Interfacing C/C++ and Python with SWIG
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PRE PROCESSOR DIRECTIVES in –C LANGUAGE. 2401 – Course
PRE PROCESSOR DIRECTIVES IN –C LANGUAGE. 2401 – Course Notes. 1 The C preprocessor is a macro processor that is used automatically by the C compiler to transform programmer defined programs before actual compilation takes place. It is called a macro processor because it allows the user to define macros, which are short abbreviations for longer constructs. This functionality allows for some very useful and practical tools to design our programs. To include header files(Header files are files with pre defined function definitions, user defined data types, declarations that can be included.) To include macro expansions. We can take random fragments of C code and abbreviate them into smaller definitions namely macros, and once they are defined and included via header files or directly onto the program itself it(the user defined definition) can be used everywhere in the program. In other words it works like a blank tile in the game scrabble, where if one player possesses a blank tile and uses it to state a particular letter for a given word he chose to play then that blank piece is used as that letter throughout the game. It is pretty similar to that rule. Special pre processing directives can be used to, include or exclude parts of the program according to various conditions. To sum up, preprocessing directives occurs before program compilation. So, it can be also be referred to as pre compiled fragments of code. Some possible actions are the inclusions of other files in the file being compiled, definitions of symbolic constants and macros and conditional compilation of program code and conditional execution of preprocessor directives. -
C and C++ Preprocessor Directives #Include #Define Macros Inline
MODULE 10 PREPROCESSOR DIRECTIVES My Training Period: hours Abilities ▪ Able to understand and use #include. ▪ Able to understand and use #define. ▪ Able to understand and use macros and inline functions. ▪ Able to understand and use the conditional compilation – #if, #endif, #ifdef, #else, #ifndef and #undef. ▪ Able to understand and use #error, #pragma, # and ## operators and #line. ▪ Able to display error messages during conditional compilation. ▪ Able to understand and use assertions. 10.1 Introduction - For C/C++ preprocessor, preprocessing occurs before a program is compiled. A complete process involved during the preprocessing, compiling and linking can be read in Module W. - Some possible actions are: ▪ Inclusion of other files in the file being compiled. ▪ Definition of symbolic constants and macros. ▪ Conditional compilation of program code or code segment. ▪ Conditional execution of preprocessor directives. - All preprocessor directives begin with #, and only white space characters may appear before a preprocessor directive on a line. 10.2 The #include Preprocessor Directive - The #include directive causes copy of a specified file to be included in place of the directive. The two forms of the #include directive are: //searches for header files and replaces this directive //with the entire contents of the header file here #include <header_file> - Or #include "header_file" e.g. #include <stdio.h> #include "myheader.h" - If the file name is enclosed in double quotes, the preprocessor searches in the same directory (local) as the source file being compiled for the file to be included, if not found then looks in the subdirectory associated with standard header files as specified using angle bracket. - This method is normally used to include user or programmer-defined header files. -
The Shogun Machine Learning Toolbox
The Shogun Machine Learning Toolbox Heiko Strathmann, Gatsby Unit, UCL London Open Machine Learning Workshop, MSR, NY August 22, 2014 A bit about Shogun I Open-Source tools for ML problems I Started 1999 by SÖren Sonnenburg & GUNnar Rätsch, made public in 2004 I Currently 8 core-developers + 20 regular contributors I Purely open-source community driven I In Google Summer of Code since 2010 (29 projects!) Ohloh - Summary Ohloh - Code Supervised Learning Given: x y n , want: y ∗ x ∗ I f( i ; i )gi=1 j I Classication: y discrete I Support Vector Machine I Gaussian Processes I Logistic Regression I Decision Trees I Nearest Neighbours I Naive Bayes I Regression: y continuous I Gaussian Processes I Support Vector Regression I (Kernel) Ridge Regression I (Group) LASSO Unsupervised Learning Given: x n , want notion of p x I f i gi=1 ( ) I Clustering: I K-Means I (Gaussian) Mixture Models I Hierarchical clustering I Latent Models I (K) PCA I Latent Discriminant Analysis I Independent Component Analysis I Dimension reduction I (K) Locally Linear Embeddings I Many more... And many more I Multiple Kernel Learning I Structured Output I Metric Learning I Variational Inference I Kernel hypothesis testing I Deep Learning (whooo!) I ... I Bindings to: LibLinear, VowpalWabbit, etc.. http://www.shogun-toolbox.org/page/documentation/ notebook Some Large-Scale Applications I Splice Site prediction: 50m examples of 200m dimensions I Face recognition: 20k examples of 750k dimensions ML in Practice I Modular data represetation I Dense, Sparse, Strings, Streams, ... I Multiple types: 8-128 bit word size I Preprocessing tools I Evaluation I Cross-Validation I Accuracy, ROC, MSE, .. -
CHERI C/C++ Programming Guide
UCAM-CL-TR-947 Technical Report ISSN 1476-2986 Number 947 Computer Laboratory CHERI C/C++ Programming Guide Robert N. M. Watson, Alexander Richardson, Brooks Davis, John Baldwin, David Chisnall, Jessica Clarke, Nathaniel Filardo, Simon W. Moore, Edward Napierala, Peter Sewell, Peter G. Neumann June 2020 15 JJ Thomson Avenue Cambridge CB3 0FD United Kingdom phone +44 1223 763500 https://www.cl.cam.ac.uk/ c 2020 Robert N. M. Watson, Alexander Richardson, Brooks Davis, John Baldwin, David Chisnall, Jessica Clarke, Nathaniel Filardo, Simon W. Moore, Edward Napierala, Peter Sewell, Peter G. Neumann, SRI International This work was supported by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL), under contracts FA8750-10-C-0237 (“CTSRD”) and HR0011-18-C-0016 (“ECATS”). The views, opinions, and/or findings contained in this report are those of the authors and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government. This work was supported in part by the Innovate UK project Digital Security by Design (DSbD) Technology Platform Prototype, 105694. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 789108), ERC Advanced Grant ELVER. We also acknowledge the EPSRC REMS Programme Grant (EP/K008528/1), Arm Limited, HP Enterprise, and Google, Inc. Approved for Public Release, Distribution Unlimited. Technical reports published by the University of Cambridge Computer Laboratory are freely available via the Internet: https://www.cl.cam.ac.uk/techreports/ ISSN 1476-2986 3 Abstract This document is a brief introduction to the CHERI C/C++ programming languages. -
Optimizing the Use of High Performance Software Libraries
Optimizing the Use of High Performance Software Libraries Samuel Z. Guyer and Calvin Lin The University of Texas at Austin, Austin, TX 78712 Abstract. This paper describes how the use of software libraries, which is preva- lent in high performance computing, can benefit from compiler optimizations in much the same way that conventional computer languages do. We explain how the compilation of these informal languages differs from the compilation of more conventional computer languages. In particular, such compilation requires precise pointer analysis, requires domain-specific information about the library’s seman- tics, and requires a configurable compilation scheme. Finally, we show that the combination of dataflow analysis and pattern matching form a powerful tool for performing configurable optimizations. 1 Introduction High performance computing, and scientific computing in particular, relies heavily on software libraries. Libraries are attractive because they provide an easy mechanism for reusing code. Moreover, each library typically encapsulates a particular domain of ex- pertise, such as graphics or linear algebra, and the use of such libraries allows program- mers to think at a higher level of abstraction. In many ways, libraries are simply in- formal domain-specific languages whose only syntactic construct is the procedure call. This procedural interface is significant because it couches these informal languages in a familiar form, which is less imposing than a new computer language that introduces new syntax. Unfortunately, while libraries are not viewed as languages by users, they also are not viewed as languages by compilers. With a few exceptions, compilers treat each invocation of a library routine the same as any other procedure call. -
Section “Common Predefined Macros” in the C Preprocessor
The C Preprocessor For gcc version 12.0.0 (pre-release) (GCC) Richard M. Stallman, Zachary Weinberg Copyright c 1987-2021 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation. A copy of the license is included in the section entitled \GNU Free Documentation License". This manual contains no Invariant Sections. The Front-Cover Texts are (a) (see below), and the Back-Cover Texts are (b) (see below). (a) The FSF's Front-Cover Text is: A GNU Manual (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU software. Copies published by the Free Software Foundation raise funds for GNU development. i Table of Contents 1 Overview :::::::::::::::::::::::::::::::::::::::: 1 1.1 Character sets:::::::::::::::::::::::::::::::::::::::::::::::::: 1 1.2 Initial processing ::::::::::::::::::::::::::::::::::::::::::::::: 2 1.3 Tokenization ::::::::::::::::::::::::::::::::::::::::::::::::::: 4 1.4 The preprocessing language :::::::::::::::::::::::::::::::::::: 6 2 Header Files::::::::::::::::::::::::::::::::::::: 7 2.1 Include Syntax ::::::::::::::::::::::::::::::::::::::::::::::::: 7 2.2 Include Operation :::::::::::::::::::::::::::::::::::::::::::::: 8 2.3 Search Path :::::::::::::::::::::::::::::::::::::::::::::::::::: 9 2.4 Once-Only Headers::::::::::::::::::::::::::::::::::::::::::::: 9 2.5 Alternatives to Wrapper #ifndef :::::::::::::::::::::::::::::: -
SSC Reference Manual SDK 2017-1-17, Version 170
SSC Reference Manual SDK 2017-1-17, Version 170 Aron Dobos and Paul Gilman January 13, 2017 The SSC (SAM Simulation Core) software library is the collection of simu- lation modules used by the National Renewable Energy Laboratory’s System Advisor Model (SAM). The SSC application programming interface (API) al- lows software developers to integrate SAM’s modules into web and desktop applications. The API includes mechanisms to set input variable values, run simulations, and retrieve values of output variables. The SSC modules are available in pre-compiled binary dynamic libraries minimum system library de- pendencies for Windows, OS X, and Linux operating systems. The native API language is ISO-standard C, and language wrappers are available for C#, Java, MATLAB, Python, and PHP. The API and model implementations are thread- safe and reentrant, allowing the software to be used in a parallel computing environment. This document describes the SSC software architecture, modules and data types, provides code samples, introduces SDKtool, and describes the language wrappers. Contents 2 Contents 1 Overview4 1.1 Framework Description.............................. 4 1.2 Modeling an Energy System........................... 4 2 An Example: Running PVWatts5 2.1 Write the program skeleton ........................... 6 2.2 Create the data container ............................ 6 2.3 Assign values to the module input variables.................. 7 2.4 Run the module.................................. 7 2.5 Retrieve results from the data container and display them.......... 8 2.6 Cleaning up.................................... 8 2.7 Compile and run the C program ........................ 9 2.8 Some additional comments............................ 9 3 Data Variables9 3.1 Variable Names.................................. 10 3.2 Variable Types ................................. -
SWIG and Ruby
SWIG and Ruby David Grayson Las Vegas Ruby Meetup 2014-09-10 SWIG ● SWIG stands for: Simplified Wrapper and Interface Generator ● SWIG helps you access C or C++ code from 22 different languages, including Ruby SWIG inputs and outputs Ruby C extension SWIG interface file (.i) source (.c or .cxx) Simple C++ example libdavid.h: libdavid.i #include <stdio.h> %module "david" class David %{ { #include <libdavid.h> public: %} David(int x) { class David this->x = x; { } public: David(int x); void announce() void announce(); { int x; }; printf("David %d\n", x); } int x; }; Compiling Simple C++ example extconf.rb require 'mkmf' system('swig -c++ -ruby libdavid.i') or abort create_makefile('david') Commands to run: $ ruby extconf.rb # create libdavid_wrap.cxx and Makefile $ make # compile david.so $ irb -r./david # try it out irb(main):001:0> d = David::David.new(4) => #<David::David:0x007f40090a5280 @__swigtype__="_p_David"> irb(main):002:0> d.announce David 4 => nil (This example worked for me with SWIG 3.0.2 and Ruby 2.1.2.) That example was pretty simple ● All code was in a .h file ● No external libraries ● Simple data types ● No consideration of deployment ...but SWIG has tons of features C: C++: ● All ISO C datatypes ● All C++ datatypes ● Global functions ● References ● Global variables, constants ● Pointers to members ● Structures and unions ● Classes ● Pointers ● (Multiple) inheritance ● (Multidimensional) arrays ● Overloaded functions ● Pointers to functions ● Overloaded methods ● Variable length arguments ● Overloaded operators ● Typedefs ● Static members ● Enums ● Namespaces ● Templates ● Nested classes ... SWIG Typemaps ● Define custom ways to map between scripting- language types and C++ types. ● Can be used to add and remove parameters from of exposed functions. -
GPU Directives
OPENACC® DIRECTIVES FOR ACCELERATORS NVIDIA GPUs Reaching Broader Set of Developers 1,000,000’s CAE CFD Finance Rendering Universities Data Analytics Supercomputing Centers Life Sciences 100,000’s Oil & Gas Defense Weather Research Climate Early Adopters Plasma Physics 2004 Present Time 2 3 Ways to Accelerate Applications with GPUs Applications Programming Libraries Directives Languages “Drop-in” Quickly Accelerate Maximum Acceleration Existing Applications Performance 3 Directives: Add A Few Lines of Code OpenMP OpenACC CPU CPU GPU main() { main() { double pi = 0.0; long i; double pi = 0.0; long i; #pragma acc parallel #pragma omp parallel for reduction(+:pi) for (i=0; i<N; i++) for (i=0; i<N; i++) { { double t = (double)((i+0.05)/N); double t = (double)((i+0.05)/N); pi += 4.0/(1.0+t*t); pi += 4.0/(1.0+t*t); } } printf(“pi = %f\n”, pi/N); printf(“pi = %f\n”, pi/N); } } OpenACC: Open Programming Standard for Parallel Computing “ OpenACC will enable programmers to easily develop portable applications that maximize the performance and power efficiency benefits of the hybrid CPU/GPU architecture of Titan. ” Buddy Bland Titan Project Director Easy, Fast, Portable Oak Ridge National Lab “ OpenACC is a technically impressive initiative brought together by members of the OpenMP Working Group on Accelerators, as well as many others. We look forward to releasing a version of this proposal in the next release of OpenMP. ” Michael Wong CEO, OpenMP http://www.openacc-standard.org/ Directives Board OpenACC Compiler directives to specify parallel regions -
PHP Beyond the Web Shell Scripts, Desktop Software, System Daemons and More
PHP Beyond the web Shell scripts, desktop software, system daemons and more Rob Aley This book is for sale at http://leanpub.com/php This version was published on 2013-11-25 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do. ©2012 - 2013 Rob Aley Tweet This Book! Please help Rob Aley by spreading the word about this book on Twitter! The suggested hashtag for this book is #phpbeyondtheweb. Find out what other people are saying about the book by clicking on this link to search for this hashtag on Twitter: https://twitter.com/search?q=#phpbeyondtheweb Contents Welcome ............................................ i About the author ...................................... i Acknowledgements ..................................... ii 1 Introduction ........................................ 1 1.1 “Use PHP? We’re not building a website, you know!”. ............... 1 1.2 Are you new to PHP? ................................. 2 1.3 Reader prerequisites. Or, what this book isn’t .................... 3 1.4 An important note for Windows and Mac users ................... 3 1.5 About the sample code ................................ 4 1.6 External resources ................................... 4 1.7 Book formats/versions available, and access to updates ............... 5 1.8 English. The Real English. .............................. 5 2 Getting away from the Web - the basics ......................... 6 2.1 PHP without a web server .............................. 6 2.2 PHP versions - what’s yours? ............................. 7 2.3 A few good reasons NOT to do it in PHP ...................... 8 2.4 Thinking about security ............................... -
Advanced Perl
Advanced Perl Boston University Information Services & Technology Course Coordinator: Timothy Kohl Last Modified: 05/12/15 Outline • more on functions • references and anonymous variables • local vs. global variables • packages • modules • objects 1 Functions Functions are defined as follows: sub f{ # do something } and invoked within a script by &f(parameter list) or f(parameter list) parameters passed to a function arrive in the array @_ sub print_sum{ my ($a,$b)=@_; my $sum; $sum=$a+$b; print "The sum is $sum\n"; } And so, in the invocation $a = $_[0] = 2 print_sum(2,3); $b = $_[1] = 3 2 The directive my indicates that the variable is lexically scoped. That is, it is defined only for the duration of the given code block between { and } which is usually the body of the function anyway. * When this is done, one is assured that the variables so defined are local to the given function. We'll discuss the difference between local and global variables later. * with some exceptions which we'll discuss To return a value from a function, you can either use an explicit return statement or simply put the value to be returned as the last line of the function. Typically though, it’s better to use the return statement. Ex: sub sum{ my ($a,$b)=@_; my $sum; $sum=$a+$b; return $sum; } $s=sum(2,3); One can also return an array or associative array from a function. 3 References and Anonymous Variables In languages like C one has the notion of a pointer to a given data type, which can be used later on to read and manipulate the contents of the variable pointed to by the pointer. -
Analytic Center Cutting Plane Method for Multiple Kernel Learning
Ann Math Artif Intell DOI 10.1007/s10472-013-9331-4 Analytic center cutting plane method for multiple kernel learning Sharon Wulff · Cheng Soon Ong © Springer Science+Business Media Dordrecht 2013 Abstract Multiple Kernel Learning (MKL) is a popular generalization of kernel methods which allows the practitioner to optimize over convex combinations of kernels. We observe that many recent MKL solutions can be cast in the framework of oracle based optimization, and show that they vary in terms of query point generation. The popularity of such methods is because the oracle can fortuitously be implemented as a support vector machine. Motivated by the success of centering approaches in interior point methods, we propose a new approach to optimize the MKL objective based on the analytic center cutting plane method (accpm). Our experimental results show that accpm outperforms state of the art in terms of rate of convergence and robustness. Further analysis sheds some light as to why MKL may not always improve classification accuracy over naive solutions. Keywords Multiple kernel learning · accpm · Oracle methods · Machine learning Mathematics Subject Classification (2010) 68T05 1 Introduction Kernel methods, for example the support vector machine (SVM), are a class of algorithms that consider only the similarity between examples [1]. A kernel function S. Wulff Department of Computer Science, ETH, Zürich, Switzerland e-mail: [email protected] C. S. Ong (B) NICTA, The University of Melbourne, Melbourne, Australia e-mail: [email protected] S. Wulff, C.S. Ong k implicitly maps examples x to a feature space given by a feature map via the identity k(xi, x j) = (xi), (x j) .