Green's Relations on a Semigroup of Transformations with Restricted
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Filtering Germs: Groupoids Associated to Inverse Semigroups
FILTERING GERMS: GROUPOIDS ASSOCIATED TO INVERSE SEMIGROUPS BECKY ARMSTRONG, LISA ORLOFF CLARK, ASTRID AN HUEF, MALCOLM JONES, AND YING-FEN LIN Abstract. We investigate various groupoids associated to an arbitrary inverse semigroup with zero. We show that the groupoid of filters with respect to the natural partial order is isomorphic to the groupoid of germs arising from the standard action of the inverse semigroup on the space of idempotent filters. We also investigate the restriction of this isomorphism to the groupoid of tight filters and to the groupoid of ultrafilters. 1. Introduction An inverse semigroup is a set S endowed with an associative binary operation such that for each a 2 S, there is a unique a∗ 2 S, called the inverse of a, satisfying aa∗a = a and a∗aa∗ = a∗: The study of ´etalegroupoids associated to inverse semigroups was initiated by Renault [Ren80, Remark III.2.4]. We consider two well known groupoid constructions: the filter approach and the germ approach, and we show that the two approaches yield isomorphic groupoids. Every inverse semigroup has a natural partial order, and a filter is a nonempty down-directed up-set with respect to this order. The filter approach to groupoid construction first appeared in [Len08], and was later simplified in [LMS13]. Work in this area is ongoing; see for instance, [Bic21, BC20, Cas20]. Every inverse semigroup acts on the filters of its subsemigroup of idempotents. The groupoid of germs associated to an inverse semigroup encodes this action. Paterson pioneered the germ approach in [Pat99] with the introduction of the universal groupoid of an inverse semigroup. -
Relations on Semigroups
International Journal for Research in Engineering Application & Management (IJREAM) ISSN : 2454-9150 Vol-04, Issue-09, Dec 2018 Relations on Semigroups 1D.D.Padma Priya, 2G.Shobhalatha, 3U.Nagireddy, 4R.Bhuvana Vijaya 1 Sr.Assistant Professor, Department of Mathematics, New Horizon College Of Engineering, Bangalore, India, Research scholar, Department of Mathematics, JNTUA- Anantapuram [email protected] 2Professor, Department of Mathematics, SKU-Anantapuram, India, [email protected] 3Assistant Professor, Rayalaseema University, Kurnool, India, [email protected] 4Associate Professor, Department of Mathematics, JNTUA- Anantapuram, India, [email protected] Abstract: Equivalence relations play a vital role in the study of quotient structures of different algebraic structures. Semigroups being one of the algebraic structures are sets with associative binary operation defined on them. Semigroup theory is one of such subject to determine and analyze equivalence relations in the sense that it could be easily understood. This paper contains the quotient structures of semigroups by extending equivalence relations as congruences. We define different types of relations on the semigroups and prove they are equivalence, partial order, congruence or weakly separative congruence relations. Keywords: Semigroup, binary relation, Equivalence and congruence relations. I. INTRODUCTION [1,2,3 and 4] Algebraic structures play a prominent role in mathematics with wide range of applications in science and engineering. A semigroup -
Computing Finite Semigroups
Computing finite semigroups J. East, A. Egri-Nagy, J. D. Mitchell, and Y. P´eresse August 24, 2018 Abstract Using a variant of Schreier's Theorem, and the theory of Green's relations, we show how to reduce the computation of an arbitrary subsemigroup of a finite regular semigroup to that of certain associated subgroups. Examples of semigroups to which these results apply include many important classes: transformation semigroups, partial permutation semigroups and inverse semigroups, partition monoids, matrix semigroups, and subsemigroups of finite regular Rees matrix and 0-matrix semigroups over groups. For any subsemigroup of such a semigroup, it is possible to, among other things, efficiently compute its size and Green's relations, test membership, factorize elements over the generators, find the semigroup generated by the given subsemigroup and any collection of additional elements, calculate the partial order of the D-classes, test regularity, and determine the idempotents. This is achieved by representing the given subsemigroup without exhaustively enumerating its elements. It is also possible to compute the Green's classes of an element of such a subsemigroup without determining the global structure of the semigroup. Contents 1 Introduction 2 2 Mathematical prerequisites4 3 From transformation semigroups to arbitrary regular semigroups6 3.1 Actions on Green's classes . .6 3.2 Faithful representations of stabilisers . .7 3.3 A decomposition for Green's classes . .8 3.4 Membership testing . 11 3.5 Classes within classes . 13 4 Specific classes of semigroups 14 4.1 Transformation semigroups . 15 4.2 Partial permutation semigroups and inverse semigroups . 16 4.3 Matrix semigroups . -
Relations in Categories
Relations in Categories Stefan Milius A thesis submitted to the Faculty of Graduate Studies in partial fulfilment of the requirements for the degree of Master of Arts Graduate Program in Mathematics and Statistics York University Toronto, Ontario June 15, 2000 Abstract This thesis investigates relations over a category C relative to an (E; M)-factori- zation system of C. In order to establish the 2-category Rel(C) of relations over C in the first part we discuss sufficient conditions for the associativity of horizontal composition of relations, and we investigate special classes of morphisms in Rel(C). Attention is particularly devoted to the notion of mapping as defined by Lawvere. We give a significantly simplified proof for the main result of Pavlovi´c,namely that C Map(Rel(C)) if and only if E RegEpi(C). This part also contains a proof' that the category Map(Rel(C))⊆ is finitely complete, and we present the results obtained by Kelly, some of them generalized, i. e., without the restrictive assumption that M Mono(C). The next part deals with factorization⊆ systems in Rel(C). The fact that each set-relation has a canonical image factorization is generalized and shown to yield an (E¯; M¯ )-factorization system in Rel(C) in case M Mono(C). The setting without this condition is studied, as well. We propose a⊆ weaker notion of factorization system for a 2-category, where the commutativity in the universal property of an (E; M)-factorization system is replaced by coherent 2-cells. In the last part certain limits and colimits in Rel(C) are investigated. -
Data Monoids∗
Data Monoids∗ Mikolaj Bojańczyk1 1 University of Warsaw Abstract We develop an algebraic theory for languages of data words. We prove that, under certain conditions, a language of data words is definable in first-order logic if and only if its syntactic monoid is aperiodic. 1998 ACM Subject Classification F.4.3 Formal Languages Keywords and phrases Monoid, Data Words, Nominal Set, First-Order Logic Digital Object Identifier 10.4230/LIPIcs.STACS.2011.105 1 Introduction This paper is an attempt to combine two fields. The first field is the algebraic theory of regular languages. In this theory, a regular lan- guage is represented by its syntactic monoid, which is a finite monoid. It turns out that many important properties of the language are reflected in the structure of its syntactic monoid. One particularly beautiful result is the Schützenberger-McNaughton-Papert theorem, which describes the expressive power of first-order logic. Let L ⊆ A∗ be a regular language. Then L is definable in first-order logic if and only if its syntactic monoid ML is aperiodic. For instance, the language “words where there exists a position with label a” is defined by the first-order logic formula (this example does not even use the order on positions <, which is also allowed in general) ∃x. a(x). The syntactic monoid of this language is isomorphic to {0, 1} with multiplication, where 0 corresponds to the words that satisfy the formula, and 1 to the words that do not. Clearly, this monoid does not contain any non-trivial group. There are many results similar to theorem above, each one providing a connection between seemingly unrelated concepts of logic and algebra, see e.g. -