Bmp Signaling Supports Primordial Germ Cell

Total Page:16

File Type:pdf, Size:1020Kb

Bmp Signaling Supports Primordial Germ Cell BMP SIGNALING SUPPORTS PRIMORDIAL GERM CELL DEVELOPMENT BY REGULATING KIT LIGAND BY BRIAN MASON DUDLEY Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Dissertation Adviser: Kathleen Molyneaux, Ph.D. Department of Genetics CASE WESTERN RESERVE UNIVERSITY August 2010 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of _______________Brian Mason Dudley_________________ Candidate for the ___Ph.D.____ degree*. (Signed) ___Ron_Conlon, Ph.D.____________ (Chair of Committee) ___Michiko Watanabe, Ph.D._______ ___Brian Bai, Ph.D._______________ ___Kathleen Molyneaux, Ph.D.______ (Thesis Advisor) (Date) ___June 24, 2010_________________ * We also certify that written approval has been obtained for any proprietary material contained therein. Dedication I would like to dedicate this work to the following people: My parents Michael and Paula for all of their support throughout my education, they have always stressed the importance of education and helped motivate me through this process. To my brother Philip and sister Erin for moral support and for visiting whenever they had the chance. Also to my in laws, all of my friends, and Jasmine for providing entertainment away from school. Finally, and most of all I would like to dedicate this to my wife Colleen for being so supportive during my graduate work. She has been there to read over drafts, listen to talks (which only occasionally put her to sleep), keep me motivated, and help me relax and have fun. Getting though grad school was really a team effort and I could not have done any of it without the love and support of Colleen. I thank her and all my friends and family for ensuring that I will always have fond memories of my time as a Ph.D. student. Table of Contents " ((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((, %"!(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((2 !" "(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((3 " +'" #"" $"((((((((((((((((((((((((((((((((((((((((((( ++ +(+ $") $ $%(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((+, 0+0+0 $+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 01 0+0+1 "$*$$$#+++++++++++++++++++++++++++++++++++++++++++++++++++++ 03 0+0+2(%"$$++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 05 +(,! " "! $"((((((((((((((((((((((((((+2 0+1+0 #$,.% ")++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 07 0+1+1 #""%$$#$$)&"%#&"$#+++++++++++++++++++++++++++++++++ 10 0+1+2 #") $$"$$"#+ ++++++++++++++++++++++++++++++++++++++++++++++++++++ 13 0+1+3 # )""#%$ #$#" "%$&& $+++++++++++++++++ 14 +(-! # $$ "(((((((((((((((((((((((((((((((((((((((((((((((((((((((((,1 0+2+0 $ "& $++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 16 0+2+1 $- $")( "##++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 16 0+2+2#$"%$%"# - ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 17 0+2+3 - # $')#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 20 0+2+4$# $%$$#& $+ +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 21 0+2+5 $"$++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 22 0+2+6,#+ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 23 " ,' #"! # ! ""& #"# (((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((( -0 ,(+!" "(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((-1 ,(," #" ((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((-2 ,(- " ! "! ((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((.* 1+2+0 "%$%"+ +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 3/ 1+2+1%#$+ +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 30 1+2+2,!%$$$&,+ +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 30 ,(.!#"!(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((., 1+3+0##$#( "## " $"##%"" "$+ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 31 1+3+1"# ,#$"'$$# "#)$8+4 0/+4++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 32 1+3+2"$%" #$#%"#8+4#%$%"++++++++++++++++++++++++ 35 1+3+3 $"$$#% "###$$)+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 37 1+3+4(%# 3 4&$( "## $0"%$%"+38 1+3+5 $"$$"%#0 $( "##'$$%"$"+ + 41 ,(/!#!! ((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((/, ,(0%"!(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((/2 ,(1#" " ((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((/3 3 #!0* #!"!#!!! &##!(#"++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 3- 0+."#!#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++3. 0+/ #!$# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++3/ 0+0 #!" #" ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++31 /)/)- #'#"))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) 20 /)/). $#"$"#"#!())))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) 20 /)/)/'!""(""))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) 23 /)/)0*")))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) 23 /)/)1##"#")))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) 24 0+1"$#"+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++36 /)0)- "#"!'!""##!"$! !#) )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) 25 /)0).#""!-"#!" ") ))))))))))))))))))))))))))))))))))) 3- /)0)/!"!-'!""!!#"&#" #!# '!"") )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) 31 /)0)0 $ ""#!"#!# "###!") )))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) 32 /)0)1#!-$#!("%&!!#!( ")))))))))))))))))))))) 34 /)0)2$#!("%!"#!"##) ))))))))))))))))))))))) 4- 0+2"$"" ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++50 0+3&#"+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++54 0+4$ # #! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++55 #!1*)### %%" !$ #," ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 60 1+."#!#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++61 1+/ #!$# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++61 1+0 #!" #" ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++64 0)/)- !$#$!) ))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) 53 0)/).") ))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) 53 0)/)/$#$!"""(")))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) 54 0)/)0##"#")))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) 55 1+1"$#"++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Recommended publications
  • Spemann Organizer Transcriptome Induction by Early Beta-Catenin, Wnt
    Spemann organizer transcriptome induction by early PNAS PLUS beta-catenin, Wnt, Nodal, and Siamois signals in Xenopus laevis Yi Dinga,b,1, Diego Plopera,b,1, Eric A. Sosaa,b, Gabriele Colozzaa,b, Yuki Moriyamaa,b, Maria D. J. Beniteza,b, Kelvin Zhanga,b, Daria Merkurjevc,d,e, and Edward M. De Robertisa,b,2 aHoward Hughes Medical Institute, University of California, Los Angeles, CA 90095-1662; bDepartment of Biological Chemistry, University of California, Los Angeles, CA 90095-1662; cDepartment of Medicine, University of California, Los Angeles, CA 90095-1662; dDepartment of Microbiology, University of California, Los Angeles, CA 90095-1662; and eDepartment of Human Genetics, University of California, Los Angeles, CA 90095-1662 Contributed by Edward M. De Robertis, February 24, 2017 (sent for review January 17, 2017; reviewed by Juan Larraín and Stefano Piccolo) The earliest event in Xenopus development is the dorsal accumu- Wnt8 mRNA leads to a dorsalized phenotype consisting entirely of lation of nuclear β-catenin under the influence of cytoplasmic de- head structures without trunks and a radial Spemann organizer terminants displaced by fertilization. In this study, a genome-wide (9–11). Similar dorsalizing effects are obtained by incubating approach was used to examine transcription of the 43,673 genes embryos in lithium chloride (LiCl) solution at the 32-cell stage annotated in the Xenopus laevis genome under a variety of con- (12). LiCl mimics the early Wnt signal by inhibiting the enzymatic ditions that inhibit or promote formation of the Spemann orga- activity of glycogen synthase kinase 3 (GSK3) (13), an enzyme nizer signaling center.
    [Show full text]
  • BMP3 Suppresses Osteoblast Differentiation of Bone Marrow Stromal Cells Via Interaction with Acvr2b
    MUShare Faculty Publications and Research College of Osteopathic Medicine 1-1-2012 BMP3 Suppresses Osteoblast Differentiation of Bone Marrow Stromal Cells Via Interaction With Acvr2b. Shoichiro Kokabu Laura Gamer Karen Cox Jonathan W. Lowery Ph.D. Marian University - Indianapolis, [email protected] Kunikazu Tsuji See next page for additional authors Follow this and additional works at: https://mushare.marian.edu/com_fp Part of the Cells Commons, and the Genetics and Genomics Commons Recommended Citation Kokabu S, Gamer L, Cox K, Lowery JW, Kunikazu T, Econimedes A, Katagiri T, Rosen V. “BMP3 suppresses osteoblast differentiation of bone marrow stromal cells via interaction with Acvr2b.” Mol Endocrinol. 2012;26(1):87-94. PMC3248326. PMID: 22074949. This Article is brought to you for free and open access by the College of Osteopathic Medicine at MUShare. It has been accepted for inclusion in Faculty Publications and Research by an authorized administrator of MUShare. For more information, please contact [email protected]. Authors Shoichiro Kokabu, Laura Gamer, Karen Cox, Jonathan W. Lowery Ph.D., Kunikazu Tsuji, Regina Raz, Aris Economides, Takenobu Katagiri, and Vicki Rosen This article is available at MUShare: https://mushare.marian.edu/com_fp/12 ORIGINAL RESEARCH BMP3 Suppresses Osteoblast Differentiation of Bone Marrow Stromal Cells via Interaction with Acvr2b Shoichiro Kokabu, Laura Gamer, Karen Cox, Jonathan Lowery, Kunikazu Tsuji, Regina Raz, Aris Economides, Takenobu Katagiri, and Vicki Rosen Department of Developmental Biology (S.K., L.G., K.C., J.L., V.R.), Harvard School of Dental Medicine, Boston, Massachusetts 02115; Section of Orthopedic Surgery (K.T.),Tokyo Medical and Dental University, Tokyo 113-8510, Japan; Regeneron Pharmaceuticals (R.R., A.E.), Tarrytown, New York 10591; and Division of Pathophysiology (T.K.), Saitama Medical University, Saitama 359-8513, Japan Enhancing bone morphogenetic protein (BMP) signaling increases bone formation in a variety of settings that target bone repair.
    [Show full text]
  • Follistatin and Noggin Are Excluded from the Zebrafish Organizer
    DEVELOPMENTAL BIOLOGY 204, 488–507 (1998) ARTICLE NO. DB989003 Follistatin and Noggin Are Excluded from the Zebrafish Organizer Hermann Bauer,* Andrea Meier,* Marc Hild,* Scott Stachel,†,1 Aris Economides,‡ Dennis Hazelett,† Richard M. Harland,† and Matthias Hammerschmidt*,2 *Max-Planck Institut fu¨r Immunbiologie, Stu¨beweg 51, 79108 Freiburg, Germany; †Department of Molecular and Cell Biology, University of California, 401 Barker Hall 3204, Berkeley, California 94720-3204; and ‡Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707 The patterning activity of the Spemann organizer in early amphibian embryos has been characterized by a number of organizer-specific secreted proteins including Chordin, Noggin, and Follistatin, which all share the same inductive properties. They can neuralize ectoderm and dorsalize ventral mesoderm by blocking the ventralizing signals Bmp2 and Bmp4. In the zebrafish, null mutations in the chordin gene, named chordino, lead to a severe reduction of organizer activity, indicating that Chordino is an essential, but not the only, inductive signal generated by the zebrafish organizer. A second gene required for zebrafish organizer function is mercedes, but the molecular nature of its product is not known as yet. To investigate whether and how Follistatin and Noggin are involved in dorsoventral (D-V) patterning of the zebrafish embryo, we have now isolated and characterized their zebrafish homologues. Overexpression studies demonstrate that both proteins have the same dorsalizing properties as their Xenopus homologues. However, unlike the Xenopus genes, zebrafish follistatin and noggin are not expressed in the organizer region, nor are they linked to the mercedes mutation. Expression of both genes starts at midgastrula stages.
    [Show full text]
  • Nodal Signaling Is Required for Mesodermal and Ventral but Not For
    © 2015. Published by The Company of Biologists Ltd | Biology Open (2015) 4, 830-842 doi:10.1242/bio.011809 RESEARCH ARTICLE Nodal signaling is required for mesodermal and ventral but not for dorsal fates in the indirect developing hemichordate, Ptychodera flava Eric Röttinger1,2,3,*, Timothy Q. DuBuc4, Aldine R. Amiel1,2,3 and Mark Q. Martindale4 ABSTRACT early fate maps of direct and indirect developing hemichordates, are Nodal signaling plays crucial roles in vertebrate developmental similar to those of indirect-developing echinoids (Colwin and processes such as endoderm and mesoderm formation, and axial Colwin, 1951; Cameron et al., 1987; Cameron et al., 1989; Cameron patterning events along the anteroposterior, dorsoventral and left- and Davidson, 1991; Henry et al., 2001). While the bilaterally right axes. In echinoderms, Nodal plays an essential role in the symmetric echinoderm larvae exhibit strong similarities to establishment of the dorsoventral axis and left-right asymmetry, but chordates in axial patterning and germ layer specification events, not in endoderm or mesoderm induction. In protostomes, Nodal adult body plan comparisons in echinoderms have been difficult due signaling appears to be involved only in establishing left-right to their unique adult pentaradial symmetry. However, both the larval asymmetry. Hence, it is hypothesized that Nodal signaling has and adult body plans of enteropneust hemichordates are bilaterally been co-opted to pattern the dorsoventral axis of deuterostomes and symmetric, and larvae from indirect developing hemichordates for endoderm, mesoderm formation as well as anteroposterior such as Ptychodera flava (P. flava) share similarities in patterning in chordates. Hemichordata, together with echinoderms, morphology, axial organization, and developmental fate map with represent the sister taxon to chordates.
    [Show full text]
  • Secreted Bone Morphogenetic Protein Antagonists of the Chordin Family
    Article in press - uncorrected proof BioMol Concepts, Vol. 1 (2010), pp. 297–304 • Copyright ᮊ by Walter de Gruyter • Berlin • New York. DOI 10.1515/BMC.2010.026 Review Secreted bone morphogenetic protein antagonists of the Chordin family Nobuyuki Itoha,* and Hiroya Ohtaa factor b (TGFb) superfamily. Originally identified in the Department of Genetic Biochemistry, Kyoto University protein extracts of deminerized bone, BMPs promote endo- Graduate School of Pharmaceutical Sciences, Sakyo, chondral bone formation. However, they also play diverse Kyoto 606-8501, Japan roles in developmental and metabolic processes at the embry- onic and postnatal stages. BMPs are secreted as dimers and * Corresponding author activate specific Ser/Thr kinase receptors at cell surfaces. e-mail: [email protected] The activated receptors propagate BMP signals via the phos- phorylation of Smad proteins and other non-canonical intra- Abstract cellular effectors (1, 2). The actions of BMPs are inhibited by several secreted Chordin, Chordin-like 1, and Chordin-like 2 are secreted BMP antagonists. Most extracellular BMP antagonists inhibit bone morphogenetic protein (BMP) antagonists with highly BMPs by binding to them. The amino acid sequences of conserved Chordin-like cysteine-rich domains. Recently, secreted BMP antagonists are characterized by cysteine-rich Brorin and Brorin-like have been identified as new Chordin- (CR) domains. On the basis of the spacing of cysteine resi- like BMP antagonists. A Chordin ortholog, Short gastrula- dues in the CR domains, secreted BMP antagonists can be tion, has been identified in Drosophila, a protostome, but not classified into five groups; the Dan family, Twisted gastru- other orthologs.
    [Show full text]
  • Differential Compartmentalization of BMP4/NOGGIN Requires NOGGIN Trans-Epithelial Transport
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.18.423440; this version posted December 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Differential compartmentalization of BMP4/NOGGIN requires NOGGIN trans-epithelial transport Tien Phan-Everson1-2 +, Fred Etoc1 +, Ali H. Brivanlou1 *, Eric D. Siggia2 * 1 Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, New York 10065, USA. 2 Laboratory of Physical, Mathematical, and Computational Biology, The Rockefeller University, New York, New York 10065, USA. + Co-first Authors * Joint Corresponding Authors Correspondence: [email protected]; [email protected] Summary Using self-organizing human models of gastrulation, we previously showed that (i) BMP4 initiates the cascade of events leading to gastrulation; (ii) BMP4 signal-reception is restricted to the basolateral domain; and (iii) in a human-specific manner, BMP4 directly induces the expression of NOGGIN. Here, we report the surprising discovery that in human epiblasts, NOGGIN and BMP4 were secreted into opposite extracellular spaces. Interestingly, apically-presented NOGGIN could inhibit basally-delivered BMP4. Apically-imposed microfluidic flow demonstrated that NOGGIN traveled in the apical extracellular space. Our co-localization analysis detailed the endocytotic route that trafficked NOGGIN from the apical space to the basolateral intercellular space where BMP4 receptors were located. This apical-to-basal transcytosis was indispensable for NOGGIN inhibition. Taken together, the segregation of activator/inhibitor into distinct extracellular spaces challenges classical views of morphogen movement.
    [Show full text]
  • Effective Inhibition of Bone Morphogenetic Protein Function By
    Published OnlineFirst September 8, 2015; DOI: 10.1158/1535-7163.MCT-14-0956 Small Molecule Therapeutics Molecular Cancer Therapeutics Effective Inhibition of Bone Morphogenetic Protein Function by Highly Specific Llama-Derived Antibodies Silvia Calpe1, Koen Wagner2, Mohamed El Khattabi3, Lucy Rutten3, Cheryl Zimberlin4, Edward Dolk3, C. Theo Verrips3, Jan Paul Medema4, Hergen Spits2, and Kausilia K. Krishnadath1,5 Abstract Bone morphogenetic proteins (BMP) have important but signaling. Epitope binning and docking modeling have shed distinct roles in tissue homeostasis and disease, including light into the basis for their BMP specificity. As opposed to the carcinogenesis and tumor progression. A large number of BMP wide structural reach of natural inhibitors, these small mole- inhibitors are available to study BMP function; however, as culestargetthegroovesandpocketsofBMPsinvolvedin most of these antagonists are promiscuous, evaluating specific receptor binding. In organoid experiments, specific inhibition effectsofindividualBMPsisnotfeasible.Becausetheonco- of BMP4 does not affect the activation of normal stem cells. genic role of the different BMPs varies for each neoplasm, Furthermore, in vitro inhibition of cancer-derived BMP4 non- highly selective BMP inhibitors are required. Here, we describe canonical signals results in an increase of chemosensitivity the generation of three types of llama-derived heavy chain in a colorectal cancer cell line. Therefore, because of their variable domains (VHH) that selectively bind to either BMP4, high specificity and low off-target effects, these VHHs could þ to BMP2 and 4, or to BMP2, 4, 5, and 6. These generated VHHs represent a therapeutic alternative for BMP4 malignancies. have high affinity to their targets and are able to inhibit BMP Mol Cancer Ther; 14(11); 2527–40.
    [Show full text]
  • The Pitx2:Mir-200C/141:Noggin Pathway Regulates Bmp Signaling
    3348 RESEARCH ARTICLE STEM CELLS AND REGENERATION Development 140, 3348-3359 (2013) doi:10.1242/dev.089193 © 2013. Published by The Company of Biologists Ltd The Pitx2:miR-200c/141:noggin pathway regulates Bmp signaling and ameloblast differentiation Huojun Cao1,*, Andrew Jheon2,*, Xiao Li1, Zhao Sun1, Jianbo Wang1, Sergio Florez1, Zichao Zhang1, Michael T. McManus3, Ophir D. Klein2,4 and Brad A. Amendt1,5,‡ SUMMARY The mouse incisor is a remarkable tooth that grows throughout the animal’s lifetime. This continuous renewal is fueled by adult epithelial stem cells that give rise to ameloblasts, which generate enamel, and little is known about the function of microRNAs in this process. Here, we describe the role of a novel Pitx2:miR-200c/141:noggin regulatory pathway in dental epithelial cell differentiation. miR-200c repressed noggin, an antagonist of Bmp signaling. Pitx2 expression caused an upregulation of miR-200c and chromatin immunoprecipitation assays revealed endogenous Pitx2 binding to the miR-200c/141 promoter. A positive-feedback loop was discovered between miR-200c and Bmp signaling. miR-200c/141 induced expression of E-cadherin and the dental epithelial cell differentiation marker amelogenin. In addition, miR-203 expression was activated by endogenous Pitx2 and targeted the Bmp antagonist Bmper to further regulate Bmp signaling. miR-200c/141 knockout mice showed defects in enamel formation, with decreased E-cadherin and amelogenin expression and increased noggin expression. Our in vivo and in vitro studies reveal a multistep transcriptional program involving the Pitx2:miR-200c/141:noggin regulatory pathway that is important in epithelial cell differentiation and tooth development.
    [Show full text]
  • TGF Beta Signaling Pathway 1 TGF Beta Signaling Pathway
    TGF beta signaling pathway 1 TGF beta signaling pathway The Transforming growth factor beta (TGFβ) signaling pathway is involved in many cellular processes in both the adult organism and the developing embryo including cell growth, cell differentiation, apoptosis, cellular homeostasis and other cellular functions. In spite of the wide range of cellular processes that the TGFβ signaling pathway regulates, the process is relatively simple. TGFβ superfamily ligands bind to a type II receptor, which recruits and phosphorylates a type I receptor. The type I receptor then phosphorylates receptor-regulated SMADs (R-SMADs) which can now bind the coSMAD SMAD4. R-SMAD/coSMAD complexes accumulate in the nucleus where they act as transcription factors and participate in the regulation of target gene expression. Mechanism Ligand Binding The TGF Beta superfamily of ligands include: Bone morphogenetic proteins (BMPs), Growth and differentiation factors (GDFs), Anti-müllerian hormone (AMH), Activin, Nodal and TGFβ's[1] . Signalling begins with the binding of a TGF beta superfamily ligand to a TGF beta type II receptor. The type II receptor is a serine/threonine receptor kinase, which catalyses the phosphorylation of the Type I receptor. Each class of ligand binds to a specific type II receptor[2] .In mammals there are seven known type I receptors and five type II receptors[3] . There are three activins: Activin A, Activin B and Activin AB. Activins are involved in embryogenesis and osteogenesis. They also regulate many hormones including pituitary, gonadal and hypothalamic hormones as well as insulin. They are also nerve cell survival factors. The BMPs bind to the Bone morphogenetic protein receptor type-2 (BMPR2).
    [Show full text]
  • Early Formation of the Müllerian Duct Is Regulated by Sequential Actions Of
    © 2016. Published by The Company of Biologists Ltd | Development (2016) 143, 3549-3559 doi:10.1242/dev.137067 RESEARCH ARTICLE Early formation of the Müllerian duct is regulated by sequential actions of BMP/Pax2 and FGF/Lim1 signaling Yuji Atsuta1,* and Yoshiko Takahashi1,2,‡ ABSTRACT and MD form in close proximity, suggesting the possibility of The Müllerian duct (MD) and Wolffian duct (WD) are embryonic reciprocal interactions. tubular tissues giving rise to female and male reproductive tracts, In humans, approximately 3% of births are accompanied by respectively. In amniote embryos, both MD and WD emerge in both female reproductive tract-related disorders, including the Müllerian sexes, but subsequently degenerate in the males and females, aplasia, a congenital loss of the uterus and vagina (Ayers et al., respectively. Here, by using MD-specific gene manipulations in 2015; Kobayashi and Behringer, 2003; Layman, 2013; Sandbacka chicken embryos, we identify the molecular and cellular mechanisms et al., 2013). To understand how these disorders arise, it is important that link early MD specification to tubular invagination. Early (pre-) to delineate the mechanisms of MD formation. specification of MD precursors in the coelomic epithelium requires During embryonic development in both sexes, the MD arises BMP signaling and its downstream target Pax2 in a WD-independent from the lateral plate-derived coelomic epithelium (CE). The process. Subsequently, the BMP/Pax2 axis induces Lim1 processes of MD development can be divided into distinct phases: expression, a hallmark of MD specification, for which FGF/ERK and initiation, invagination and extension (Orvis and Behringer, 2007). WD-derived signals are also required.
    [Show full text]
  • The Zinc Finger Gene Xblimp1 Controls Anterior Endomesodermal Cell Fate
    The EMBO Journal Vol.18 No.21 pp.6062–6072, 1999 The zinc finger gene Xblimp1 controls anterior endomesodermal cell fate in Spemann’s organizer Fla´ vio S.J.de Souza, Volker Gawantka, give rise to liver, foregut and prechordal endomesoderm Aitana Perea Go´ mez1, Hajo Delius2, (Pasteels, 1949; Nieuwkoop and Florschu¨tz, 1950; Keller, Siew-Lan Ang1 and Christof Niehrs3 1991; Bouwmeester et al., 1996). The activity of one gene expressed in the anterior endomesoderm, cerberus, has Division of Molecular Embryology and 2Division of Applied Tumour given strong molecular support to the idea that this region Virology, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld is crucial in the process of head induction (reviewed in 280, D-69120 Heidelberg, Germany and 1Institut de Ge´ne´tique et de Biologie Moleculaire et Cellulaire, CNRS/INSERM/Universite´ Louis Slack and Tannahill, 1992; Gilbert and Saxen, 1993; Pasteur/Colle`ge de France, BP163, 67404 Illkirch cedex, Bouwmeester and Leyns, 1997; Niehrs, 1999). Cerberus CU de Strasbourg, France is a secreted factor able to induce ectopic heads including 3Corresponding author forebrain, eye, cement gland and heart in Xenopus (Bouwmeester et al., 1996). Independent evidence for the The anterior endomesoderm of the early Xenopus importance of endoderm in forebrain induction comes gastrula is a part of Spemann’s organizer and is from studies in mouse, where ablation of anterior visceral important for head induction. Here we describe endodermal cells (Thomas and Beddington, 1996) as well Xblimp1, which encodes a zinc finger transcriptional as inactivation of genes such as nodal (Varlet et al., 1997) repressor expressed in the anterior endomesoderm.
    [Show full text]
  • The Regulation of Mesodermal Progenitor Cell Commitment to Somitogenesis Subdivides the Zebrafish Body Musculature Into Distinct Domains
    Downloaded from genesdev.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press The regulation of mesodermal progenitor cell commitment to somitogenesis subdivides the zebrafish body musculature into distinct domains Daniel P. Szeto1 and David Kimelman2 Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA The vertebrate musculature is produced from a visually uniform population of mesodermal progenitor cells (MPCs) that progressively bud off somites populating the trunk and tail. How the MPCs are regulated to continuously release cells into the presomitic mesoderm throughout somitogenesis is not understood. Using a genetic approach to study the MPCs, we show that a subset of MPCs are set aside very early in zebrafish development, and programmed to cell-autonomously enter the tail domain beginning with the 16th somite. Moreover, we show that the trunk is subdivided into two domains, and that entry into the anterior trunk, posterior trunk, and tail is regulated by interactions between the Nodal and bone morphogenetic protein (Bmp) pathways. Finally, we show that the tail MPCs are held in a state we previously called the Maturation Zone as they wait for the signal to begin entering somitogenesis. [Keywords: Bmp signaling; Nodal; T-box genes; MZoep; somite] Supplemental material is available at http://www.genesdev.org. Received March 29, 2006; revised version accepted May 12, 2006. The mesodermal progenitor cells (MPCs) are a popula- the presomitic mesoderm (Griffin and Kimelman 2002) tion of undifferentiated progenitor cells that originate in (this zone is not the same as the maturation front at the the early gastrula embryo (for review, see Schier et al.
    [Show full text]