Snake Population Declines and Conservation

Total Page:16

File Type:pdf, Size:1020Kb

Snake Population Declines and Conservation Snake population declines and conservation – A global synthesis, and perspectives from southern Africa, based on long-term field observations ________________________________ Warren Robert Schmidt Submitted in fulfilment of the academic requirements for the degree of Master of Science In the Discipline of Ecological Sciences School of Life Sciences College of Agriculture, Engineering and Science University of KwaZulu-Natal Pietermaritzburg Campus 2018 ABSTRACT Amphibian and reptile declines have been documented from across the globe in recent decades. This is a result of anthropogenically driven effects including transformation of the landscape, habitat destruction, environmental degradation, road mortality, leaching of chemicals and pollutants into the environment, genetic isolation and disease. More recently, several well- studied declines affecting snakes have been documented in the literature. Most studies emanate from North America and Europe, with a small percentage from Australia. Due to the absence of long-term site monitoring in Africa, the extent of snake population declines is mostly unknown and at best, speculative. My study aimed to provide baseline data on snakes from South Africa based on long- term field observation and accumulative data spanning a period of approximately 30 years, from 1988 – 2018. In my experience, I have noted perceived declines in several geographical regions, including species-specific declines. Whilst the primary focus of this study was on snakes, these declines extend to other amphibian and reptile species, and brief reference is made to these in the specific site studies. Firstly, in Chapter 1, I reviewed the published literature globally pertaining to snake conservation, population ecology and documented snake population declines and the contributing factors thereof. The causes of decline are complex and often interlinked, having a cascading effect. For example, a population of snakes isolated by roads and urban development will become genetically isolated, leading to weakened immunity and increased stresses, making them susceptible to disease and overloaded parasite burdens. Therefore, a population experiencing declines is affected by several interlinking causes. All contributing factors must be carefully analysed to initiate mitigation measures to prevent further decline. ii Secondly, in Chapter 2, I reviewed our current understanding of global snake diversity, conservation and systematics to quantify species diversity and conservation trends in extant snake species. We are far from understanding true snake species diversity with numerous new species being described by science annually. Systematics and taxonomy, including phylogenetic relatedness, are all crucial aspects required to facilitate and implement effective conservation measures if we are to conserve world snake diversity. Thirdly, in Chapter 3, I have presented snake data pertaining to road mortality based on a study undertaken along the R516 national road in Limpopo Province, South Africa. Road mortality has been identified as a contributing factor of snake population declines in many regions of the globe. The increasing network of roads and associated vehicular traffic is cause for concern, not only in protecting snakes, but other faunal species as well. In Chapters 4 and 5, I examined data from personal archived records taken at two different, well-defined, field study sites – one site situated in a former grassland habitat in Gauteng Province, which is now completely transformed, and a second site on the lower South Coast of KwaZulu-Natal Province, which has experienced relatively lower rates of anthropogenic habitat transformation. Both sites have been randomly surveyed for a period spanning approximately 30 years and may represent two of the longest-running site specific herpetological surveys undertaken in southern Africa. The impact of anthropogenic habitat transformation through ecological succession and urban development on species populations and diversity is discussed in detail. In the absence of consistent, methodologically robust surveys using trap arrays and mark-recapture studies, which are absent in South Africa, long- term field observation may be the only available option in identifying possible snake declines. This sentiment is echoed elsewhere across the globe where numerous seasoned herpetologists have indicated that snakes have declined in their respective field sites in recent decades. My data support this. iii In Chapter 6, I selected a common, widely distributed snake species, the rinkhals (Hemachatus haemachatus), as a species-specific candidate. These elapid snakes appear to have experienced dramatic declines in some parts of their range, i.e. the Western Cape and eastern Zimbabwe, but which are still thriving within a peri-urban environment on the eastern highveld in Gauteng. Factors contributing to its success or decline are discussed. In conclusion, our current lack of long-term monitoring is highlighted, as well as challenges and possible solutions and methods to gain better insight and understanding of snake population declines regionally and globally. The pros and cons of utilizing citizen science, virtual museums and social media data sets is discussed within the context of providing skewed data that may mask underlying population trends, providing a biased output which may in turn affect accurate conservation assessments. This thesis aims to be a qualitative study rather than a quantitative analysis. However, various population and ecological models are being researched for further statistical testing. iv PREFACE All data used in this thesis, unless otherwise stated, were collected over a period spanning approximately 30 years by Warren R. Schmidt. A proposal to undertake a Master of Science degree was submitted and accepted by the University of KwaZulu-Natal. The project has been managed under the supervision of Professor Colleen T. Downs. This thesis, submitted for the degree of Master of Science in the College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Pietermaritzburg campus, represents original work by the author and has not otherwise been submitted in any form for any degree or diploma to any other University. Where use has been made of the work of others, it is duly acknowledged in the text. ……………………………………….. Warren R. Schmidt December 2018 I certify that the above statement is correct and as the candidate’s supervisor I have approved this thesis for submission. ………………………………………… Professor Colleen T. Downs Supervisor December 2018 v COLLEGE OF AGRICULTURE, ENGINEERING AND SCIENCE DECLARATION 1 – PLAGIARISM I, Warren Robert Schmidt, declare that 1. The research reported in this thesis, except where otherwise indicated, is my original research. 2. This thesis has not been submitted for any degree or examination at any other university. 3. This thesis does not contain other person’s data, pictures, graphs, maps or other information unless specifically acknowledged as being sourced from other persons. 4. This thesis does not contain other persons’ writing, unless specifically acknowledged as being sourced from other researchers. Where other written sources have been quoted, then: a. Their words have been re-written, but the general information attributed to them has been referenced. b. Where their exact words have been used, then their writing has been placed in italics and inside quotation marks, and referenced. 5. This thesis does not contain text, graphics or tables copied and pasted from the Internet, unless specifically acknowledged, and the source being detailed in the thesis and in the reference sections. 6. All photographic images, GIS plotted maps, graphs and tables were generated and enhanced by myself utilising available GIS and graphics and image software and referenced in the appropriate sections. Google Earth satellite images are credited. Signed: …………………………… Warren R. Schmidt December 2018 vi COLLEGE OF AGRICULTURE, SCIENCE AND ENGINEERING DECLARATION 2 – PUBLICATIONS Details of contributions to publications that form part and/or include research presented in this thesis. Publication 1 Schmidt, W. R. & Downs, C. T. Snake population declines – a global review. WRS conceived paper with CTD. WRS collected and reviewed the literature and wrote the paper. CTD contributed comments to the manuscript. Publication 2 Schmidt, W. R. & Downs, C. T. Global snake diversity, systematics and conservation: a review. WRS conceived paper with CTD. WRS collected and analysed data and wrote the paper. CTD contributed comments to the manuscript. Publication 3 Schmidt, W. R. & Downs, C. T. Snakes on roads – a case-study in the Savanna Biome of Limpopo Province, South Africa. WRS conceived paper with CTD. WRS collected and collated data and wrote the paper. CTD contributed comments to the manuscript. Publication 4 vii Schmidt, W. R. & Downs, C. T. Changing landscape – the herpetofauna of a former grassland habitat, with reference to snake diversity and adaptability to urban transformation. WRS conceived paper with CTD. WRS collected and analysed data and wrote the paper. CTD contributed comments to the manuscript. Publication 5 Schmidt, W. R. & Downs, C. T. Herpetofauna on the South Coast of KwaZulu-Natal: composition and declines. WRS conceived paper with CTD. WRS collected and analysed data and wrote the paper. CTD contributed comments to the manuscript. Publication 6 Schmidt, W. R., Prinsloo, C. & Downs, C. T. Peri-urban rinkhals Hemachatus haemachatus (Reptilia:
Recommended publications
  • THE UNDERCROFT We Must Expire in Hope{ of Resurrection to Life Again
    THE UNDERCROFT We must Expire in hope{ of Resurrection to Life Again 1 Editorial Illu{tration{ Daniel Sell Matthew Adams - 43 Jeremy Duncan - 51, 63 Anxious P. - 16 2 Skinned Moon Daughter Cedric Plante - Cover, 3, 6, 8, 9 Benjamin Baugh Sean Poppe - 28 10 101 Uses of a Hanged Man Barry Blatt Layout Editing & De{ign Daniel Sell 15 The Doctor Patrick Stuart 23 Everyone is an Adventurer E{teemed Con{ultant{ Daniel Sell James Maliszewski 25 The Sickness Luke Gearing 29 Dead Inside Edward Lockhart 41 Cockdicktastrophe Chris Lawson 47 Nine Summits and the Matter of Birth Ezra Claverie M de in elson Ma ia S t y a it mp ic of Authent Editorial Authors live! Hitler writes a children’s book, scratches his name off and hides it among the others. Now children grow up blue and blond, unable to control their minds, the hidden taint in friendly balloons and curious caterpillars wormed itself inside and reprogrammed them into literary sleeper agents ready to steal our freedom. The swine! We never saw it coming. If only authors were dead. But if authors were dead you wouldn’t be able to find them, to sit at their side and learn all they had to say on art and beautiful things, on who is wrong and who is right, on what is allowed and what is ugly and what should be done about this and that. We would have only words and pictures on a page, if we can’t fill in the periphery with context then how will we understand anything? If they don’t tell us what to enjoy, how to correctly enjoy it, then how will we know? Who is right and who is mad? Whose ideas are poisonous and wrong? Call to arms! Stop that! Help me! We must slather ourselves in their selfish juices.
    [Show full text]
  • (2007) a Photographic Field Guide to the Reptiles and Amphibians Of
    A Photographic Field Guide to the Reptiles and Amphibians of Dominica, West Indies Kristen Alexander Texas A&M University Dominica Study Abroad 2007 Dr. James Woolley Dr. Robert Wharton Abstract: A photographic reference is provided to the 21 reptiles and 4 amphibians reported from the island of Dominica. Descriptions and distribution data are provided for each species observed during this study. For those species that were not captured, a brief description compiled from various sources is included. Introduction: The island of Dominica is located in the Lesser Antilles and is one of the largest Eastern Caribbean islands at 45 km long and 16 km at its widest point (Malhotra and Thorpe, 1999). It is very mountainous which results in extremely varied distribution of habitats on the island ranging from elfin forest in the highest elevations, to rainforest in the mountains, to dry forest near the coast. The greatest density of reptiles is known to occur in these dry coastal areas (Evans and James, 1997). Dominica is home to 4 amphibian species and 21 (previously 20) reptile species. Five of these are endemic to the Lesser Antilles and 4 are endemic to the island of Dominica itself (Evans and James, 1997). The addition of Anolis cristatellus to species lists of Dominica has made many guides and species lists outdated. Evans and James (1997) provides a brief description of many of the species and their habitats, but this booklet is inadequate for easy, accurate identification. Previous student projects have documented the reptiles and amphibians of Dominica (Quick, 2001), but there is no good source for students to refer to for identification of these species.
    [Show full text]
  • Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
    Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. amphibian-reptile-conservation.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47.
    [Show full text]
  • Supplemental Information Biological Conservation No Safe Haven: Protection Levels Show Imperilled South African Reptiles Not
    Supplemental Information Biological Conservation No safe haven: protection levels show imperilled South African reptiles not sufficiently safe- guarded despite low average extinction risk Krystal A. Tolley, Joshua Weeber, Bryan Maritz, Luke Verburgt, Michael F. Bates, Werner Conradie, Margaretha D. Hofmeyr, Andrew A. Turner, Jessica M. da Silva, Graham J. Alexander Supplemental Figures S1-S3 Figure S1. Species richness of threatened and Near Threatened reptiles in South Africa. 1 Figure S2. Reptile species richness in South Africa (darker shades indicate higher richness), with the current protected area network indicated by the black outlines. 2 Figure S3. Reptile species richness in South Africa (darker shades indicate higher richness), with the current protected area network indicated by the grey shaded polygons and the protected area expansion network indicated by black polygon outlines. 3 Appendix S1. Protocol for Measuring Protection Level for South African Reptiles The following process was applied to measure the level of protection for each species, using the interpreted distributions for the species (see main text). We evaluated the effectiveness of South Africa’s protected area network in ensuring that minimum viable populations of reptiles are protected. We set a conservation target for protection of at least 10 fragments of protected habitat, each with areas greater than 10 km2 (1000 ha) for a total of 100 km2 for each species. The fragment size was considered to be the minimum area that would support viable populations, with the total area considered to be the total area needed to safeguard the species survival into the future. The interpreted distributions for each species were then intersected with South Africa’s protected area network (Government of South Africa, 2010).
    [Show full text]
  • Blumgart Et Al 2017- Herpetological Survey Nosy Komba
    Journal of Natural History ISSN: 0022-2933 (Print) 1464-5262 (Online) Journal homepage: http://www.tandfonline.com/loi/tnah20 Herpetological diversity across intact and modified habitats of Nosy Komba Island, Madagascar Dan Blumgart, Julia Dolhem & Christopher J. Raxworthy To cite this article: Dan Blumgart, Julia Dolhem & Christopher J. Raxworthy (2017): Herpetological diversity across intact and modified habitats of Nosy Komba Island, Madagascar, Journal of Natural History, DOI: 10.1080/00222933.2017.1287312 To link to this article: http://dx.doi.org/10.1080/00222933.2017.1287312 Published online: 28 Feb 2017. Submit your article to this journal Article views: 23 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tnah20 Download by: [BBSRC] Date: 21 March 2017, At: 02:56 JOURNAL OF NATURAL HISTORY, 2017 http://dx.doi.org/10.1080/00222933.2017.1287312 Herpetological diversity across intact and modified habitats of Nosy Komba Island, Madagascar Dan Blumgart a, Julia Dolhema and Christopher J. Raxworthyb aMadagascar Research and Conservation Institute, BP 270, Hellville, Nosy Be, Madagascar; bDivision of Vertebrate Zoology, American, Museum of Natural History, New York, NY, USA ABSTRACT ARTICLE HISTORY A six month herpetological survey was undertaken between March Received 16 August 2016 and September 2015 on Nosy Komba, an island off of the north- Accepted 17 January 2017 west coast of mainland Madagascar which has undergone con- KEYWORDS fi siderable anthropogenic modi cation. A total of 14 species were Herpetofauna; conservation; found that have not been previously recorded on Nosy Komba, Madagascar; Nosy Komba; bringing the total island diversity to 52 (41 reptiles and 11 frogs).
    [Show full text]
  • Quantifying the Conservation Value of Plantation Forests for a Madagascan Herpetofauna
    Herpetological Conservation and Biology 14(1):269–287. Submitted: 6 March 2018; Accepted: 28 March 2019; Published: 30 April 2019. QUANTIFYING THE CONSERVATION VALUE OF PLANTATION FORESTS FOR A MADAGASCAN HERPETOFAUNA BETH EVANS Madagascar Research and Conservation Institute, Nosy Komba, Madagascar current address: 121 Heathway, Erith, Kent DA8 3LZ, UK, email: [email protected] Abstract.—Plantations are becoming a dominant component of the forest landscape of Madagascar, yet there is very little information available regarding the implications of different forms of plantation agriculture for Madagascan reptiles and amphibians. I determined the conservation value of bamboo, secondary, open-canopy plantation, and closed-canopy plantation forests for reptiles and amphibians on the island of Nosy Komba, in the Sambirano region of north-west Madagascar. Assistants and I conducted 220 Visual Encounter Surveys between 29 January 2016 and 5 July 2017 and recorded 3,113 reptiles (32 species) and 751 amphibians (nine species). Closed-canopy plantation supported levels of alpha diversity and community compositions reflective of natural forest, including several threatened and forest-specialist species. Open-canopy plantation exhibited diminished herpetofaunal diversity and a distinct community composition dominated by disturbance-resistant generalist species. Woody tree density and bamboo density were positively correlated with herpetofaunal species richness, and plantation species richness, plantation species density, sapling density, and the proportion of wood ground cover were negatively associated with herpetofaunal diversity. I recommend the integration of closed-canopy plantations on Nosy Komba, and across wider Madagascar, to help mitigate the negative effects of secondary forest conversion for agriculture on Madagascan herpetofauna; however, it will be necessary to retain areas of natural forest to act as sources of biodiversity for agroforestry plantations.
    [Show full text]
  • Advice to the Minister for Sustainability, Environment, Water, Population
    The Minister included this species in the vulnerable category, effective from 11 May 2012 Advice to the Minister for Sustainability, Environment, Water, Population and Communities from the Threatened Species Scientific Committee (the Committee) on Amendment to the list of Threatened Species under the Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) 1. Name Acanthophis hawkei The species is commonly known as the plains death adder. It is in the Family Elapidae. 2. Reason for Conservation Assessment by the Committee This advice follows assessment of information provided by a public nomination to list the plains death adder. The nominator suggested listing in the vulnerable category of the list. This is the Committee’s first consideration of the species under the EPBC Act. 3. Summary of Conclusion The Committee judges that the species has been demonstrated to have met sufficient elements of Criterion 1 to make it eligible for listing as vulnerable. 4. Taxonomy The plains death adder is conventionally accepted as a distinct species. The species has been formally described by Wells and Wellington (1985) and the subsequent genetic work by Wüster et al. (2005) allows the species to be defined by reference to a phylogenetic clade and accessioned sequences. A scientific institution has a specimen of the species (Northern Territory museum (R3677)) and the taxon is recognised as a distinct species by both the Northern Territory museum and the Queensland Museum. 5. Description The plains death adder is a robust terrestrial snake which grows to a maximum length of approximately 1.2 m (Wells and Wellington, 1985). The species’ dorsal side ranges in colour from shades of grey to a brownish-red, usually with wide, lighter bands across the body.
    [Show full text]
  • The Herpetofauna of the Cubango, Cuito, and Lower Cuando River Catchments of South-Eastern Angola
    Official journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 10(2) [Special Section]: 6–36 (e126). The herpetofauna of the Cubango, Cuito, and lower Cuando river catchments of south-eastern Angola 1,2,*Werner Conradie, 2Roger Bills, and 1,3William R. Branch 1Port Elizabeth Museum (Bayworld), P.O. Box 13147, Humewood 6013, SOUTH AFRICA 2South African Institute for Aquatic Bio- diversity, P/Bag 1015, Grahamstown 6140, SOUTH AFRICA 3Research Associate, Department of Zoology, P O Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031, SOUTH AFRICA Abstract.—Angola’s herpetofauna has been neglected for many years, but recent surveys have revealed unknown diversity and a consequent increase in the number of species recorded for the country. Most historical Angola surveys focused on the north-eastern and south-western parts of the country, with the south-east, now comprising the Kuando-Kubango Province, neglected. To address this gap a series of rapid biodiversity surveys of the upper Cubango-Okavango basin were conducted from 2012‒2015. This report presents the results of these surveys, together with a herpetological checklist of current and historical records for the Angolan drainage of the Cubango, Cuito, and Cuando Rivers. In summary 111 species are known from the region, comprising 38 snakes, 32 lizards, five chelonians, a single crocodile and 34 amphibians. The Cubango is the most western catchment and has the greatest herpetofaunal diversity (54 species). This is a reflection of both its easier access, and thus greatest number of historical records, and also the greater habitat and topographical diversity associated with the rocky headwaters.
    [Show full text]
  • Journal.Pone.0115679
    Architecture, Design and Conservation Danish Portal for Artistic and Scientific Research Aarhus School of Architecture // Design School Kolding // Royal Danish Academy Molecules and morphology reveal overlooked populations of two presumed extinct Australian sea snakes (Aipysurus: Hydrophiinae) Sanders, Kate Laura; Schroeder, Tina; Guinea, Michael L.; Redsted Rasmussen, Arne Published in: P L o S One Publication date: 2015 Document Version: Publisher's PDF, also known as Version of record Link to publication Citation for pulished version (APA): Sanders, K. L., Schroeder, T., Guinea, M. L., & Redsted Rasmussen, A. (2015). Molecules and morphology reveal overlooked populations of two presumed extinct Australian sea snakes (Aipysurus: Hydrophiinae). P L o S One, 10(2), 1-13. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0115679 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 11. Oct. 2021 RESEARCH ARTICLE Molecules and Morphology Reveal Overlooked Populations of Two Presumed Extinct Australian Sea Snakes (Aipysurus: Hydrophiinae) Kate L.
    [Show full text]
  • Early German Herpetological Observations and Explorations in Southern Africa, with Special Reference to the Zoological Museum of Berlin
    Bonner zoologische Beiträge Band 52 (2003) Heft 3/4 Seiten 193–214 Bonn, November 2004 Early German Herpetological Observations and Explorations in Southern Africa, With Special Reference to the Zoological Museum of Berlin Aaron M. BAUER Department of Biology, Villanova University, Villanova, Pennsylvania, USA Abstract. The earliest herpetological records made by Germans in southern Africa were casual observations of common species around Cape Town made by employees of the Dutch East India Company (VOC) during the mid- to late Seven- teenth Century. Most of these records were merely brief descriptions or lists of common names, but detailed illustrations of many reptiles were executed by two German illustrators in the employ of the VOC, Heinrich CLAUDIUS and Johannes SCHUMACHER. CLAUDIUS, who accompanied Simon VAN DER STEL to Namaqualand in 1685, left an especially impor- tant body of herpetological illustrations which are here listed and identified to species. One of the last Germans to work for the Dutch in South Africa was Martin Hinrich Carl LICHTENSTEIN who served as a physician and tutor to the last Dutch governor of the Cape from 1802 to 1806. Although he did not collect any herpetological specimens himself, LICHTENSTEIN, who became the director of the Zoological Museum in Berlin in 1813, influenced many subsequent workers to undertake employment and/or expeditions in southern Africa. Among the early collectors were Karl BERGIUS and Ludwig KREBS. Both collected material that is still extant in the Berlin collection today, including a small number of reptile types. Because of LICHTENSTEIN’S emphasis on specimens as items for sale to other museums rather than as subjects for study, many species first collected by KREBS were only described much later on the basis of material ob- tained by other, mostly British, collectors.
    [Show full text]
  • The IUCN Red List of Threatened Speciestm
    Species 2014 Annual ReportSpecies the Species of 2014 Survival Commission and the Global Species Programme Species ISSUE 56 2014 Annual Report of the Species Survival Commission and the Global Species Programme • 2014 Spotlight on High-level Interventions IUCN SSC • IUCN Red List at 50 • Specialist Group Reports Ethiopian Wolf (Canis simensis), Endangered. © Martin Harvey Muhammad Yazid Muhammad © Amazing Species: Bleeding Toad The Bleeding Toad, Leptophryne cruentata, is listed as Critically Endangered on The IUCN Red List of Threatened SpeciesTM. It is endemic to West Java, Indonesia, specifically around Mount Gede, Mount Pangaro and south of Sukabumi. The Bleeding Toad’s scientific name, cruentata, is from the Latin word meaning “bleeding” because of the frog’s overall reddish-purple appearance and blood-red and yellow marbling on its back. Geographical range The population declined drastically after the eruption of Mount Galunggung in 1987. It is Knowledge believed that other declining factors may be habitat alteration, loss, and fragmentation. Experts Although the lethal chytrid fungus, responsible for devastating declines (and possible Get Involved extinctions) in amphibian populations globally, has not been recorded in this area, the sudden decline in a creekside population is reminiscent of declines in similar amphibian species due to the presence of this pathogen. Only one individual Bleeding Toad was sighted from 1990 to 2003. Part of the range of Bleeding Toad is located in Gunung Gede Pangrango National Park. Future conservation actions should include population surveys and possible captive breeding plans. The production of the IUCN Red List of Threatened Species™ is made possible through the IUCN Red List Partnership.
    [Show full text]
  • Alsophis Rijgersmaei Cope, 1869 (Squamata: Dipsadidae) Sur L'île De
    Questel K. (2021). Alsophis rijgersmaei Cope, 1869 (Squamata: Dipsadidae) sur l’île de Saint-Barthélemy. Mise à jour : janvier 2021. Bulletin de l’ATE numéro 7. 8p. 1 Karl Questel Le Bulletin de l’ATE numéro 7 Mise à jour : Janvier 2021 Alsophis rijgersmaei Cope, 1869 (Squamata: Dipsadidae) sur l’île de Saint-Barthélemy Ceci est la version basse définition pour le web. Si vous souhaitez une version haute définition pour l'impression, veuillez demander à : [email protected] This is the low definition version for the web. If you want a high definition version for printing, please request to : [email protected] 2 Questel K. (2021). Alsophis rijgersmaei Cope, 1869 (Squamata: Dipsadidae) sur l’île de Saint-Barthélemy. Mise à jour : janvier 2021. Bulletin de l’ATE numéro 7. 8p. Alsophis rijgersmaei en bref / Alsophis rijgersmaei in short. La plus grande taille documentée. - 108 cm (du museau au cloaque (LV) - Snout to vent (SVL)) Largest documented size. - 138 cm (du museau au bout de la queue (LT) - Snout to the end of the tail (TL)). Une femelle. A female. Nombre d’écailles ventrales et ♀ -Ventrales, ventral : 197-206. sous-caudales par sexes identifiés (Min-Max). -Sous-caudales, sub-caudal : 93-102. Number of ventral and sub-caudal scales ♂ -Ventrales, ventral : 201-208. by identified sexes (Min-Max). -Sous-caudales, sub-caudal : 109-117. Moyennes générales de toutes les données ♀+♂+? -Ventrales, ventral : 197-208. disponibles: mâles, femelles et non sexés -Sous-caudales, sub-caudal : 93-122. (Min-Max). (Saint-Barthélemy, Saint-Martin, Anguilla) General averages of all available data: males, females and not sexed (Min-Max).
    [Show full text]