self-accelerating' DGP ................................. 79 9.2 `Normal' DGP ...................................... 85 10 6-Dimensional Models 90 10.1 Supersymmetric Large Extra Dimensions (SLED) Model . 90 10.2 Cosmology in 6D brane-world models .......................... 92 10.3 Cascading brane-world model .............................. 92 11 Conclusion 94 12 Acknowledgments 97 References 98 Brane-World Gravity 7 1 Introduction At high enough energies, Einstein's theory of general relativity breaks down, and will be superceded by a quantum gravity theory. The classical singularities predicted by general relativity in gravi- tational collapse and in the hot big bang will be removed by quantum gravity. But even below the fundamental energy scale that marks the transition to quantum gravity, significant corrections to general relativity will arise. These corrections could have a major impact on the behaviour of gravitational collapse, black holes, and the early universe, and they could leave a trace { a \smoking gun" { in various observations and experiments. Thus it is important to estimate these corrections and develop tests for detecting them or ruling them out. In this way, quantum gravity can begin to be subject to testing by astrophysical and cosmological observations. Developing a quantum theory of gravity and a unified theory of all the forces and particles of nature are the two main goals of current work in fundamental physics. There is as yet no generally accepted (pre-)quantum gravity theory. Two of the main contenders are M theory (for reviews see, e.g., [214, 356, 377]) and quantum geometry (loop quantum gravity; for reviews see, e.g., [365, 409]). It is important to explore the astrophysical and cosmological predictions of both these approaches. This review considers only models that arise within the framework of M theory. In this review, we focus on RS brane-worlds (mainly the RS 1-brane model) and their gen- eralizations, with the emphasis on geometry and gravitational dynamics (see [304, 314, 269, 424, 348, 268, 360, 120, 49, 267, 270] for previous reviews with a broadly similar approach). Other reviews focus on string-theory aspects, e.g., [147, 316, 97, 357], or on particle physics aspects, e.g., [354, 366, 261, 151, 75]. We also discuss the 5D DGP models, which modify general relativity at low energies, unlike the RS models; these models have become important
Recommended publications
  • Graviton J = 2
    Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) graviton J = 2 graviton MASS Van Dam and Veltman (VANDAM 70), Iwasaki (IWASAKI 70), and Za- kharov (ZAKHAROV 70) almost simultanously showed that “... there is a discrete difference between the theory with zero-mass and a theory with finite mass, no matter how small as compared to all external momenta.” The resolution of this ”vDVZ discontinuity” has to do with whether the linear approximation is valid. De Rham etal. (DE-RHAM 11) have shown that nonlinear effects not captured in their linear treatment can give rise to a screening mechanism, allowing for massive gravity theories. See also GOLDHABER 10 and DE-RHAM 17 and references therein. Experimental limits have been set based on a Yukawa potential or signal dispersion. h0 − − is the Hubble constant in units of 100 kms 1 Mpc 1. − The following conversions are useful: 1 eV = 1.783 × 10 33 g = 1.957 × −6 × −7 × 10 me ; λ¯C = (1.973 10 m) (1 eV/mg ). VALUE (eV) DOCUMENT ID TECN COMMENT − <6 × 10 32 1 CHOUDHURY 04 YUKA Weak gravitational lensing ••• We do not use the following data for averages, fits, limits, etc. ••• − <7 × 10 23 2 ABBOTT 17 DISP Combined dispersion limit from three BH mergers − <1.2 × 10 22 2 ABBOTT 16 DISP Combined dispersion limit from two BH mergers − <5 × 10 23 3 BRITO 13 Spinningblackholesbounds − <4 × 10 25 4 BASKARAN 08 Graviton phase velocity fluctua- − tions <6 × 10 32 5 GRUZINOV 05 YUKA Solar System observations − <9.0 × 10 34 6 GERSHTEIN 04 From Ω value assuming RTG − tot >6 × 10 34 7 DVALI 03 Horizon scales − <8 × 10 20 8,9 FINN 02 DISP Binary pulsar orbital period de- crease 9,10 DAMOUR 91 Binary pulsar PSR 1913+16 − <7 × 10 23 TALMADGE 88 YUKA Solar system planetary astrometric data − − < 2 × 10 29 h 1 GOLDHABER 74 Rich clusters − 0 <7 × 10 28 HARE 73 Galaxy <8 × 104 HARE 73 2γ decay 1 CHOUDHURY 04 concludes from a study of weak-lensing data that masses heavier than about the inverse of 100 Mpc seem to be ruled out if the gravitation field has the Yukawa form.
    [Show full text]
  • Graviton J = 2
    Citation: P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) graviton J = 2 graviton MASS Van Dam and Veltman (VANDAM 70), Iwasaki (IWASAKI 70), and Za- kharov (ZAKHAROV 70) almost simultanously showed that “... there is a discrete difference between the theory with zero-mass and a theory with finite mass, no matter how small as compared to all external momenta.” The resolution of this ”vDVZ discontinuity” has to do with whether the linear approximation is valid. De Rham etal. (DE-RHAM 11) have shown that nonlinear effects not captured in their linear treatment can give rise to a screening mechanism, allowing for massive gravity theories. See also GOLDHABER 10 and DE-RHAM 17 and references therein. Experimental limits have been set based on a Yukawa potential or signal dispersion. h0 − − is the Hubble constant in units of 100 kms 1 Mpc 1. − The following conversions are useful: 1 eV = 1.783 × 10 33 g = 1.957 × −6 × −7 × 10 me ; λ¯C = (1.973 10 m) (1 eV/mg ). VALUE (eV) DOCUMENT ID TECN COMMENT − <6 × 10 32 1 CHOUDHURY 04 YUKA Weak gravitational lensing • • • We do not use the following data for averages, fits, limits, etc. • • • − <6.8 × 10 23 BERNUS 19 YUKA Planetary ephemeris INPOP17b − <1.4 × 10 29 2 DESAI 18 YUKA Gal cluster Abell 1689 − <5 × 10 30 3 GUPTA 18 YUKA SPT-SZ − <3 × 10 30 3 GUPTA 18 YUKA Planck all-sky SZ − <1.3 × 10 29 3 GUPTA 18 YUKA redMaPPer SDSS-DR8 − <6 × 10 30 4 RANA 18 YUKA Weak lensing in massive clusters − <8 × 10 30 5 RANA 18 YUKA SZ effect in massive clusters − <7 × 10 23 6 ABBOTT
    [Show full text]
  • Beyond the Cosmological Standard Model
    Beyond the Cosmological Standard Model a;b; b; b; b; Austin Joyce, ∗ Bhuvnesh Jain, y Justin Khoury z and Mark Trodden x aEnrico Fermi Institute and Kavli Institute for Cosmological Physics University of Chicago, Chicago, IL 60637 bCenter for Particle Cosmology, Department of Physics and Astronomy University of Pennsylvania, Philadelphia, PA 19104 Abstract After a decade and a half of research motivated by the accelerating universe, theory and experi- ment have a reached a certain level of maturity. The development of theoretical models beyond Λ or smooth dark energy, often called modified gravity, has led to broader insights into a path forward, and a host of observational and experimental tests have been developed. In this review we present the current state of the field and describe a framework for anticipating developments in the next decade. We identify the guiding principles for rigorous and consistent modifications of the standard model, and discuss the prospects for empirical tests. We begin by reviewing recent attempts to consistently modify Einstein gravity in the in- frared, focusing on the notion that additional degrees of freedom introduced by the modification must \screen" themselves from local tests of gravity. We categorize screening mechanisms into three broad classes: mechanisms which become active in regions of high Newtonian potential, those in which first derivatives of the field become important, and those for which second deriva- tives of the field are important. Examples of the first class, such as f(R) gravity, employ the familiar chameleon or symmetron mechanisms, whereas examples of the last class are galileon and massive gravity theories, employing the Vainshtein mechanism.
    [Show full text]
  • String Theory and Pre-Big Bang Cosmology
    IL NUOVO CIMENTO 38 C (2015) 160 DOI 10.1393/ncc/i2015-15160-8 Colloquia: VILASIFEST String theory and pre-big bang cosmology M. Gasperini(1)andG. Veneziano(2) (1) Dipartimento di Fisica, Universit`a di Bari - Via G. Amendola 173, 70126 Bari, Italy and INFN, Sezione di Bari - Bari, Italy (2) CERN, Theory Unit, Physics Department - CH-1211 Geneva 23, Switzerland and Coll`ege de France - 11 Place M. Berthelot, 75005 Paris, France received 11 January 2016 Summary. — In string theory, the traditional picture of a Universe that emerges from the inflation of a very small and highly curved space-time patch is a possibility, not a necessity: quite different initial conditions are possible, and not necessarily unlikely. In particular, the duality symmetries of string theory suggest scenarios in which the Universe starts inflating from an initial state characterized by very small curvature and interactions. Such a state, being gravitationally unstable, will evolve towards higher curvature and coupling, until string-size effects and loop corrections make the Universe “bounce” into a standard, decreasing-curvature regime. In such a context, the hot big bang of conventional cosmology is replaced by a “hot big bounce” in which the bouncing and heating mechanisms originate from the quan- tum production of particles in the high-curvature, large-coupling pre-bounce phase. Here we briefly summarize the main features of this inflationary scenario, proposed a quarter century ago. In its simplest version (where it represents an alternative and not a complement to standard slow-roll inflation) it can produce a viable spectrum of density perturbations, together with a tensor component characterized by a “blue” spectral index with a peak in the GHz frequency range.
    [Show full text]
  • Curriculum Vitae Markus Amadeus Luty
    Curriculum Vitae Markus Amadeus Luty University of Maryland Department of Physics College Park, Maryland 20742 301-405-6018 e-mail: [email protected] Education Ph.D. in physics, University of Chicago, 1991 Honors B.S. in physics, B.S. in mathematics, University of Utah, 1987 Academic Honors Alfred P. Sloan Fellow (1997–1998) National Science Foundation Graduate Fellowship (1988–1991) Phi Beta Kappa, Phi Kappa Phi (1987) Kenneth Browning Memorial Scholarship (1986) National Merit Scholarship (1982–1986) Academic Positions 2001–present tenured associate professor, University of Maryland 1996–2001 assistant professor, University of Maryland 1994–1995 post-doctoral researcher, Massachusetts Institute of Technology 1991–1994 post-doctoral researcher, Lawrence Berkeley National Laboratory 1988–1991 graduate research assistant (with Y. Nambu), University of Chicago 1987–1988 graduate teaching assistant, University of Chicago 1985–1986 undergraduate teaching assistant, University of Utah 1 Recent Invited Conference/Workshop Talks • June 2003, SUSY 2003 (Tuscon) plenary talk: “Supersymmetry without Super- gravity.” • January 2003, PASCOS (Mumbai, India) plenary talk: “New ideas in super- symmetry breaking” • October 2002, Workshop on Frontiers Beyond the Standard Model (Mineapolis): “Supersymmetry without supergravity.” • August 2002, Santa Fe Workshop on Extra Dimensions and Beyond: “Super- symmetry without Supergravity.” • January 2002, ITP Brane World Workshop: “Anomaly Mediated Supersymme- try Breaking.” • April 2001, APS Division of Particles
    [Show full text]
  • Phenomenological Aspects of Type IIB Flux Compactifications
    Phenomenological Aspects of Type IIB Flux Compactifications Enrico Pajer Munchen¨ 2008 Phenomenological Aspects of Type IIB Flux Compactifications Enrico Pajer Dissertation an der Fakult¨at fur¨ Physik der Ludwig–Maximilians–Universit¨at Munchen¨ vorgelegt von Enrico Pajer aus Venedig, Italien Munchen,¨ den 01. Juni 2008 Erstgutachter: Dr. Michael Haack Zweitgutachter: Prof. Dr. Dieter Lust¨ Tag der mundlichen¨ Prufung:¨ 18.07.2008 Contents 1 Introduction and conclusions 1 2 Type IIB flux compactifications 9 2.1 Superstring theory in a nutshell . 10 2.2 How many string theories are there? . 13 2.3 Type IIB . 15 2.4 D-branes . 17 2.5 Flux compactifications . 18 2.5.1 The GKP setup . 19 2.6 Towards de Sitter vacua in string theory . 21 3 Inflation in string theory 27 3.1 Observations . 27 3.2 Inflation . 29 3.2.1 Slow-roll models . 32 3.3 String theory models of inflation . 35 3.3.1 Open string models . 35 3.3.2 Closed string models . 36 3.4 Discussion . 37 4 Radial brane inflation 39 4.1 Preliminaries . 40 4.2 The superpotential . 42 4.3 Warped Brane inflation . 44 4.3.1 The η-problem from volume stabilization . 44 4.3.2 F-term potential for the conifold . 46 4.4 Critical points of the potential . 47 4.4.1 Axion stabilization . 48 4.4.2 Volume stabilization . 48 4.4.3 Angular moduli stabilization . 50 4.4.4 Potential with fixed moduli . 51 4.5 Explicit examples: Ouyang vs Kuperstein embedding . 52 4.5.1 Ouyang embedding . 52 4.5.2 Kuperstein embedding .
    [Show full text]
  • Classical and Quantum Consistency of the DGP Model
    IFT-UAM/CSIC-04-13 CERN-PH-TH/2004-063 Classical and Quantum Consistency of the DGP Model Alberto Nicolis a and Riccardo Rattazzi b aInstituto de F´ısica Te´orica, C–XVI, UAM, 28049 Madrid, Spain bPhysics Department, Theory Division, CERN, CH–1211 Geneva 23, Switzerland Abstract We study the Dvali-Gabadadze-Porrati model by the method of the boundary effective action. The truncation of this action to the bending mode π consistently describes physics in a wide range of regimes both at the classical and at the quantum level. The Vainshtein effect, which restores agreement with precise tests of general relativity, follows straightforwardly. We give a simple and general proof of stability, i.e. absence of ghosts in the fluctuations, valid for most of the relevant cases, like for instance the spherical source in asymptotically flat space. However we confirm that around certain interesting self-accelerating cosmological solutions there is a ghost. We consider the issue of quantum corrections. Around flat space π becomes strongly coupled below a macroscopic length of 1000 km, thus impairing the predictivity of the model. Indeed the tower of higher dimensional operators which is expected by a generic UV completion of the model limits predictivity at even larger length scales. We outline a non-generic but consistent choice of counterterms for which this disaster does not happen and for which the model remains calculable and successful in all the astrophysical situations of interest. By this choice, the extrinsic curvature Kµν acts roughly like a dilaton field controlling the strength of the interaction and the cut-off scale at each space-time point.
    [Show full text]
  • Dilaton and Off-Shell (Non-Critical String) Effects in Boltzmann Equation for Species Abundances AB Lahanas1, NE Mavromatos2 and DV Nanopoulos3,4,5
    Research article Open Access Dilaton and off-shell (non-critical string) effects in Boltzmann equation for species abundances AB Lahanas1, NE Mavromatos2 and DV Nanopoulos3,4,5 Address: 1University of Athens, Physics Department, Nuclear and Particle Physics Section, GR157 71, Athens, Greece., 2King's College London, University of London, Department of Physics, Strand WC2R 2LS, London, UK., 3George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A&M University, College Station, TX 77843, USA., 4Astroparticle Physics Group, Houston Advanced Research Center (HARC), Mitchell Campus, Woodlands, TX 77381, USA. and 5Academy of Athens, Division of Natural Sciences, 28 Panepistimiou Avenue, Athens 10679, Greece. Email: AB Lahanas - [email protected]; NE Mavromatos - [email protected]; DV Nanopoulos - [email protected] Published: 2 October 2007 Received: 3 June 2007 Accepted: 2 October 2007 PMC Physics A 2007, 1:2 doi:10.1186/1754-0410-1-2 This article is available from: http://www.physmathcentral.com/1754-0410/1/2 © 2007 Lahanas et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/ licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In this work we derive the modifications to the Boltzmann equation governing the cosmic evolution of relic abundances induced by dilaton dissipative-source and non-critical-string terms in dilaton-driven non-equilibrium string Cosmologies. We also discuss briefly the most important phenomenological consequences, including modifications of the constraints on the available parameter space of cosmologically appealing particle physics models, imposed by recent precision data of astrophysical measurements.
    [Show full text]
  • Brane Inflation, Solitons and Cosmological Solutions: I
    . hep-th/0501185 SU-ITP-05/04, TIFR/TH/05-02 ILL-(TH)-05/02, SLAC-PUB-10982 Brane Inflation, Solitons and Cosmological Solutions: I Pisin Chen1, Keshav Dasgupta2, K. Narayan3 Marina Shmakova1 and Marco Zagermann4 1Stanford Linear Accelerator Center, Stanford University, Stanford CA 94309, USA 2Loomis Lab, University of Illinois at UC, Urbana IL 61801, USA. 3Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India. 4Varian Lab, Stanford University, Stanford CA 94305, USA. chen,[email protected], [email protected] [email protected], [email protected] Abstract In this paper we study various cosmological solutions for a D3/D7 system directly from M-theory with fluxes and M2-branes. In M-theory, these solutions exist only if we in- corporate higher derivative corrections from the curvatures as well as G-fluxes. We take these corrections into account and study a number of toy cosmologies, including one with a novel background for the D3/D7 system whose supergravity solution can be completely determined. Our new background preserves all the good properties of the original model and opens up avenues to investigate cosmological effects from wrapped branes and brane- antibrane annihilation, to name a few. We also discuss in some detail semilocal defects with higher global symmetries, for example exceptional ones, that occur in a slightly differ- ent regime of our D3/D7 model. We show that the D3/D7 system does have the required ingredients to realise these configurations as non-topological solitons of the theory. These constructions also allow us to give a physical meaning to the existence of certain underlying homogeneous quaternionic K¨ahler manifolds.
    [Show full text]
  • Brane Cosmology
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server NTUA–02–2002 hep-th/0202044 Brane Cosmology E. Papantonopoulosa National Technical University of Athens, Physics Department, Zografou Campus, GR 157 80, Athens, Greece. Abstract The aim of these lectures is to give a brief introduction to brane cosmology. After introducing some basic geometrical notions, we dis- cuss the cosmology of a brane universe with matter localized on the brane. Then we introduce an intrinsic curvature scalar term in the bulk action, and analyze the cosmology of this induced gravity. Fi- nally we present the cosmology of a moving brane in the background of other branes, and as a particular example, we discuss the cosmo- logical evolution of a test brane moving in a background of a Type-0 string theory. Lectures presented at the First Aegean Summer School on Cosmology, Samos, September 2001. a e-mail address:[email protected] 1 Introduction Cosmology today is an active field of physical thought and of exiting exper- imental results. Its main goal is to describe the evolution of our universe from some initial time to its present form. One of its outstanding successes is the precise and detailed description of the very early stages of the universe evolution. Various experimental results confirmed that inflation describes accurately these early stages of the evolution. Cosmology can also help to understand the large scale structure of our universe as it is viewed today. It can provide convincing arguments why our universe is accelerating and it can explain the anisotropies of the Cosmic Microwave Background data.
    [Show full text]
  • Non-Conventional Cosmology from a Brane-Universe 1 Introduction
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server LPT-ORSAY 99/25 Non-conventional cosmology from a brane-universe Pierre Bin´etruy1,C´edric Deffayet1, David Langlois2 1 LPT1, Universit´e Paris-XI, Bˆatiment 210, F-91405 Orsay Cedex, France; 2 D´epartement d’Astrophysique Relativiste et de Cosmologie, C.N.R.S., Observatoire de Paris, 92195, Meudon, France. Abstract. We consider “brane-universes”, where matter is confined to four-dimensional hypersurfaces (three-branes) whereas one extra compact dimension is felt by gravity only. We show that the cosmology of such branes is definitely different from standard cosmology and identify the reasons behind this difference. We give a new class of exact solutions with a constant five-dimensional radius and cosmologically evolving brane. We discuss various consequences. 1 Introduction There has been recently renewed activity in the domain of cosmology with extra dimensions. Historically, investigations on the possibility of extra dimensions began with Kaluza-Klein type theories (see e.g. [1] for a review) and were then revived with the advent of high energy physics theories, such as string and superstring theories, where the existence of additional dimensions seemed necessary to ensure a non-anomalous quantum behaviour. However, these extra dimensions, since they remained undetected in experiments, were constrained to be very small. Recently, it has been suggested [2] that additional dimensions could have a very distinct nature from our familiar dimensions, in the sense that ordinary matter would be confined to our four-dimensional “universe” while gravity would “live” in the whole extended spacetime.
    [Show full text]
  • Cosmological Implications of Modified Gravity: Spherical Collapse and Higher Order Correlations
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations Fall 2009 COSMOLOGICAL IMPLICATIONS OF MODIFIED GRAVITY: SPHERICAL COLLAPSE AND HIGHER ORDER CORRELATIONS Alexander Borisov University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Cosmology, Relativity, and Gravity Commons Recommended Citation Borisov, Alexander, "COSMOLOGICAL IMPLICATIONS OF MODIFIED GRAVITY: SPHERICAL COLLAPSE AND HIGHER ORDER CORRELATIONS" (2009). Publicly Accessible Penn Dissertations. 47. https://repository.upenn.edu/edissertations/47 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/47 For more information, please contact [email protected]. COSMOLOGICAL IMPLICATIONS OF MODIFIED GRAVITY: SPHERICAL COLLAPSE AND HIGHER ORDER CORRELATIONS Abstract In the Standard Model of Cosmology the nature of the Dark Energy has become one of the most significant and conceptual challenges ot be resolved. One of the possible approaches to solving it is to introduce modifications ot General Relativity, that include Chameleon effects, which allow for a change in the strength of gravity based on the environment. This can provide for a consistent explanation of both large-scale observations and Solar system experiments. In the task to distinguish them from the LCDM model of gravity, or any other competing explanation, we need to study the consequences of these modifications for the growth of perturbations. In this thesis a recently developed Chameleon f(R) modification ot gravity is explored. We study its consequences for the distribution of matter on large scale using the Bispectrum. Using 1D simulations we examine the formation of galaxy and cluster halos and its observational effects. Finally we present an investigation of a method for studying gravitational lensing.
    [Show full text]