Introduction to the H-Principle

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to the H-Principle Introduction to the h-Principle = )PMEWLFIVK 2 MMWLEGLIZ GVEHYEXI SXYHMIW MR MEXLIQEXMGW :SPYQI 48 AQIVMGER MEXLIQEXMGEP SSGMIX] http://dx.doi.org/10.1090/gsm/048 Titles in This Series 48 Y. Eliashberg and N. Mishachev, Introduction to the h-principle, 2002 47 A. Yu. Kitaev, A. H. Shen, and M. N. Vyalyi, Classical and quantum computation, 2002 46 Joseph L. Taylor, Several complex variables with connections to algebraic geometry and Lie groups, 2002 45 Inder K. Rana, An introduction to measure and integration, second edition, 2002 44 Jim Agler and John E. McCarthy, Pick interpolation and Hilbert function spaces, 2002 43 N. V. Krylov, Introduction to the theory of random processes, 2002 42 Jin Hong and Seok-Jin Kang, Introduction to quantum groups and crystal bases, 2002 41 Georgi V. Smirnov, Introduction to the theory of differential inclusions, 2002 40 Robert E. Greene and Steven G. Krantz, Function theory of one complex variable, 2002 39 Larry C. Grove, Classical groups and geometric algebra, 2002 38 Elton P. Hsu, Stochastic analysis on manifolds, 2002 37 HershelM.FarkasandIrwinKra, Theta constants, Riemann surfaces and the modular group, 2001 36 Martin Schechter, Principles of functional analysis, second edition, 2002 35 JamesF.DavisandPaulKirk, Lecture notes in algebraic topology, 2001 34 Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, 2001 33 Dmitri Burago, Yuri Burago, and Sergei Ivanov, A course in metric geometry, 2001 32 Robert G. Bartle, A modern theory of integration, 2001 31 Ralf Korn and Elke Korn, Option pricing and portfolio optimization: Modern methods of financial mathematics, 2001 30 J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, 2001 29 Javier Duoandikoetxea, Fourier analysis, 2001 28 Liviu I. Nicolaescu, Notes on Seiberg-Witten theory, 2000 27 Thierry Aubin, A course in differential geometry, 2001 26 Rolf Berndt, An introduction to symplectic geometry, 2001 25 Thomas Friedrich, Dirac operators in Riemannian geometry, 2000 24 Helmut Koch, Number theory: Algebraic numbers and functions, 2000 23 Alberto Candel and Lawrence Conlon, Foliations I, 2000 22 G¨unter R. Krause and Thomas H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension, 2000 21 John B. Conway, A course in operator theory, 2000 20 Robert E. Gompf and Andr´as I. Stipsicz, 4-manifolds and Kirby calculus, 1999 19 Lawrence C. Evans, Partial differential equations, 1998 18 Winfried Just and Martin Weese, Discovering modern set theory. II: Set-theoretic tools for every mathematician, 1997 17 Henryk Iwaniec, Topics in classical automorphic forms, 1997 16 Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Volume II: Advanced theory, 1997 15 Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Volume I: Elementary theory, 1997 14 Elliott H. Lieb and Michael Loss, Analysis, 1997 13 Paul C. Shields, The ergodic theory of discrete sample paths, 1996 For a complete list of titles in this series, visit the AMS Bookstore at www.ams.org/bookstore/. Introduction to the h-Principle Introduction to the h-Principle Y. Eliashberg N. Mishachev Graduate Studies in Mathematics Volume 48 American Mathematical Society Providence, Rhode Island Editorial Board Walter Craig Nikolai Ivanov Steven G. Krantz David Saltman (Chair) 2000 Mathematics Subject Classification. Primary 58Axx. Abstract. The book is devoted to topological methods for solving differential equations and inequalities. Its content significantly overlaps with Gromov’s book “Partial differential relations”. However, the exposition is more elementary and intended for a broader mathematical audience, including graduate, and even advanced undergraduate students. Library of Congress Cataloging-in-Publication Data Eliashberg, Y., 1946– Introduction to the h-principle / Y. Eliashberg and N. Mishachev. p. cm. — (Graduate studies in mathematics, ISSN 1065-7339 ; v 48) Includes bibliographical references. ISBN 0-8218-3227-1 (alk. paper) 1. Geometry, Differential. 2. Differentiable manifolds. 3. Differential equations–Numerical solutions. I. Mishachev, N (Nikolai M.) 1952– II. Title. III. Series. QA641.E62 2002 516.36–dc21 2002019347 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02940-6248 USA. Requests can also be made by e-mail to [email protected]. c 2002 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America. ∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at URL: http://www.ams.org/ 10 9 8 7 6 5 4 3 2 1 07 06 05 04 03 02 To Vladimir Igorevich Arnold who introduced us to the world of singularities and Misha Gromov who taught us how to get rid of them Contents Preface xv Intrigue 1 Part 1. Holonomic Approximation Chapter 1. Jets and Holonomy 7 §1.1. Maps and sections 7 §1.2. Coordinate definition of jets 7 §1.3. Invariant definition of jets 9 §1.4. The space X(1) 10 §1.5. Holonomic sections of the jet space X(r) 11 §1.6. Geometric representation of sections of X(r) 12 §1.7. Holonomic splitting 12 Chapter 2. Thom Transversality Theorem 15 §2.1. Generic properties and transversality 15 §2.2. Stratified sets and polyhedra 16 §2.3. Thom Transversality Theorem 17 Chapter 3. Holonomic Approximation 21 §3.1. Main theorem 21 §3.2. Holonomic approximation over a cube 23 §3.3. Fiberwise holonomic sections 24 §3.4. Inductive Lemma 25 ix x Contents §3.5. Proof of the Inductive Lemma 28 §3.6. Holonomic approximation over a cube 33 §3.7. Parametric case 34 Chapter 4. Applications 37 §4.1. Functions without critical points 37 §4.2. Smale’s sphere eversion 38 §4.3. Open manifolds 40 §4.4. Approximate integration of tangential homotopies 41 §4.5. Directed embeddings of open manifolds 44 §4.6. Directed embeddings of closed manifolds 45 §4.7. Approximation of differential forms by closed forms 47 Part 2. Differential Relations and Gromov’s h-Principle Chapter 5. Differential Relations 53 §5.1. What is a differential relation? 53 §5.2. Open and closed differential relations 55 §5.3. Formal and genuine solutions of a differential relation 56 §5.4. Extension problem 56 §5.5. Approximate solutions to systems of differential equations 57 Chapter 6. Homotopy Principle 59 §6.1. Philosophy of the h-principle 59 §6.2. Different flavors of the h-principle 62 Chapter 7. Open Diff V -Invariant Differential Relations 65 §7.1. Diff V -invariant differential relations 65 §7.2. Local h-principle for open Diff V -invariant relations 66 Chapter 8. Applications to Closed Manifolds 69 §8.1. Microextension trick 69 §8.2. Smale-Hirsch h-principle 69 §8.3. Sections transversal to distribution 71 Part 3. The Homotopy Principle in Symplectic Geometry Chapter 9. Symplectic and Contact Basics 75 §9.1. Linear symplectic and complex geometries 75 §9.2. Symplectic and complex manifolds 80 Contents xi §9.3. Symplectic stability 85 §9.4. Contact manifolds 88 §9.5. Contact stability 94 §9.6. Lagrangian and Legendrian submanifolds 95 §9.7. Hamiltonian and contact vector fields 97 Chapter 10. Symplectic and Contact Structures on Open Manifolds 99 §10.1. Classification problem for symplectic and contact structures 99 §10.2. Symplectic structures on open manifolds 100 §10.3. Contact structures on open manifolds 102 §10.4. Two-forms of maximal rank on odd-dimensional manifolds 103 Chapter 11. Symplectic and Contact Structures on Closed Manifolds 105 §11.1. Symplectic structures on closed manifolds 105 §11.2. Contact structures on closed manifolds 107 Chapter 12. Embeddings into Symplectic and Contact Manifolds 111 §12.1. Isosymplectic embeddings 111 §12.2. Equidimensional isosymplectic immersions 118 §12.3. Isocontact embeddings 121 §12.4. Subcritical isotropic embeddings 128 Chapter 13. Microflexibility and Holonomic R-Approximation 129 §13.1. Local integrability 129 §13.2. Homotopy extension property for formal solutions 131 §13.3. Microflexibility 131 §13.4. Theorem on holonomic R-approximation 133 §13.5. Local h-principle for microflexible Diff V -invariant relations 133 Chapter 14. First Applications of Microflexibility 135 §14.1. Subcritical isotropic immersions 135 §14.2. Maps transversal to a contact structure 136 Chapter 15. Microflexible A-Invariant Differential Relations 139 §15.1. A-invariant differential relations 139 §15.2. Local h-principle for microflexible A-invariant relations 140 Chapter 16. Further Applications to Symplectic Geometry 143 §16.1. Legendrian and isocontact immersions 143 §16.2. Generalized isocontact immersions 144 xii Contents §16.3. Lagrangian immersions 146 §16.4. Isosymplectic immersions 147 §16.5. Generalized isosymplectic immersions 149 Part 4. Convex Integration Chapter 17. One-Dimensional Convex Integration 153 §17.1. Example 153 §17.2. Convex hulls and ampleness 154 §17.3. Main lemma 155 §17.4. Proof of the main lemma 156 §17.5. Parametric version of the main lemma 161 §17.6. Proof of the parametric version of the main lemma 162 Chapter 18. Homotopy Principle for Ample Differential Relations 167 §18.1. Ampleness in coordinate directions 167 §18.2. Iterated convex integration 168 §18.3. Principal subspaces and ample differential relations in X(1) 170 §18.4. Convex integration of ample differential relations 171 Chapter 19. Directed Immersions and Embeddings 173 §19.1.
Recommended publications
  • Describing the Universal Cover of a Compact Limit ∗
    Describing the Universal Cover of a Compact Limit ∗ John Ennis Guofang Wei Abstract If X is the Gromov-Hausdorff limit of a sequence of Riemannian manifolds n Mi with a uniform lower bound on Ricci curvature, Sormani and Wei have shown that the universal cover X˜ of X exists [13, 14]. For the case where X is compact, we provide a description of X˜ in terms of the universal covers M˜ i of the manifolds. More specifically we show that if X¯ is the pointed Gromov- Hausdorff limit of the universal covers M˜ i then there is a subgroup H of Iso(X¯) such that X˜ = X/H.¯ 1 Introduction In 1981 Gromov proved that any finitely generated group has polynomial growth if and only if it is almost nilpotent [7]. In his proof, Gromov introduced the Gromov- Hausdorff distance between metric spaces [7, 8, 9]. This distance has proven to be especially useful in the study of n-dimensional manifolds with Ricci curvature uniformly bounded below since any sequence of such manifolds has a convergent subsequence [10]. Hence we can follow an approach familiar to analysts, and consider the closure of the class of all such manifolds. The limit spaces of this class have path metrics, and one can study these limit spaces from a geometric or topological perspective. Much is known about the limit spaces of n-dimensional Riemannian manifolds with a uniform lower bound on sectional curvature. These limit spaces are Alexandrov spaces with the same curvature bound [1], and at all points have metric tangent cones which are metric cones.
    [Show full text]
  • The Materiality & Ontology of Digital Subjectivity
    THE MATERIALITY & ONTOLOGY OF DIGITAL SUBJECTIVITY: GRIGORI “GRISHA” PERELMAN AS A CASE STUDY IN DIGITAL SUBJECTIVITY A Thesis Submitted to the Committee on Graduate Studies in Partial Fulfillment of the Requirements for the Degree of Master of Arts in the Faculty of Arts and Science TRENT UNIVERSITY Peterborough, Ontario, Canada Copyright Gary Larsen 2015 Theory, Culture, and Politics M.A. Graduate Program September 2015 Abstract THE MATERIALITY & ONTOLOGY OF DIGITAL SUBJECTIVITY: GRIGORI “GRISHA” PERELMAN AS A CASE STUDY IN DIGITAL SUBJECTIVITY Gary Larsen New conditions of materiality are emerging from fundamental changes in our ontological order. Digital subjectivity represents an emergent mode of subjectivity that is the effect of a more profound ontological drift that has taken place, and this bears significant repercussions for the practice and understanding of the political. This thesis pivots around mathematician Grigori ‘Grisha’ Perelman, most famous for his refusal to accept numerous prestigious prizes resulting from his proof of the Poincaré conjecture. The thesis shows the Perelman affair to be a fascinating instance of the rise of digital subjectivity as it strives to actualize a new hegemonic order. By tracing first the production of aesthetic works that represent Grigori Perelman in legacy media, the thesis demonstrates that there is a cultural imperative to represent Perelman as an abject figure. Additionally, his peculiar abjection is seen to arise from a challenge to the order of materiality defended by those with a vested interest in maintaining the stability of a hegemony identified with the normative regulatory power of the heteronormative matrix sustaining social relations in late capitalism.
    [Show full text]
  • On the Sormani-Wenger Intrinsic Flat Convergence of Alexandrov Spaces 3
    ON THE SORMANI-WENGER INTRINSIC FLAT CONVERGENCE OF ALEXANDROV SPACES NAN LI AND RAQUEL PERALES Abstract. We study sequences of integral current spaces (X j, d j, T j) such that the integral current structure T j has weight 1 and no boundary and, all (X j, d j) are closed Alexandrov spaces with curvature uniformly bounded from below and diameter uniformly bounded from above. We prove that for such sequences either their limits collapse or the Gromov- Hausdorff and Sormani-Wenger Intrinsic Flat limits agree. The latter is done showing that the lower n dimensional density of the mass measure at any regular point of the Gromov- Hausdorff limit space is positive by passing to a filling volume estimate. In an appendix we show that the filling volume of the standard n dimensional integral current space coming from an n dimensional sphere of radius r > 0 in Euclidean space equals rn times the filling volume of the n dimensional integral current space coming from the n dimensional sphere of radius 1. Introduction Burago, Gromov and Perelman proved that sequences of Alexandrov spaces with cur- vature uniformly bounded from below, diameter and dimension uniformly bounded from above, have subsequences which converge in the Gromov-Hausdorff sense to an Alexan- drov space with the same curvature and diameter bounds. The properties of Alexandrov spaces and their Gromov-Hausdorff limit spaces have been amply studied by Alexander- Bishop [1], Alexander-Kapovitch-Petrunin [2], Burago-Gromov-Perelman [5], Burago- Burago-Ivanov [4], Li-Rong [15], Otsu-Shioya [20], and many others. The Gromov Hausdorff distance between two metric spaces, Xi, is defined as, Z (0.1) dGH (X , X ) = inf d (ϕ (X ) , ϕ (X )) , 1 2 { H 1 1 2 2 } Z ff where dH denotes the Hausdor distance and the infimum is taken over all complete metric spaces Z and all distance preserving maps ϕi : Xi Z, [7].
    [Show full text]
  • Large Scale Geometry by Nowak and Yu
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 52, Number 1, January 2015, Pages 141–149 S 0273-0979(2014)01460-0 Article electronically published on August 20, 2014 Large scale geometry, by P. Nowak and G. Yu, EMS Textbooks in Mathematics, European Mathematical Society, Zu¨rich, 2012, xiv+189 pp., ISBN 978-3-03719- 112-5, AC38.00, $41.80 Everyone knows that many phenomena are best studied at one scale or another, and that deep problems often involve the interactions of several scales. From the broad conception of our understanding of physics, based on the atomic hypothesis to the germ theory of disease to the success of calculus with its move to the infin- itesimal, the value of the study of phenomena at small scales and the techniques of integrating such information to the macroscopic level are now the most basic intuition in the scientific world view—with attendant backlashes against “blind reductionism”. In the subject of global geometry, the important general direction of “under- standing manifolds under some condition of curvature” is of this sort. Curvature is the infinitesimal measure of how the space di®ers from Euclidean space, and one tries to obtain global conclusions from uniform assumptions on this type of local hypothesis. There is also another extreme: going from the cosmic, the large scale, back to the local. In retrospect, at least, one can see this trend in, say, Liouville’s theorem that bounded analytic functions are constant: boundedness is a large scale condition; surely, if one looks from a very large scale, a bounded function should not be viewed as di®erent than a constant, and Liouville’s theorem tells us that under a condition of analyticity, the large scale information tells all.
    [Show full text]
  • An Intrinsic Parallel Transport in Wasserstein Space
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 145, Number 12, December 2017, Pages 5329–5340 http://dx.doi.org/10.1090/proc/13655 Article electronically published on July 10, 2017 AN INTRINSIC PARALLEL TRANSPORT IN WASSERSTEIN SPACE JOHN LOTT (Communicated by Guofang Wei) Abstract. If M is a smooth compact connected Riemannian manifold, let P (M) denote the Wasserstein space of probability measures on M. We describe a geometric construction of parallel transport of some tangent cones along geodesics in P (M). We show that when everything is smooth, the geometric parallel transport agrees with earlier formal calculations. 1. Introduction Let M be a smooth compact connected Riemannian manifold without boundary. The space P (M) of probability measures of M carries a natural metric, the Wasser- stein metric, and acquires the structure of a length space. There is a close relation between minimizing geodesics in P (M) and optimal transport between measures. For more information on this relation, we refer to Villani’s book [13]. Otto discovered a formal Riemannian structure on P (M), underlying the Wasser- stein metric [10]. One can do formal geometric calculations for this Riemannian structure [6]. It is an interesting problem to make these formal considerations into rigorous results in metric geometry. If M has nonnegative sectional curvature, then P (M) is a compact length space with nonnegative curvature in the sense of Alexandrov [8, Theorem A.8], [12, Propo- sition 2.10]. Hence one can define the tangent cone TμP (M)ofP (M)atameasure μ ∈ P (M). If μ is absolutely continuous with respect to the volume form dvolM , then TμP (M) is a Hilbert space [8, Proposition A.33].
    [Show full text]
  • An Introduction to Differential Topology and Surgery Theory
    An introduction to differential topology and surgery theory Anthony Conway December 8, 2018 Abstract This course decomposes in two parts. The first introduces some basic differential topology (mani- folds, tangent spaces, immersions, vector bundles) and discusses why it is possible to turn a sphere inside out. The second part is an introduction to surgery theory. Contents 1 Differential topology2 1.1 Smooth manifolds and their tangent spaces......................2 1.1.1 Smooth manifolds................................2 1.1.2 Tangent spaces..................................4 1.1.3 Immersions and embeddings...........................6 1.2 Vector bundles and homotopy groups..........................8 1.2.1 Vector bundles: definitions and examples...................8 1.2.2 Some homotopy theory............................. 11 1.2.3 Vector bundles: the homotopy classification.................. 15 1.3 Turning the sphere inside out.............................. 17 2 Surgery theory 19 2.1 Surgery below the middle dimension.......................... 19 2.1.1 Surgery and its effect on homotopy groups................... 20 2.1.2 Motivating the definition of a normal map................... 21 2.1.3 The surgery step and surgery below the middle dimension.......... 24 2.2 The even-dimensional surgery obstruction....................... 26 2.2.1 The intersection and self intersection numbers of immersed spheres..... 27 2.2.2 Symmetric and quadratic forms......................... 31 2.2.3 Surgery on hyperbolic surgery kernels..................... 33 2.2.4 The even quadratic L-groups.......................... 35 2.2.5 The surgery obstruction in the even-dimensional case............ 37 2.3 An application of surgery theory to knot theory.................... 40 1 Chapter 1 Differential topology The goal of this chapter is to discuss some classical topics and results in differential topology.
    [Show full text]
  • ON GLUING ALEXANDROV SPACES with LOWER RICCI CURVATURE BOUNDS 3 and the Boundary (Defined Either Way) Is a Closed Subset in the Ambient Space
    ON GLUING ALEXANDROV SPACES WITH LOWER RICCI CURVATURE BOUNDS VITALI KAPOVITCH, CHRISTIAN KETTERER, AND KARL-THEODOR STURM Abstract. In this paper we prove that in the class of metric measure space with Alexandrov curvature bounded from below the Riemannian curvature- dimension condition RCD(K,N) with K ∈ R & N ∈ [1, ∞) is preserved under doubling and gluing constructions. Contents 1. Introduction and Statement of Main Results 1 1.1. Application to heat flow with Dirichlet boundary condition 4 2. Preliminaries 5 2.1. Curvature-dimension condition 5 2.2. Alexandrov spaces 7 2.3. Gluing 8 2.4. Semi-concave functions 10 2.5. 1D localisation of generalized Ricci curvature bounds. 11 2.6. Characterization of curvature bounds via 1D localisation 13 3. Applying 1D localisation 14 3.1. First application 14 3.2. Second application 15 4. Semiconcave functions on glued spaces 18 5. Proof of Theorem 1.1 21 References 23 1. Introduction and Statement of Main Results arXiv:2003.06242v1 [math.DG] 13 Mar 2020 A way to construct Alexandrov spaces is by gluing together two or more given Alexandrov spaces along isometric connected components of their intrinsic bound- aries. The isometry between the boundaries is understood w.r.t. induced length metric. A special case of this construction is the double space where one glues together two copies of the same Alexandrov space with nonempty boundary. It was shown by Perelman that the double of an Alexandrov space of curvature k is again Alexandrov of curvature k. Petrunin later showed [Pet97] that the≥ lower ≥ CK is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Projektnummer 396662902.
    [Show full text]
  • AN INTRODUCTION to GROMOV's H-PRINCIPLE
    AN INTRODUCTION TO GROMOV'S h-PRINCIPLE ROBERTO COHEN Abstract. The twentieth century saw great advances in the theory of im- mersions and differential equations spearheaded by mathematicians such as Stephen Smale. Beginning with his PhD thesis in 1969, Mikhail Gromov be- gan creating the theory of the h-priciple which serves to generalize and unify the results proved by others and to further generate new ones. This paper is devoted to introducing the reader to the basic notions, constructions, and re- sults of this theory, by illustrating them through various examples, particualrly the Whitney Graustein theorem. Contents 1. Introduction 1 2. Motivating the h-principle 2 3. Jets and Holonomy 3 3.1. Jets over Rn 3 3.2. Jets over Manifolds 4 3.3. Holonomy 5 4. Holonomic Approximation 5 4.1. The Holonomic Approximation Theorems 5 4.2. Justifying the HATs 6 4.3. Applications 10 5. Differential Relations 11 6. The Homotopy Principle 12 Acknowledgments 13 References 13 1. Introduction In 1937, Hassler Whitney published an unassuming paper entitled "On regular closed curves in the plane," which explores the regular homotopy classes of im- mersions of circles in the plane. This was an early sign of the great topological advances in the theory of immersions to come in the latter half of the twentieth century spearheaded by mathematicians such as Ren´eThom and Stephen Smale and John Nash. In the 1970s Mikhail Gromov, motivated by the work of these mathematicians and what he saw as a common thread between them, began to develop his theory of the h-principle.
    [Show full text]
  • Mathematical Congress of the Americas
    656 Mathematical Congress of the Americas First Mathematical Congress of the Americas August 5–9, 2013 Guanajuato, México José A. de la Peña J. Alfredo López-Mimbela Miguel Nakamura Jimmy Petean Editors American Mathematical Society Mathematical Congress of the Americas First Mathematical Congress of the Americas August 5–9, 2013 Guanajuato, México José A. de la Peña J. Alfredo López-Mimbela Miguel Nakamura Jimmy Petean Editors 656 Mathematical Congress of the Americas First Mathematical Congress of the Americas August 5–9, 2013 Guanajuato, México José A. de la Peña J. Alfredo López-Mimbela Miguel Nakamura Jimmy Petean Editors American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Dennis DeTurck, Managing Editor Michael Loss Kailash Misra Martin J. Strauss 2000 Mathematics Subject Classification. Primary 00-02, 00A05, 00A99, 00B20, 00B25. Library of Congress Cataloging-in-Publication Data Library of Congress Cataloging-in-Publication (CIP) Data has been requested for this volume. Contemporary Mathematics ISSN: 0271-4132 (print); ISSN: 1098-3627 (online) DOI: http://dx.doi.org/10.1090/conm/656 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Permissions to reuse portions of AMS publication content are handled by Copyright Clearance Center’s RightsLink service.
    [Show full text]
  • Calculus, Heat Flow and Curvature-Dimension Bounds in Metric Measure Spaces
    P. I. C. M. – 2018 Rio de Janeiro, Vol. 1 (301–340) CALCULUS, HEAT FLOW AND CURVATURE-DIMENSION BOUNDS IN METRIC MEASURE SPACES L A Abstract The theory of curvature-dimension bounds for nonsmooth spaces has several motivations: the study of functional and geometric inequalities in structures which are very far from being Euclidean, therefore with new non-Riemannian tools, the description of the “closure” of classes of Riemannian manifolds under suitable geo- metric constraints, the stability of analytic and geometric properties of spaces (e.g. to prove rigidity results). Even though these goals may occasionally be in conflict, in the last few years we have seen spectacular developments in all these directions, and my text is meant both as a survey and as an introduction to this quickly devel- oping research field. 1 Introduction I will mostly focus on metric measure spaces (m.m.s. in brief), namely triples (X; d; m), where (X; d) is a complete and separable metric space and m is a non-negative Borel measure, finite on bounded sets, typically with supp m = X. The model case that should always be kept in mind is a weighted Riemannian manifold (M; g; m), with m given by V (1-1) m := e volg for a suitable weight function V : M R. It can be viewed as a metric measure space ! by taking as d = dg the Riemannian distance induced by g. In order to achieve the goals I mentioned before, it is often necessary to extend many basic calculus tools from smooth to nonsmooth structures.
    [Show full text]
  • Grigori Perelman
    Grigori Perelman Biography Grigori Perelman was born in Leningrad, Soviet Union (now Saint Petersburg, Russia) on 13 June 1966, to Jewish parents, Yakov (who now lives in Israel) and Lubov. Grigori's mother Lubov gave up graduate work in mathematics to raise him. Grigori's mathematical talent became apparent at the age of ten, and his mother enrolled him in Sergei Rukshin's after-school math training program. His mathematical education continued at the Leningrad Secondary School №239, a specialized school with advanced mathematics and physics programs. Grigori excelled in all subjects except physical education. In 1982, as a member of the Soviet Union team competing in the International Mathematical Olympiad, an international competition for high school students, he won a gold medal, achieving a perfect score. In the late 1980s, Perelman went on to earn a Candidate of Sciences degree (the Soviet equivalent to the Ph.D.) at the School of Mathematics and Mechanics of the Leningrad State University, one of the leading universities in the former Soviet Union. His dissertation was titled "Saddle surfaces in Euclidean spaces." After graduation, Perelman began work at the renowned Leningrad Department of Steklov Institute of Mathematics of the USSR Academy of Sciences, where his advisors were Aleksandr Aleksandrov and Yuri Burago. In the late 1980s and early 1990s, Perelman held research positions at several universities in the United States. In 1991 Perelman won the Young Mathematician Prize of the St. Petersburg Mathematical Society for his work on Aleksandrov's spaces of curvature bounded from below . In 1992, he was invited to spend a semester each at the Courant Institute in New York University and State University of New York at Stony Brook where he began work on manifolds with lower bounds on Ricci curvature.
    [Show full text]
  • Optimal Transport Maps on Alexandrov Spaces Revisited 3
    OPTIMAL TRANSPORT MAPS ON ALEXANDROV SPACES REVISITED TAPIO RAJALA AND TIMO SCHULTZ Abstract. We give an alternative proof for the fact that in n-dimensional Alexandrov spaces with curvature bounded below there exists a unique optimal transport plan from any purely (n − 1)-unrectifiable starting measure, and that this plan is induced by an optimal map. 1. Introduction The problem of optimal mass transportation has a long history, starting from the work of Monge [27] in the late 18th century. In the original formulation of the problem, nowadays called the Monge-formulation, the problem is to find the transport map T minimizing the transportation cost c(x, T (x)) dµ0(x), (1.1) ZRn n n among all Borel maps T : R → R transporting a given probability measure µ0 to another given probability measure µ1, that is, T♯µ0 = µ1. In the original problem of Monge, the cost function c(x, y) was the Euclidean distance. Later, other cost functions have been considered, in particular much of the study has involved the distance squared cost, c(x, y)= |x − y|2, which is the cost studied also in this paper. In the Monge-formulation (1.1) of the optimal mass transportation problem the class of admissible maps T that send µ0 to µ1 is in most cases not closed in any suitable topology. To overcome this problem, Kantorovich [20, 19] considered a larger class of optimal transports, n n namely, measures π on R ×R such that the first marginal of π is µ0 and the second is µ1. Such measures π are called transport plans.
    [Show full text]