Artinian and Noetherian Rings
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dimension Theory and Systems of Parameters
Dimension theory and systems of parameters Krull's principal ideal theorem Our next objective is to study dimension theory in Noetherian rings. There was initially amazement that the results that follow hold in an arbitrary Noetherian ring. Theorem (Krull's principal ideal theorem). Let R be a Noetherian ring, x 2 R, and P a minimal prime of xR. Then the height of P ≤ 1. Before giving the proof, we want to state a consequence that appears much more general. The following result is also frequently referred to as Krull's principal ideal theorem, even though no principal ideals are present. But the heart of the proof is the case n = 1, which is the principal ideal theorem. This result is sometimes called Krull's height theorem. It follows by induction from the principal ideal theorem, although the induction is not quite straightforward, and the converse also needs a result on prime avoidance. Theorem (Krull's principal ideal theorem, strong version, alias Krull's height theorem). Let R be a Noetherian ring and P a minimal prime ideal of an ideal generated by n elements. Then the height of P is at most n. Conversely, if P has height n then it is a minimal prime of an ideal generated by n elements. That is, the height of a prime P is the same as the least number of generators of an ideal I ⊆ P of which P is a minimal prime. In particular, the height of every prime ideal P is at most the number of generators of P , and is therefore finite. -
Varieties of Quasigroups Determined by Short Strictly Balanced Identities
Czechoslovak Mathematical Journal Jaroslav Ježek; Tomáš Kepka Varieties of quasigroups determined by short strictly balanced identities Czechoslovak Mathematical Journal, Vol. 29 (1979), No. 1, 84–96 Persistent URL: http://dml.cz/dmlcz/101580 Terms of use: © Institute of Mathematics AS CR, 1979 Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz Czechoslovak Mathematical Journal, 29 (104) 1979, Praha VARIETIES OF QUASIGROUPS DETERMINED BY SHORT STRICTLY BALANCED IDENTITIES JAROSLAV JEZEK and TOMAS KEPKA, Praha (Received March 11, 1977) In this paper we find all varieties of quasigroups determined by a set of strictly balanced identities of length ^ 6 and study their properties. There are eleven such varieties: the variety of all quasigroups, the variety of commutative quasigroups, the variety of groups, the variety of abelian groups and, moreover, seven varieties which have not been studied in much detail until now. In Section 1 we describe these varieties. A survey of some significant properties of arbitrary varieties is given in Section 2; in Sections 3, 4 and 5 we assign these properties to the eleven varieties mentioned above and in Section 6 we give a table summarizing the results. 1. STRICTLY BALANCED QUASIGROUP IDENTITIES OF LENGTH £ 6 Quasigroups are considered as universal algebras with three binary operations •, /, \ (the class of all quasigroups is thus a variety). -
Commutative Algebra, Lecture Notes
COMMUTATIVE ALGEBRA, LECTURE NOTES P. SOSNA Contents 1. Very brief introduction 2 2. Rings and Ideals 2 3. Modules 10 3.1. Tensor product of modules 15 3.2. Flatness 18 3.3. Algebras 21 4. Localisation 22 4.1. Local properties 25 5. Chain conditions, Noetherian and Artin rings 29 5.1. Noetherian rings and modules 31 5.2. Artin rings 36 6. Primary decomposition 38 6.1. Primary decompositions in Noetherian rings 42 6.2. Application to Artin rings 43 6.3. Some geometry 44 6.4. Associated primes 45 7. Ring extensions 49 7.1. More geometry 56 8. Dimension theory 57 8.1. Regular rings 66 9. Homological methods 68 9.1. Recollections 68 9.2. Global dimension 71 9.3. Regular sequences, global dimension and regular rings 76 10. Differentials 83 10.1. Construction and some properties 83 10.2. Connection to regularity 88 11. Appendix: Exercises 91 References 100 1 2 P. SOSNA 1. Very brief introduction These are notes for a lecture (14 weeks, 2×90 minutes per week) held at the University of Hamburg in the winter semester 2014/2015. The goal is to introduce and study some basic concepts from commutative algebra which are indispensable in, for instance, algebraic geometry. There are many references for the subject, some of them are in the bibliography. In Sections 2-8 I mostly closely follow [2], sometimes rearranging the order in which the results are presented, sometimes omitting results and sometimes giving statements which are missing in [2]. In Section 9 I mostly rely on [9], while most of the material in Section 10 closely follows [4]. -
A Representation Theory for Noetherian Rings
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 39, 100-130 (1976) A Representation Theory for Noetherian Rings ROBERT GORDON* AND EDWARD L. GREEN+ Department of Mathematics, Temple University, Philadelphia, Pennsylvania 19122 Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania I9104 Communicated by A. W. Goldie Received October 28, 1974 The representation theory of artinian rings has long been studied, and seldommore intensely than in the past few years. However, with the exception of integral representationsof finite groups, there is no representation theory for noetherian rings even when they are commutative. Our aim in this paper is to develop such a theory. We attempt to pattern it after the known represen- tation theory of artinian rings. For this, we require a notion of indecom- posability different from the usual one; and we say that a module is strongly indecomposableif it is noetherian, and no factor by a nontrivial direct sum of submoduleshas lower Krull dimension than the module. Thus strongly indecomposablemodules are indecomposableand, by way of example, any uniform noetherian module is strongly indecomposable. Our first result states that some factor of a noetherian module by a direct sum of strongly indecomposablesubmodules has dimension less than the dimension of the module. This decomposition refines indecomposable noetherian modules, but we can say little about it without restricting the underlying ring. Thus we study, in Section 1, or-indecomposablemodules; that is, strongly indecomposablea-dimensional modules that have no nonzero submodule of dimension < cz. The resemblanceof these to indecomposable modules of finite length is analogousto that of a-critical modules to simple ones (see [8]). -
The Structure of Certain Artinian Rings with Zero Singular Ideal
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 8, 156-164 (1968) The Structure of Certain Artinian Rings with Zero Singular Ideal R. R. COLBY AND EDGAR A. RUTTER, JR. The University of Kansas, Lawrence, Kansas 66044 Communicated by A. W. Goldie Received March 4, 1967 INTRODUCTION Let R be a ring with identity and M and N (left) R-modules with MC N. Then M is said to be essential in N if M intersects every nonzero submodule of N nontrivially. A left ideal I of R is called an essential left ideal if I is essential in R. We denote the singular submodule of N by Z(N); 2(N)={n~NIhz=(O)f or some essential left ideal I of R}. We shall assume throughout this paper that Z(R) = 0. In Section 1 we outline the construction of Johnson’s ring of quotients [3] and some of its properties and develop certain other preliminary results. In Section 2 we determine the structure of Artinian rings with zero singular ideal having the property that each principal indecomposable left ideal contains a unique minimal left ideal. In particular we show that if R is such a ring then R is a certain distinguished subring of a complete blocked triangular matrix ring over a division subring of R. We also consider the case where R is a left generalized uniserial ring and generalize results of A. W. Goldie [2] and I. Murase [.5& Finally we apply the methods to obtain the structure of finite-dimensional algebras with zero singular ideal. -
Lie Algebras and Representation Theory Course Description
ALGEBRAIC STRUCTURES: A SECOND YEAR ALGEBRA SEQUENCE JULIA PEVTSOVA AND PAUL SMITH 1. 1st quarter: Lie algebras and Representation theory Course description. This course will cover the foundations of semi-simple Lie algebras, and their representation theory. It will also lay foundations for any further study of representation theory, Lie theory, and many other related topics. We shall discuss the structure of concrete examples of classical Lie algebras such as gln, sln, spn and son. This will be followed by the general theory of universal enveloping algebras and PBW theorem. The abstract theory of root systems and weight lattices that we shall develop will allow us to classify semi-simple Lie algebras. The second part of the course will be devoted to representations of Lie algebras and the theory of weights. Most of the theory will be developed over the complex numbers. Additional topics to discuss, time permitting, will be real Lie algebras and Lie algebra coho- mology. Topics at a glance. (1) Definitions and examples (2) Universal enveloping algebra and PBW theorem (3) Solvable and nilpotent Lie algebras (4) Root systems (5) Classification of semi-simple Lie algebras (6) Serre relations (7) Representation theory: (a) Highest weight modules (b) Finite dimensional irreducible modules, Dominant weights (c) Weyl character formula (8) Chevalley basis Reference. J. Humphreys, “Introduction to Lie algebras and Representation the- ory”. 1 2 JULIAPEVTSOVAANDPAULSMITH 2. 2nd quarter: Non-commutative Algebras Course description. This course will cover the foundations of finite- and infinite- dimensional associative algebras. The basic finite-dimensional examples will be the group algebra of a finite group, and the path algebra of appropriate quivers with relations. -
Unique Factorization of Ideals in a Dedekind Domain
UNIQUE FACTORIZATION OF IDEALS IN A DEDEKIND DOMAIN XINYU LIU Abstract. In abstract algebra, a Dedekind domain is a Noetherian, inte- grally closed integral domain of Krull dimension 1. Parallel to the unique factorization of integers in Z, the ideals in a Dedekind domain can also be written uniquely as the product of prime ideals. Starting from the definitions of groups and rings, we introduce some basic theory in commutative algebra and present a proof for this theorem via Discrete Valuation Ring. First, we prove some intermediate results about the localization of a ring at its maximal ideals. Next, by the fact that the localization of a Dedekind domain at its maximal ideal is a Discrete Valuation Ring, we provide a simple proof for our main theorem. Contents 1. Basic Definitions of Rings 1 2. Localization 4 3. Integral Extension, Discrete Valuation Ring and Dedekind Domain 5 4. Unique Factorization of Ideals in a Dedekind Domain 7 Acknowledgements 12 References 12 1. Basic Definitions of Rings We start with some basic definitions of a ring, which is one of the most important structures in algebra. Definition 1.1. A ring R is a set along with two operations + and · (namely addition and multiplication) such that the following three properties are satisfied: (1) (R; +) is an abelian group. (2) (R; ·) is a monoid. (3) The distributive law: for all a; b; c 2 R, we have (a + b) · c = a · c + b · c, and a · (b + c) = a · b + a · c: Specifically, we use 0 to denote the identity element of the abelian group (R; +) and 1 to denote the identity element of the monoid (R; ·). -
Artinian Subrings of a Commutative Ring
transactions of the american mathematical society Volume 336, Number 1, March 1993 ARTINIANSUBRINGS OF A COMMUTATIVERING ROBERT GILMER AND WILLIAM HEINZER Abstract. Given a commutative ring R, we investigate the structure of the set of Artinian subrings of R . We also consider the family of zero-dimensional subrings of R. Necessary and sufficient conditions are given in order that every zero-dimensional subring of a ring be Artinian. We also consider closure properties of the set of Artinian subrings of a ring with respect to intersection or finite intersection, and the condition that the set of Artinian subrings of a ring forms a directed family. 1. Introduction Suppose R is a commutative ring with unity element. We consider here various properties of the family sf of Artinian subrings of R and the family Z of zero-dimensional subrings of R . We remark that the inclusion s? ç Z may be proper, even if R is Noetherian; for example, Corollary 3.4 implies that if K is an infinite field of positive characteristic, then the local principal ideal ring K[X]/(X2) contains a zero-dimensional subring that is not Artinian. Of course, if every subring of R were Noetherian, the families sf and Z would be identical. Thus one source of motivation for this work comes from papers such as [Gi, Wi, W2, GHi, GH3] that deal with Noetherian and zero- dimensional pairs of rings, hereditarily Noetherian rings, and hereditarily zero- dimensional rings. Another source of motivation is related to our work in [GH3], where we considered several problems concerning a direct product of zero-dimensional rings. -
Modules with Artinian Prime Factors
PROCEEDINGS of the AMERICAN MATHEMATICAL SOCIETY Volume 78, Number 3. March 1980 MODULES WITH ARTINIAN PRIME FACTORS EFRAIM P. ARMENDARIZ Abstract. An R -module M has Artinian prime factors if M/PM is an Artinian module for each prime ideal P of R. For commutative rings R it is shown that Noetherian modules with Artinian prime factors are Artinian. If R is either commutative or a von Neumann regular K-rmg then the endomorphism ring of a module with Artinian prime factors is a strongly ir-regular ring. A ring R with 1 is left ir-regular if for each a G R there is an integer n > 1 and b G R such that a" = an+lb. Right w-regular is defined in the obvious way, however a recent result of F. Dischinger [5] asserts the equivalence of the two concepts. A ring R is ir-regular if for any a G R there is an integer n > 1 and b G R such that a" = a"ba". Any left 7r-regular ring is 77-regular but not con- versely. Because of this, we say that R is strongly ir-regular if it is left (or right) w-regular. In [2, Theorem 2.5] it was established that if R is a (von Neumann) regular ring whose primitive factor rings are Artinian and if M is a finitely generated R-module then the endomorphism ring EndÄ(Af ) of M is a strongly 77-regular ring. Curiously enough, the same is not true for finitely generated modules over strongly w-regular rings, as Example 3.1 of [2] shows. -
Integral Domains, Modules and Algebraic Integers Section 3 Hilary Term 2014
Module MA3412: Integral Domains, Modules and Algebraic Integers Section 3 Hilary Term 2014 D. R. Wilkins Copyright c David R. Wilkins 1997{2014 Contents 3 Noetherian Rings and Modules 49 3.1 Modules over a Unital Commutative Ring . 49 3.2 Noetherian Modules . 50 3.3 Noetherian Rings and Hilbert's Basis Theorem . 53 i 3 Noetherian Rings and Modules 3.1 Modules over a Unital Commutative Ring Definition Let R be a unital commutative ring. A set M is said to be a module over R (or R-module) if (i) given any x; y 2 M and r 2 R, there are well-defined elements x + y and rx of M, (ii) M is an Abelian group with respect to the operation + of addition, (iii) the identities r(x + y) = rx + ry; (r + s)x = rx + sx; (rs)x = r(sx); 1x = x are satisfied for all x; y 2 M and r; s 2 R. Example If K is a field, then a K-module is by definition a vector space over K. Example Let (M; +) be an Abelian group, and let x 2 M. If n is a positive integer then we define nx to be the sum x + x + ··· + x of n copies of x. If n is a negative integer then we define nx = −(jnjx), and we define 0x = 0. This enables us to regard any Abelian group as a module over the ring Z of integers. Conversely, any module over Z is also an Abelian group. Example Any unital commutative ring can be regarded as a module over itself in the obvious fashion. -
Gsm073-Endmatter.Pdf
http://dx.doi.org/10.1090/gsm/073 Graduat e Algebra : Commutativ e Vie w This page intentionally left blank Graduat e Algebra : Commutativ e View Louis Halle Rowen Graduate Studies in Mathematics Volum e 73 KHSS^ K l|y|^| America n Mathematica l Societ y iSyiiU ^ Providence , Rhod e Islan d Contents Introduction xi List of symbols xv Chapter 0. Introduction and Prerequisites 1 Groups 2 Rings 6 Polynomials 9 Structure theories 12 Vector spaces and linear algebra 13 Bilinear forms and inner products 15 Appendix 0A: Quadratic Forms 18 Appendix OB: Ordered Monoids 23 Exercises - Chapter 0 25 Appendix 0A 28 Appendix OB 31 Part I. Modules Chapter 1. Introduction to Modules and their Structure Theory 35 Maps of modules 38 The lattice of submodules of a module 42 Appendix 1A: Categories 44 VI Contents Chapter 2. Finitely Generated Modules 51 Cyclic modules 51 Generating sets 52 Direct sums of two modules 53 The direct sum of any set of modules 54 Bases and free modules 56 Matrices over commutative rings 58 Torsion 61 The structure of finitely generated modules over a PID 62 The theory of a single linear transformation 71 Application to Abelian groups 77 Appendix 2A: Arithmetic Lattices 77 Chapter 3. Simple Modules and Composition Series 81 Simple modules 81 Composition series 82 A group-theoretic version of composition series 87 Exercises — Part I 89 Chapter 1 89 Appendix 1A 90 Chapter 2 94 Chapter 3 96 Part II. AfRne Algebras and Noetherian Rings Introduction to Part II 99 Chapter 4. Galois Theory of Fields 101 Field extensions 102 Adjoining -
INTRODUCTION to ALGEBRAIC GEOMETRY, CLASS 3 Contents 1
INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 3 RAVI VAKIL Contents 1. Where we are 1 2. Noetherian rings and the Hilbert basis theorem 2 3. Fundamental definitions: Zariski topology, irreducible, affine variety, dimension, component, etc. 4 (Before class started, I showed that (finite) Chomp is a first-player win, without showing what the winning strategy is.) If you’ve seen a lot of this before, try to solve: “Fun problem” 2. Suppose f1(x1,...,xn)=0,... , fr(x1,...,xn)=0isa system of r polynomial equations in n unknowns, with integral coefficients, and suppose this system has a finite number of complex solutions. Show that each solution is algebraic, i.e. if (x1,...,xn) is a solution, then xi ∈ Q for all i. 1. Where we are We now have seen, in gory detail, the correspondence between radical ideals in n k[x1,...,xn], and algebraic subsets of A (k). Inclusions are reversed; in particular, maximal proper ideals correspond to minimal non-empty subsets, i.e. points. A key part of this correspondence involves the Nullstellensatz. Explicitly, if X and Y are two algebraic sets corresponding to ideals IX and IY (so IX = I(X)andIY =I(Y),p and V (IX )=X,andV(IY)=Y), then I(X ∪ Y )=IX ∩IY,andI(X∩Y)= (IX,IY ). That “root” is necessary. Some of these links required the following theorem, which I promised you I would prove later: Theorem. Each algebraic set in An(k) is cut out by a finite number of equations. This leads us to our next topic: Date: September 16, 1999.