Neisseria Gonorrhoeae Infections  Neisseria • María-Teresa Pérez-Gracia and Beatriz Suay-García Beatriz and • María-Teresa Pérez-Gracia

Total Page:16

File Type:pdf, Size:1020Kb

Neisseria Gonorrhoeae Infections  Neisseria • María-Teresa Pérez-Gracia and Beatriz Suay-García Beatriz and • María-Teresa Pérez-Gracia Neisseria Infections gonorrhoeae • María-Teresa Pérez-Gracia • María-Teresa and Beatriz Suay-García Neisseria gonorrhoeae Infections Edited by María-Teresa Pérez-Gracia and Beatriz Suay-García Printed Edition of the Special Issue Published in Pathogens www.mdpi.com/journal/pathogens Neisseria gonorrhoeae Infections Neisseria gonorrhoeae Infections Editors Mar´ıa-Teresa P´erez-Gracia Beatriz Suay-Garc´ıa MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin Editors Mar´ıa-Teresa Perez-Gracia´ Beatriz Suay-Garc´ıa Universidad Cardenal Herrera-CEU, Universidad Cardenal Herrera-CEU, CEU Universities CEU Universities Spain Spain Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Pathogens (ISSN 2076-0817) (available at: https://www.mdpi.com/journal/pathogens/special issues/Neisseria gonorrhoeae Infections). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number, Page Range. ISBN 978-3-0365-0790-3 (Hbk) ISBN 978-3-0365-0791-0 (PDF) © 2021 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Editors .............................................. vii Beatriz Suay-Garc´ıa and Mar´ıa-Teresa P´erez-Gracia Neisseria gonorrhoeae Infections Reprinted from: Pathogens 2020, 9, 647, doi:10.3390/pathogens9080647 ............... 1 Susu M. Zughaier, Corinne E. Rouquette-Loughlin and William M. Shafer Identification of a Neisseria gonorrhoeae Histone Deacetylase: Epigenetic Impact on Host Gene Expression Reprinted from: Pathogens 2020, 9, 132, doi:10.3390/pathogens9020132 ............... 5 Johan H. Melendez, Yu-Hsiang Hsieh, Mathilda Barnes, Justin Hardick, Elizabeth A. Gilliams and Charlotte A. Gaydos Can Ciprofloxacin be Used for Precision Treatment of Gonorrhea in Public STD Clinics? Assessment of Ciprofloxacin Susceptibility and an Opportunity for Point-of-Care Testing Reprinted from: Pathogens 2019, 8, 189, doi:10.3390/pathogens8040189 ............... 21 Chris Kenyon To What Extent Should We Rely on Antibiotics to Reduce High Gonococcal Prevalence? Historical Insights from Mass-Meningococcal Campaigns Reprinted from: Pathogens 2020, 9, 134, doi:10.3390/pathogens9020134 ............... 29 Thomas Meyer and Susanne Buder The Laboratory Diagnosis of Neisseria gonorrhoeae: Current Testing and Future Demands Reprinted from: Pathogens 2020, 9, 91, doi:10.3390/pathogens9020091 ................ 37 Maria Victoria Humbert and Myron Christodoulides Atypical, Yet Not Infrequent, Infections with Neisseria Species Reprinted from: Pathogens 2020, 9, 10, doi:10.3390/pathogens9010010 ................ 57 Christophe Van Dijck, Jolein G.E. Laumen, Achilleas Tsoumanis, Sheeba S. Manoharan-Basil and Chris Kenyon Commensal Neisseria Are Shared between Sexual Partners: Implications for Gonococcal and Meningococcal Antimicrobial Resistance Reprinted from: Pathogens 2020, 9, 228, doi:10.3390/pathogens9030228 ............... 85 v About the Editors Mar´ıa-Teresa P´erez-Gracia (PhD). She is currently a Full Professor of Microbiology at the CEU Cardenal Herrera University (Valencia, Spain). She holds a PhD degree with distinction in Biological Sciences from the University of Santiago de Compostela and she is a specialist in microbiology and parasitology. She has been Associate Professor of Microbiology at the Faculty of Medicine of the University of Cadiz,´ collaborating in research and diagnostic tasks in the Microbiology Service and in the Research Unit of the University Hospital of Puerto Real (Cadiz).´ She was responsible for the doctorate course “Bacterial Resistance to Antimicrobials” of the CEU Cardenal Herrera University. Currently, she directs a research line called “Molecular Diagnosis in Clinical Microbiology” on the study and detection of antimicrobial-resistant bacteria and its implications in public health, and the development and implementation of new molecular diagnostic techniques. She has received several awards, among which are the ”CADIZ”´ Prize of the Royal Academy of Medicine and Surgery of Cadiz´ and the Angel Herrera Award for the best teaching work in the Faculty of Experimental Sciences and Health. She collaborates in the Doctorate Program “Cellular and molecular bases of human pathology” in the University of Cadiz.´ She was coordinator of the Advanced Specialization Degree in Clinical Analysis. She is an evaluator of projects belonging to the area of Clinical Sciences and Public Health of the Fund for Scientific and Technological Research (FONCYT) of the National Agency for Scientific and Technological Promotion (ANPCYT) of the Ministry of Science, Technology and Productive Innovation (Argentine Republic), of the General Directorate of Scientific Research and Innovation in Health of the Ministry of Health (Italy), of the National Science Centre in Physical Sciences and Engineering (Poland), the HORIZON 2020 FET-OPEN-NOVEL IDEAS FOR RADICALLY NEW TECHNOLOGIES, Research and Innovation Actions (RIA) (European Commission) and of the National Biopharma Mission Program Biotechnology Industry Research Assistance Council (BIRAC) (Government of India). She belongs to the editorial committees of several international journals and is a reviewer of scientific articles for more than 50 international journals. She is a corresponding academician at the Royal Academy of Medicine and Surgery of Cadiz´ and a member of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC) and Spanish Society of Microbiology (SEM). Beatriz Suay-Garcia (PhD). She is currently is a research assistant at the CEU Cardenal Herrera University (Valencia, Spain). She holds a PhD degree with distinction in Pharmacy from the CEU Cardenal Herrera University. Her research is focused on antibiotic-resistant bacteria and antibiotic development. vii pathogens Editorial Neisseria gonorrhoeae Infections Beatriz Suay-García 1 and María-Teresa Pérez-Gracia 2,* 1 ESI International Chair@CEU-UCH, Departamento de Matemáticas, Física y Ciencias Tecnológicas, Universidad Cardenal Herrera-CEU, CEU Universities, San Bartolomé 55, 46115 Alfara del Patriarca (Valencia), Spain; [email protected] 2 Área de Microbiología. Departamento de Farmacia, Universidad Cardenal Herrera-CEU, CEU Universities, C/Ramón y Cajal s/n, 46115 Alfara del Patriarca (Valencia), Spain * Correspondence: [email protected]; Tel.: +34-961-369-000 (ext. 64332) Received: 10 August 2020; Accepted: 10 August 2020; Published: 12 August 2020 Abstract: Gonorrhea is a sexually transmitted disease with a high morbidity burden. Despite having guidelines for its treatment, the incidence of the disease follows an increasing trend worldwide. This is mainly due to the appearance of antibiotic-resistant strains, inefficient diagnostic methods and poor sexual education. Without an effective vaccine available, the key priorities for the control of the disease include sexual education, contact notification, epidemiological surveillance, diagnosis and effective antibiotic treatment. This Special Issue focuses on some of these important issues such as the molecular mechanisms of the disease, diagnostic tests and different treatment strategies to combat gonorrhea. Keywords: Neisseria gonorrhoeae; sexually transmitted infection; transmission; diagnosis; antibiotic treatment Neisseria gonorhoeae is an obligate human pathogen that causes gonorrhea, a sexually transmitted disease (STD). This Gram-negative diplococcus is highly infective due to its virulence factors: pili, Por proteins, Opa proteins, Rmp proteins, lipooligosaccharides and IgA protease. The most common form of presentation in men is acute anterior urethritis, while gonococcal infection in women does not have specific symptoms. Although the prevailing view is that infections in women are mainly asymptomatic whereas infections in men are not, many studies show that asymptomatic infections are prevalent in both sexes. Gonorrhea is primarily transmitted from an infected individual by direct human-to-human contact between the mucosal membranes of the urogenital tract, anal canal and the oropharynx, usually during sexual activities. Gonorrhea is a community disease with a high morbidity burden, representing 88 million of the estimated 448 million new cases of curable STDs that occur yearly worldwide [1]. Furthermore, the incidence of the disease is rising due to the prevalence of multidrug-resistant strains [2]. In fact, the appearance of resistances in this microorganism threatens the effectiveness of the available gonorrhea treatments to such extent that it has been classified as a “Priority 2” microorganism in the WHO Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics [3]. Ever since sulphonamides were introduced to treat gonorrhea in the 1930s, gonococci have continuously shown an extraordinary ability to develop resistance to any antimicrobial introduced for treatment [4]. Treatment is currently given
Recommended publications
  • Official Nh Dhhs Health Alert
    THIS IS AN OFFICIAL NH DHHS HEALTH ALERT Distributed by the NH Health Alert Network [email protected] May 18, 2018, 1300 EDT (1:00 PM EDT) NH-HAN 20180518 Tickborne Diseases in New Hampshire Key Points and Recommendations: 1. Blacklegged ticks transmit at least five different infections in New Hampshire (NH): Lyme disease, Anaplasma, Babesia, Powassan virus, and Borrelia miyamotoi. 2. NH has one of the highest rates of Lyme disease in the nation, and 50-60% of blacklegged ticks sampled from across NH have been found to be infected with Borrelia burgdorferi, the bacterium that causes Lyme disease. 3. NH has experienced a significant increase in human cases of anaplasmosis, with cases more than doubling from 2016 to 2017. The reason for the increase is unknown at this time. 4. The number of new cases of babesiosis also increased in 2017; because Babesia can be transmitted through blood transfusions in addition to tick bites, providers should ask patients with suspected babesiosis whether they have donated blood or received a blood transfusion. 5. Powassan is a newer tickborne disease which has been identified in three NH residents during past seasons in 2013, 2016 and 2017. While uncommon, Powassan can cause a debilitating neurological illness, so providers should maintain an index of suspicion for patients presenting with an unexplained meningoencephalitis. 6. Borrelia miyamotoi infection usually presents with a nonspecific febrile illness similar to other tickborne diseases like anaplasmosis, and has recently been identified in one NH resident. Tests for Lyme disease do not reliably detect Borrelia miyamotoi, so providers should consider specific testing for Borrelia miyamotoi (see Attachment 1) and other pathogens if testing for Lyme disease is negative but a tickborne disease is still suspected.
    [Show full text]
  • Corvettes and Opvs Countering Manpads Air Forces Directory Corvettes and Opvs Countering Manpads Air Forces Directory Singapore
    VOLUME 26/ISSUE 1 FEBRUARY 2018 US$15 ASIA PAcific’s LARGEST CIRCULATED DEFENCE MAGAZINE SINGAPORE’S ARMED FORCES ASIA-PACIFIC MAIN BATTLE TANKS MALE /HALE UAVS CORVETTES AND OPVS COUNTERING MANPADS AIR FORCES DIRECTORY www.asianmilitaryreview.com B:216 mm T:213 mm S:197 mm AQS-24 B:291 mm S:270 mm T:286 mm THE VALUE OF ENSURING AN UNDERSEA ADVANTAGE KNOWS NO BORDERS. Mines don’t recognize borders, nor should the most advanced mine hunting solutions. Only Northrop Grumman’s advanced AQS-24 family of sensors deliver unparalleled performance with complete adaptability. From hardware versatility (deployable from helicopter or unmanned surface vessel) to increased speed in mission execution, the AQS-24 is the future of mine warfare. That’s why we’re a leader in advanced undersea technology. www.northropgrumman.com/minehunter ©2017 Northrop Grumman Corporation 02 | ASIAN MILITARY REVIEW | ©2017 Northrop Grumman Corporation Project Manager: Vanessa Pineda Document Name: NG-MSH-Z35767-B.indd Element: P4CB Current Date: 9-18-2017 11:09 AM Studio Client: Northrop Grumman Bleed: 216 mm w x 291 mm h Studio Artist: DAW Product: MSH Trim: 213 mm w x 286 mm h Proof #: 3-RELEASE Proofreader Creative Tracking: NG-MSH-Z35767 Safety: 197 mm w x 270 mm h Print Scale: None Page 1 of 1 Print Producer Billing Job: NG-MSH-Z35767 Gutter: None InDesign Version: CC 2015 Title: AQS-24 Intl Aus - Asian Military Review Color List: None Art Director Inks: Cyan, Magenta, Yellow, Black Creative Director Document Path: Mechanicals:Northrop_Grumman:NG-MSH:NG-MSH-Z35767:NG-MSH-Z35767-B.indd
    [Show full text]
  • WO 2014/134709 Al 12 September 2014 (12.09.2014) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/134709 Al 12 September 2014 (12.09.2014) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 31/05 (2006.01) A61P 31/02 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/CA20 14/000 174 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 4 March 2014 (04.03.2014) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (25) Filing Language: English OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (26) Publication Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (30) Priority Data: ZW. 13/790,91 1 8 March 2013 (08.03.2013) US (84) Designated States (unless otherwise indicated, for every (71) Applicant: LABORATOIRE M2 [CA/CA]; 4005-A, rue kind of regional protection available): ARIPO (BW, GH, de la Garlock, Sherbrooke, Quebec J1L 1W9 (CA). GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (72) Inventors: LEMIRE, Gaetan; 6505, rue de la fougere, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, Sherbrooke, Quebec JIN 3W3 (CA).
    [Show full text]
  • Avoidance of Mechanisms of Innate Immune Response by Neisseria Gonorrhoeae
    ADVANCEMENTS OF MICROBIOLOGY – POSTĘPY MIKROBIOLOGII 2019, 58, 4, 367–373 DOI: 10.21307/PM–2019.58.4.367 AVOIDANCE OF MECHANISMS OF INNATE IMMUNE RESPONSE BY NEISSERIA GONORRHOEAE Jagoda Płaczkiewicz* Department of Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw Submitted in July, accepted in October 2019 Abstract: Neisseria gonorrhoeae (gonococcus) is a Gram-negative bacteria and an etiological agent of the sexually transmitted disease – gonorrhea. N. gonorrhoeae possesses many mechanism to evade the innate immune response of the human host. Most are related to serum resistance and avoidance of complement killing. However the clinical symptoms of gonorrhea are correlated with a significant pres- ence of neutrophils, whose response is also insufficient and modulated by gonococci. 1. Introduction. 2. Adherence ability. 3. Serum resistance and complement system. 4. Neutrophils. 4.1. Phagocytosis. 4.1.1. Oxygen- dependent intracellular killing. 4.1.2. Oxygen-independent intracellular killing. 4.2. Neutrophil extracellular traps. 4.3. Degranulation. 4.4. Apoptosis. 5. Summary UNIKANIE MECHANIZMÓW WRODZONEJ ODPOWIEDZI IMMUNOLOGICZNEJ PRZEZ NEISSERIA GONORRHOEAE Streszczenie: Neisseria gonorrhoeae (gonokok) to Gram-ujemna dwoinka będąca czynnikiem etiologicznym choroby przenoszonej drogą płciową – rzeżączki. N. gonorrhoeae posiada liczne mechanizmy umożliwiające jej unikanie wrodzonej odpowiedzi immunologicznej gospodarza. Większość z nich związana jest ze zdolnością gonokoków do manipulowania układem dopełniacza gospodarza oraz odpor- nością tej bakterii na surowicę. Jednakże symptomy infekcji N. gonorrhoeae wynikają między innymi z obecności licznych neutrofili, których aktywność jest modulowana przez gonokoki. 1. Wprowadzenie. 2. Zdolność adherencji. 3. Surowica i układ dopełniacza. 4. Neutrofile. 4.1. Fagocytoza. 4.1.1. Wewnątrzkomórkowe zabijanie zależne od tlenu. 4.1.2.
    [Show full text]
  • July 26, 2017 Bruker Daltonik Gmbh Mr. David Cromwick Director Of
    DEPARTMENT OF HEALTH & HUMAN SERVICES Public Health Service __________________________________________________________________________________________________________________________ Food and Drug Administration 10903 New Hampshire Avenue Document Control Center – WO66-G609 Silver Spring, MD 20993-0002 July 26, 2017 Bruker Daltonik GmbH Mr. David Cromwick Director of Quality 40 Manning Rd Billerica, MA 01821 US Re: K163536 Trade/Device Name: MALDI Biotyper CA (MBT-CA) System, MBT smart CA System Regulation Number: 21 CFR 866.3361 Regulation Name: Mass spectrometer system for clinical use for the identification of microorganisms Regulatory Class: II Product Code: PEX Dated: December 16, 2016 Received: December 16, 2016 Dear Mr. Cromwick: We have reviewed your Section 510(k) premarket notification of intent to market the device referenced above and have determined the device is substantially equivalent (for the indications for use stated in the enclosure) to legally marketed predicate devices marketed in interstate commerce prior to May 28, 1976, the enactment date of the Medical Device Amendments, or to devices that have been reclassified in accordance with the provisions of the Federal Food, Drug, and Cosmetic Act (Act) that do not require approval of a premarket approval application (PMA). You may, therefore, market the device, subject to the general controls provisions of the Act. The general controls provisions of the Act include requirements for annual registration, listing of devices, good manufacturing practice, labeling, and prohibitions against misbranding and adulteration. Please note: CDRH does not evaluate information related to contract liability warranties. We remind you, however, that device labeling must be truthful and not misleading. If your device is classified (see above) into either class II (Special Controls) or class III (PMA), it may be subject to additional controls.
    [Show full text]
  • Proctitis Associated with Neisseria Cinerea Misidentified As Neisseria Gonorrhoeae in a Child JOHN H
    JOURNAL OF CLINICAL MICROBIOLOGY, Apr. 1985, p. 575-577 Vol. 21, No. 4 0095-1137/85/040575-03$02.00/0 Copyright C 1985, American Society for Microbiology Proctitis Associated with Neisseria cinerea Misidentified as Neisseria gonorrhoeae in a Child JOHN H. DOSSETT,' PETER C. APPELBAUM,2* JOAN S. KNAPP,3 AND PATRICIA A. TOTTEN3 Departments ofPediatrics (Infectious Diseases)' and Pathology (Clinical Microbiology),2 Hershey Medical Center, Hershey, Pennsylvania 17033, and Neisseria Reference Laboratory and Department of Medicine, University of Washington, Seattle, Washington 981953 Received 21 September 1984/Accepted 13 December 1984 An 8-year-old boy developed proctitis. Rectal swabs yielded a Neisseria sp. that was repeatedly identified by API (Analytab Products, Plainview, N.Y.), Minitek (BBL Microbiology Systems, Cockeysville, Md.), and Bactec (Johnston Laboratories, Towson, Md.) methods as Neisseria gonorrhoeae. Subsequent testing in a reference laboratory yielded an identification of Neisseria cinerea. It is suggested that identification of a Neisseria sp. isolated from genital or rectal sites in a child be confirmed by additional serological, growth, and antibiotic susceptibility tests and, if necessary, by a reference laboratory. The implications of such misidenti- fications are discussed. Gonococcal proctitis in children is usually considered to rectal scrubs. The child and his parents underwent extensive be sexually transmitted, just as it is in adults. Moreover, questioning in an effort to identify a source of infection. No gonorrhea in young boys is generally the result of homosex- clues were found. Both parents had negative examinations ual contact with an adult male. We herein report the case of and negative cultures. The patient's condition gradually a child with prolonged proctitis and perianal inflammation improved, and by 20 July his rectum and perirectum ap- from whom Neisseria sp.
    [Show full text]
  • Cellulitis (You Say, Sell-You-Ly-Tis)
    Cellulitis (you say, sell-you-ly-tis) Any area of skin can become infected with cellulitis if the skin is broken, for example from a sore, insect bite, boil, rash, cut, burn or graze. Cellulitis can also infect the flesh under the skin if it is damaged or bruised or if there is poor circulation. Signs your child has cellulitis: The skin will look red, and feel warm and painful to touch. There may be pus or fluid leaking from the skin. The skin may start swelling. The red area keeps growing. Gently mark the edge of the infected red area How is with a pen to see if the red area grows bigger. cellulitis spread? Red lines may appear in the skin spreading out from the centre of the infection. Bad bacteria (germs) gets into broken skin such as a cut or insect bite. What to do Wash your hands before and Cellulitis is a serious infection that needs to after touching the infected area. be treated with antibiotics. Keep your child’s nails short and Go to the doctor if the infected area is clean. painful or bigger than a 10 cent piece. Don’t let your child share Go to the doctor immediately if cellulitis is bath water, towels, sheets and near an eye as this can be very serious. clothes. Make sure your child takes the antibiotics Make sure your child rests every day until they are finished, even if and eats plenty of fruit and the infection seems to have cleared up. The vegetables and drinks plenty of antibiotics need to keep killing the infection water.
    [Show full text]
  • Neisseria Infection of Rhesus Macaques As a Model to Study Colonization, Transmission, Persistence, and Horizontal Gene Transfer
    Neisseria infection of rhesus macaques as a model to study colonization, transmission, persistence, and horizontal gene transfer Nathan J. Weyanda,b,1, Anne M. Wertheimerc,d,e, Theodore R. Hobbsf,g, Jennifer L. Siskoa,b, Nyiawung A. Takua,b, Lindsay D. Gregstona,b, Susan Claryh, Dustin L. Higashia,b, Nicolas Biaisi,2, Lewis M. Browni,j, Shannon L. Planerg,k, Alfred W. Legasseg,k, Michael K. Axthelmg,k,l, Scott W. Wongg,h,l, and Magdalene Soa,b aBIO5 Institute and bDepartment of Immunobiology, University of Arizona, Tucson, AZ 85721; cArizona Center on Aging, dDepartment of Medicine and eDivision of Geriatrics General Internal and Palliative Medicine, University of Arizona, Tucson, AZ, 85719; fDivision of Animal Resources, kDivision of Pathobiology and Immunology, gOregon National Primate Research Center, and lVaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006; hDepartment of Molecular Microbiology and Immunology, L220, Oregon Health and Science University, Portland, OR 97239; and iDepartment of Biological Sciences and jQuantitative Proteomics Center, Columbia University, New York, NY 10027 Edited by Rino Rappuoli, Novartis Vaccines and Diagnostics, Siena, Italy, and approved January 10, 2013 (received for review October 9, 2012) The strict tropism of many pathogens for man hampers the de- may be possible to develop a model for studying Neisseria–host velopment of animal models that recapitulate important microbe– interactions in which there are no host-restriction barriers to host interactions. We developed a rhesus macaque model for study- overcome. ing Neisseria–host interactions using Neisseria species indigenous to The rhesus macaque (RM) has ∼93% DNA sequence identity the animal.
    [Show full text]
  • Potential of Metabolomics to Reveal Burkholderia Cepacia Complex Pathogenesis and Antibiotic Resistance
    MINI REVIEW published: 13 July 2015 doi: 10.3389/fmicb.2015.00668 Potential of metabolomics to reveal Burkholderia cepacia complex pathogenesis and antibiotic resistance Nusrat S. Shommu 1, Hans J. Vogel 1 and Douglas G. Storey 2* 1 Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada, 2 Microbiology Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada The Burkholderia cepacia complex (Bcc) is a collection of closely related, genetically distinct, ecologically diverse species known to cause life-threatening infections in cystic fibrosis (CF) patients. By virtue of a flexible genomic structure and diverse metabolic activity, Bcc bacteria employ a wide array of virulence factors for pathogenesis Edited by: in CF patients and have developed resistance to most of the commonly used Steve Lindemann, Pacific Northwest National antibiotics. However, the mechanism of pathogenesis and antibiotic resistance is still Laboratory, USA not fully understood. This mini review discusses the established and potential virulence Reviewed by: determinants of Bcc and some of the contemporary strategies including transcriptomics Joanna Goldberg, Emory University School and proteomics used to identify these traits. We also propose the application of metabolic of Medicine, USA profiling, a cost-effective modern-day approach to achieve new insights. Tom Metz, Pacific Northwest National Keywords: Burkholderia cepacia complex, virulence, antibiotic resistance, metabolomics, cystic fibrosis Laboratory, USA *Correspondence: Burkholderia cepacia Complex in Cystic Fibrosis Douglas G. Storey, Microbiology Research Group, Burkholderia cepacia complex (Bcc) is a group of at least 17 Gram-negative b-proteobacteria that Department of Biological are phenotypically related but genetically discrete (Mahenthiralingam et al., 2005; Vanlaere et al., Sciences, University of Calgary, 2008, 2009).
    [Show full text]
  • Forensic Microbiology Reveals That Neisseria Animaloris Infections In
    www.nature.com/scientificreports OPEN Forensic microbiology reveals that Neisseria animaloris infections in harbour porpoises follow traumatic Received: 14 February 2019 Accepted: 20 September 2019 injuries by grey seals Published: xx xx xxxx Geofrey Foster 1, Adrian M. Whatmore2, Mark P. Dagleish3, Henry Malnick4, Maarten J. Gilbert5, Lineke Begeman6, Shaheed K. Macgregor7, Nicholas J. Davison1, Hendrik Jan Roest8, Paul Jepson7, Fiona Howie9, Jakub Muchowski2, Andrew C. Brownlow1, Jaap A. Wagenaar5,8, Marja J. L. Kik10, Rob Deaville7, Mariel T. I. ten Doeschate1, Jason Barley1,11, Laura Hunter1 & Lonneke L. IJsseldijk 10 Neisseria animaloris is considered to be a commensal of the canine and feline oral cavities. It is able to cause systemic infections in animals as well as humans, usually after a biting trauma has occurred. We recovered N. animaloris from chronically infamed bite wounds on pectoral fns and tailstocks, from lungs and other internal organs of eight harbour porpoises. Gross and histopathological evidence suggest that fatal disseminated N. animaloris infections had occurred due to traumatic injury from grey seals. We therefore conclude that these porpoises survived a grey seal predatory attack, with the bite lesions representing the subsequent portal of entry for bacteria to infect the animals causing abscesses in multiple tissues, and eventually death. We demonstrate that forensic microbiology provides a useful tool for linking a perpetrator to its victim. Moreover, N. animaloris should be added to the list of potential zoonotic bacteria following interactions with seals, as the fnding of systemic transfer to the lungs and other tissues of the harbour porpoises may suggest a potential to do likewise in humans.
    [Show full text]
  • Taiwan's Indigenous Defense Industry: Centralized Control of Abundant
    Taiwan’s Indigenous Defense Industry: Centralized Control of Abundant Suppliers David An, Matt Schrader, Ned Collins-Chase May 2018 About the Global Taiwan Institute GTI is a 501(c)(3) non-profit policy incubator dedicated to insightful, cutting-edge, and inclusive research on policy issues regarding Taiwan and the world. Our mission is to enhance the relationship between Taiwan and other countries, especially the United States, through policy research and programs that promote better public understanding about Taiwan and its people. www.globaltaiwan.org About the Authors David An is a senior research fellow at the Global Taiwan Institute. David was a political-military affairs officer covering the East Asia region at the U.S. State Department from 2009 to 2014. Mr. An received a State Department Superior Honor Award for initiating this series of political-military visits from senior Taiwan officials, and also for taking the lead on congressional notification of U.S. arms sales to Taiwan. He received his M.A. from UCSD Graduate School of Global Policy and Strategy and his B.A. from UC Berkeley. Matt Schrader is the Editor-in-Chief of the China Brief at the Jamestown Foundation, MA candidate at Georgetown University, and previously an intern at GTI. Mr. Schrader has over six years of professional work experience in China. He received his BA from the George Washington University. Ned Collins-Chase is an MA candidate at Johns Hopkins School of Advanced International Studies, and previously an intern at GTI. He has worked in China, been a Peace Corps volunteer in Mo- zambique, and was also an intern at the US State Department.
    [Show full text]
  • Neisseria Gonorrhoeae Infection by Functioning Igm Memory B Cells
    Vigorous Response of Human Innate Functioning IgM Memory B Cells upon Infection by Neisseria gonorrhoeae This information is current as Nancy S. Y. So, Mario A. Ostrowski and Scott D. of October 1, 2021. Gray-Owen J Immunol 2012; 188:4008-4022; Prepublished online 16 March 2012; doi: 10.4049/jimmunol.1100718 http://www.jimmunol.org/content/188/8/4008 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2012/03/16/jimmunol.110071 Material 8.DC1 http://www.jimmunol.org/ References This article cites 69 articles, 32 of which you can access for free at: http://www.jimmunol.org/content/188/8/4008.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on October 1, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Vigorous Response of Human Innate Functioning IgM Memory B Cells upon Infection by Neisseria gonorrhoeae Nancy S.
    [Show full text]