Valentina KALICHUK

Total Page:16

File Type:pdf, Size:1020Kb

Valentina KALICHUK Valentina KALICHUK Mémoire présenté en vue de l’obtention du Grade de Docteur de l'Université de Nantes et de l’Université Catholique de Louvain Écoles doctorales: Biologie-Sante (UN) et Secteur des sciences de la santé (UCL) Discipline: Biomolécules, pharmacologie, thérapeutique (UN) et Sciences biomédicales et pharmaceutiques (UCL) Spécialité: Biologie des organismes (UN) et Sciences pharmaceutiques (UCL) Unité de recherche : Inserm U1232 – CNRS – 6299 – CRCINA et Louvain Drug Research Institute IRS-UN, Team 13: Nuclear Oncoloy Research Advanced Drug Delivery and Biomaterials Soutenue le 16/10/2017 A novel generation of Affitins for targeting cancer cells with drug-loaded lipid nanocapsules JURY Président du Jury : Nick DEVOOGDT, Professeur des universités, ICMI, Vrije Universiteit Brussel, Belgium Rapporteurs : Nick DEVOOGDT, Professeur des universités, ICMI, Vrije Universiteit Brussel, Belgium Vladimir TOLMACHEV, Professeur des universités, IGP, Uppsala University, Sweden Examinateurs : Diego ARANGO, Directeur de Recherche,Vall d’Hebron Hospital Research Institute, Barcelona, Spain Olivier FERON, Professeur des universités, FATH, Université Catholique de Louvain, Belgium Pierre SONVEAUX, Professeur des universités, FATH, Université Catholique de Louvain, Belgium Directeurs de Thèse : Frédéric PECORARI, Chargé de Recherche, Inserm U1232, Université de Nantes, France Véronique PREAT, Professeur des universités, LDRI, Université Catholique de Louvain, Belgium A novel generation of Affitins for targeting cancer cells with drug-loaded lipid nanocapsules Valentina V. Kalichuk Supervisors: Dr Frédéric Pecorari and Prof Véronique Préat With the support of: Папе. (To my father.) Table of contents Acknowledgements 3 Foreword 5 Abbreviations 7 Chapter I: Introduction 11 1. Cancer and the selectivity challenge in medicine 15 2. Molecular targeting in cancer 19 3. 7 kDa DNA-binding proteins as alternative scaffolds 45 4. The Epithelial cell adhesion molecule as a target in cancer therapy 59 5. Nanoparticles in cancer therapy 69 Chapter II: Aims of the thesis 107 Chapter III: The archaeal “7 kDa DNA-binding” proteins: extended characterization of an old gifted family 113 Chapter IV: A novel, smaller scaffold for Affitins: Showcase with binders specific for EpCAM 151 Chapter V: Affitin-functionalized lipid nanocapsules for targeting colorectal cancer cells 187 Chapter VI: Conclusion and perspectives 229 Scientific communications 241 Curriculum vitae 243 1 Acknowledgements The accomplishment of this thesis would not have been possible without the support of my family, friends and my professional and personal mentors. Foremost, I want to express my sincere gratitude to my supervisors Dr. Frédéric Pecorari and Prof. Véronique Préat for believing in my skills and giving me the opportunity to work under their guidance. They have been not only open to share their knowledge and discuss ideas, but also always supportive and patient with me. I would like to thank the members of my thesis committee Prof. Olivier Feron and Dr. Patrick Chames for the insightful discussions and encouragement. I am also grateful to the members of my jury Prof. Vladimir Tolmachev, Prof. Nick Devoogdt, Prof. Pierre Sonveaux and Prof. Diego Arango for agreeing to evaluate this work. During the last years I had the opportunity to work with colleagues from three different labs. First I want to thank my group in France: Stanimir, Petar, Benjamin, Axelle, Barbara, Georgi and Dessi for their friendship and support. I am especially grateful to Ghislaine, who was always there to help and to share her enormous experience and chocolate mousse. Furthermore I thank the other members of Team 13 that have supported me – Michel, Maxime, Sébastien, Stefanie, and others. I would also like to thank all the people who made my stay in Nantes a nice experience: Swapnil, Neha, Johann, Magali, Edouard, Benoit, Iyanar, Marine, Simon, 2T, Nadege, Kevin B., Kasia, Maxime J., Rémi, Celine, Kubat etc. Special thanks go also to the Teze family – Françoise, Hubert, Florence, Marie, Jeremie and Sam. I will always be especially grateful to David, who supported me through each step of my life and work during the last years. 3 Moving to Brussels, I was lucky to work with people like Bernard, Kevin, Nathalie and Murielle, who are always there to help with a smile, no matter how busy they are. I want to express my gratitude to Fabienne for her supervision, support and trust. I thank Chiara, Dario, Alessandra, Nikos and Thibaut not only for their help in the lab, but also for their support as friends. Same goes for Janske, Hanane, Carmen, Cécile, Audrey, Neha, Ana, Natalija, Sohaib, Mengnan and all the others, with whom we shared so many beautiful (and delicious!) moments together. I am grateful to Yoann, who did not let me give up even for a second and always had my back. I want express my sincere gratitude towards John-Ivan, who was, and still is, my guardian angel. He and Gergana became like a family to me. I would also use the opportunity to thank Prof. Andreas Plückthun, who accepted me for an internship in his lab. He has motivated me with his expertise and never-ending pool of ideas. I want to thank Sheena, Hännschen, Jonas, Brandy, Wolfgang, Dominik, David V. and the others who showed me how working hard and having fun should always go hand in hand. Special thanks to Kevin and Caramel-the-cat for chasing away the demons while I was writing and for always finding a way to put the smile back on my face. No words can express my gratitude towards my family and friends back home and around the world. Their constant support, unconditional love and care help me every day to do my best. Every progress and every small success in my life belongs to them. 4 Foreword A progressive strategy against cancer is the targeting of tumour- associated antigens by specific ligands coupled to nanoparticles, carrying therapeutic or imaging agents. Antibodies are the most widely used targeting molecules, but they possess limitations as high production costs, complex structure and limited stability. Affitins are highly stable engineered affinity proteins, derived originally from Sac7d, an archaeal polypeptide from the 7 kDa DNA-binding family (also known as Sul7d family). These binders show comparable affinity and specificity to those of antibodies, while being thermally and chemically more stable, cheaper to produce, easier to engineer and present a simpler structure and 20-fold smaller size. Lipid nanocapsules (LNCs), prepared by solvent free process, possess great stability and high efficiency for lipophilic drugs encapsulation and protect the drug from rapid degradation. Targeting LNC to cancer cells can further decrease drug concentration in normal tissues and lower the toxicity. The aim of the thesis is to combine the advantages of Affitins as targeting agents and LNCs as carriers in order to create vehicles for delivering payloads to cancer cells. The first goal of this work is to characterize more extensively the Sul7d family and to identify a potential candidate for the generation of Affitins with improved properties. The second goal is to validate the chosen affinity scaffold by creating binders against EpCAM and to characterize them. The last goal is to attach the new binders as affinity moieties to LNCs and to assess the tumour targeting of these complexes in vitro. 5 6 Abbreviations Abbreviations Ab Antibody ABD Albumin binding domain ADC Antibody-drug-conjugates ADCC Antibody-dependant cellular toxicity Ag Antigen AR Ankyrin repeat BSA Bovine serum albumin CD Circular dichroism CDC Complement-dependant cytotoxicity cDNA Complementary DNA CDR Complementarity-determining region CEA Canceroembryogenic antigen CH Constant domain of a heavy chain of an antibody CL Constant domain of a heavy chain of an antibody CTC Circulating tumour cells CSC Cancer stem cells ct-DNA Calf thymus DNA DARPins Designed Ankyrin Repeat Proteins DiD 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine perchlorate DNA Deoxyribonucleic acid DOX Doxorubicin 7 Abbreviations DSC Differential scanning calorimetry DSPE-PEG 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N- [amino(polyethylene glycol) EDTA Ethylene-diamine-tetraacetic acid EGFR Epidermal growth factor receptor ELISA Enzyme-linked immunosorbent assay EMA European Medicines Agency EMSA Electrophoretic mobility shift assay EMT Epithelial-to-mesenchymal transition EpCAM Epithelial cell adhesion molecule EpEX Extracellular domain of EpCAM EpICD Intracellular domain of EpCAM EPR Enhanced permeability and retention Fab/Fv Variable, antigen-binding fragment of an antibody FACS Fluorescence-activated cell sorting FDA Food and Drug Administration GFP Gren fluorescent protein HCAb Heavy-chain antibodies HER2 Human epidermal growth factor receptor 2 His6 Hexahistidine tag hrEpCAM human recombinant EpCAM HRP Horseradish peroxidase HSA Human serum albumin HWEL Hen white egg lysozyme IgG Immunoglobulin G IMAC Immobilized-metal ion affinity chromatography 8 Abbreviations IPTG Isopropyl β-D-1-thiogalactopyranoside KD Dissociation konstant kDa Kilodalton LC-ESI-HRMS Liquid chromatography-electrospray ionization-high resolution mass spectrometry LNC Lipid nanocalsules mAbs Monoclonal antibodies MNPs Magnetic nanoparticles MRI Magnetic resonance imaging mRNA Messenger ribonucleic acid MSA Mouse serum albumin MSNs Mesoporous silica nanoparticles Nb Nanobody NK Natural killer (cells) NP Nanoparticle PAGE Polyacrylamide gel electrophoresis PBS Phosphate-buffered saline PCR Polymerase chain
Recommended publications
  • Affibody Molecules for Epidermal Growth Factor Receptor Targeting
    Journal of Nuclear Medicine, published on January 21, 2009 as doi:10.2967/jnumed.108.055525 Affibody Molecules for Epidermal Growth Factor Receptor Targeting In Vivo: Aspects of Dimerization and Labeling Chemistry Vladimir Tolmachev1-3, Mikaela Friedman4, Mattias Sandstrom¨ 5, Tove L.J. Eriksson2, Daniel Rosik2, Monika Hodik1, Stefan Sta˚hl4, Fredrik Y. Frejd1,2, and Anna Orlova1,2 1Unit of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden; 2Affibody AB, Bromma, Sweden; 3Department of Medical Sciences, Nuclear Medicine, Uppsala University, Uppsala, Sweden; 4Division of Molecular Biotechnology, School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden; and 5Section of Hospital Physics, Department of Oncology, Uppsala University Hospital, Uppsala, Sweden Noninvasive detection of epidermal growth factor receptor (EGFR) expression in malignant tumors by radionuclide molecu- he epidermal growth factor receptor (EGFR; other lar imaging may provide diagnostic information influencing pa- T designations are HER1 and ErbB-1) is a transmembrane tient management. The aim of this study was to evaluate a tyrosine kinase receptor that regulates cell proliferation, novel EGFR-targeting protein, the ZEGFR:1907 Affibody molecule, for radionuclide imaging of EGFR expression, to determine a motility, and suppression of apoptosis (1). Overexpression suitable tracer format (dimer or monomer) and optimal label. of EGFR is documented in several malignant tumors, such Methods: An EGFR-specific Affibody molecule, ZEGFR:1907, as carcinomas of the breast, urinary bladder, and lung, and 111 and its dimeric form, (ZEGFR:1907)2, were labeled with In using is associated with poor prognosis (2). A high level of EGFR 125 benzyl-diethylenetriaminepentaacetic acid and with I using expression could provide malignant cells with an advantage p-iodobenzoate.
    [Show full text]
  • Wo2015188839a2
    Downloaded from orbit.dtu.dk on: Oct 08, 2021 General detection and isolation of specific cells by binding of labeled molecules Pedersen, Henrik; Jakobsen, Søren; Hadrup, Sine Reker; Bentzen, Amalie Kai; Johansen, Kristoffer Haurum Publication date: 2015 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Pedersen, H., Jakobsen, S., Hadrup, S. R., Bentzen, A. K., & Johansen, K. H. (2015). General detection and isolation of specific cells by binding of labeled molecules. (Patent No. WO2015188839). General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/188839
    [Show full text]
  • Fig. 1C Combination Therapy of Tumor Targeted ICOS Agonists with T-Cell Bispecific Molecules
    ( (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C07K 16/30 (2006.01) A61P 35/00 (2006.01) kind of national protection av ailable) . AE, AG, AL, AM, C07K 16/28 (2006.01) A 6IK 39/00 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, C07K 16/40 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, (21) International Application Number: HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, PCT/EP20 18/086046 KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (22) International Filing Date: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 20 December 2018 (20. 12.2018) OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (25) Filing Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available) . ARIPO (BW, GH, 17209444.3 2 1 December 2017 (21. 12.2017) EP GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (71) Applicant (for all designated States except US): F. HOFF- TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, MANN-LA ROCHE AG [CH/CH]; Grenzacherstrasse EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, 124, 4070 Basel (CH).
    [Show full text]
  • Design and Screening of Degenerate-Codon-Based Protein Ensembles with M13 Bacteriophage
    Design and Screening of Degenerate-Codon-Based Protein Ensembles with M13 Bacteriophage by Griffin James Clausen B.S. Biomedical Engineering University of Minnesota – Twin Cities, 2012 Submitted to the Department of Biological Engineering in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biological Engineering at the Massachusetts Institute of Technology February 2019 © 2019 Massachusetts Institute of Technology. All rights reserved. Signature of Author: ____________________________________________________________ Griffin Clausen Department of Biological Engineering January 14, 2019 Certified by: ___________________________________________________________________ Angela Belcher James Mason Crafts Professor of Biological Engineering and Materials Science Thesis Supervisor Accepted by: ___________________________________________________________________ Forest White Professor of Biological Engineering Graduate Program Committee Chair This doctoral thesis has been examined by the following committee: Amy Keating Thesis Committee Chair Professor of Biology and Biological Engineering Massachusetts Institute of Technology Angela Belcher Thesis Supervisor James Mason Crafts Professor of Biological Engineering and Materials Science Massachusetts Institute of Technology Paul Blainey Core Member, Broad Institute Associate Professor of Biological Engineering Massachusetts Institute of Technology 2 Design and Screening of Degenerate-Codon-Based Protein Ensembles with M13 Bacteriophage by Griffin James Clausen Submitted
    [Show full text]
  • Affimer Proteins Inhibit Immune Complex Binding to Fcγriiia with High Specificity Through Competitive and Allosteric Modes of Action
    Affimer proteins inhibit immune complex binding to FcγRIIIa with high specificity through competitive and allosteric modes of action James I. Robinsona,b, Euan W. Baxtera,b,1, Robin L. Owenc,1, Maren Thomsend,1, Darren C. Tomlinsond,e,1, Mark P. Waterhousea,b,1, Stephanie J. Wina,b, Joanne E. Nettleshipf,g, Christian Tiedee, Richard J. Fosterd,h, Raymond J. Owensf,g, Colin W. G. Fishwickd,h, Sarah A. Harrisd,i, Adrian Goldmane,j, Michael J. McPhersond,e,2, and Ann W. Morgana,b,2 aLeeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds LS9 7TF, United Kingdom; bNational Institute of Health Research-Leeds Biomedical Research Centre, Chapel Allerton Hospital, Leeds LS7 4SA, United Kingdom; cDiamond Light Source, Didcot OX11 0DE, United Kingdom; dAstbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom; eBioScreening Technology Group, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom; fOxford Protein Production Facility-United Kingdom Research Complex at Harwell, Rutherford Appleton Laboratory, Oxford OX11 0FA, United Kingdom; gDivision of Structural Biology, Wellcome Trust Centre for Genomic Medicine, Nuffield Department of Medicine, Oxford University, Oxford OX3 7BN, United Kingdom; hSchool of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom; iSchool of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom; and jFaculty of Biological and Environmental Sciences, University of Helsinki, FIN-0014 Helsinki, Finland Edited by Lawrence Steinman, Stanford University School of Medicine, Stanford, CA, and approved November 17, 2017 (received for review May 15, 2017) Protein–protein interactions are essential for the control of cellular domains and chains, poor stability, high production costs, and functions and are critical for regulation of the immune system.
    [Show full text]
  • Affimer Technology Nov 2017
    Non-confidential Technical Introduction to the Affimer® Technology for Therapeutics and Reagents Dr. Alastair Smith Chief Executive, Avacta Group plc Introduction Avacta Group plc AIM: AVCT • 80 staff over two sites: • 1300 m2 of bespoke laboratory, production and logistics space in Wetherby. • 790 m2 of bespoke laboratory space in Cambridge. • Balance sheet to support existing plans. Wetherby • Experienced management team with interests aligned to shareholders. • Strongly supportive shareholder base. Cambridge London Shareholders >5% . IP Group plc 24.8% Lombard Odier 11.4% Aviva 9.6% Baillie Gifford 7.2% Ruffer LLP 7.1% Fidelity 5.9% J O Hambro 5.7% © Avacta Group plc 2 Leadership Team Dr Alastair Smith, CEO Dr Matt Johnson, CTO Mr Tony Gardiner, CFO • Over 10 years experience as a public • Genetics & Microbiology Molecular • Joined Avacta from AHR, an company CEO Biology international architecture practice • Was a leading UK biophysicist - founded • 8 years at Abcam becoming global • Chief Financial Officer of AIM listed Avacta in 2006 Head of R&D Fusion IP plc 2007 – 2011 which was acquired by IP Group plc in 2014 • World class scientific and technical • Joined Avacta in 2014 knowledge with a highly commercial • Joined Avacta in 2016 mindset Dr Philippe Cotrel, CCO Dr Amrik Basran, CSO • Over 20 years’ commercial experience in senior • Over 10 years’ experience of both the biotech and positions in Amersham Pharmacia Biotech, Oxford pharma industries Glycosciences, Affymetrix and Abcam • Director of Protein Biosciences at Domantis, Head of • Commercial Director of Abcam since 2008 – grew Topical Delivery (Biopharm) at GSK revenue from £36.7m to £144m over a 7-year period • Joined Avacta in 2013 • Joined Avacta in 2016 © Avacta Group plc 3 Affimer Technology Affimer®: A proprietary protein scaffold with key technical benefits What is an Affimer? Binding Surface • Based on a naturally occurring proteins (cystatins) and engineered to stably display two loops which create a binding surface.
    [Show full text]
  • Protein Conjugation with Triazolinediones: Switching from a General Tyrosine-Selective Labeling Method to a Highly Specific Tryptophan Bioconjugation Strategy Klaas W
    Protein Conjugation with Triazolinediones: Switching from a General Tyrosine-Selective Labeling Method to a Highly Specific Tryptophan Bioconjugation Strategy Klaas W. Decoene,† Kamil Unal,‡ An Staes⟠Ψ, Kris Gevaert⟠, Johan M. Winne,‡ Annemieke Madder†* † Organic and Biomimetic Chemistry Research group OBCR, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium ‡ Organic Synthesis group, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium ⟠ VIB Centre for Medical Biotechnology, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium & Department of Bio- molecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium Ψ VIB core facility , VIB Centre for Medical Biotechnology, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium ABSTRACT: Selective labeling of tyrosine residues in peptides and proteins can be achieved via a 'tyrosine-click' reaction with triazolinedione reagents (TAD). We have found that tryptophan residues are in fact often also labeled with this reagent. This off-target labeling is only observed at very low levels in protein bioconjugation but remains under the radar due to the low relative abundance of tryptophan compared to tyrosines in natural proteins, and because of the low availability and ac- cessibility of their nucleophilic positions at the solvent-exposed protein surface. Moreover, because TAD-Trp adducts are known to be readily thermoreversible, it can be challenging to detect these physiologically stable but thermally labile modi- fications using several MS/MS techniques. We have found that fully solvent-exposed tryptophan side chains are kinetically favored over tyrosines under almost all conditions, and this selectivity can even be further enhanced by modifying the pH of the aqueous buffer to effect selective Trp-labeling.
    [Show full text]
  • Strategies and Challenges for the Next Generation of Therapeutic Antibodies
    FOCUS ON THERAPEUTIC ANTIBODIES PERSPECTIVES ‘validated targets’, either because prior anti- TIMELINE bodies have clearly shown proof of activity in humans (first-generation approved anti- Strategies and challenges for the bodies on the market for clinically validated targets) or because a vast literature exists next generation of therapeutic on the importance of these targets for the disease mechanism in both in vitro and in vivo pharmacological models (experi- antibodies mental validation; although this does not necessarily equate to clinical validation). Alain Beck, Thierry Wurch, Christian Bailly and Nathalie Corvaia Basically, the strategy consists of develop- ing new generations of antibodies specific Abstract | Antibodies and related products are the fastest growing class of for the same antigens but targeting other therapeutic agents. By analysing the regulatory approvals of IgG-based epitopes and/or triggering different mecha- biotherapeutic agents in the past 10 years, we can gain insights into the successful nisms of action (second- or third-generation strategies used by pharmaceutical companies so far to bring innovative drugs to antibodies, as discussed below) or even the market. Many challenges will have to be faced in the next decade to bring specific for the same epitopes but with only one improved property (‘me better’ antibod- more efficient and affordable antibody-based drugs to the clinic. Here, we ies). This validated approach has a high discuss strategies to select the best therapeutic antigen targets, to optimize the probability of success, but there are many structure of IgG antibodies and to design related or new structures with groups working on this class of target pro- additional functions.
    [Show full text]
  • International Patent Classification: KR, KW, KZ, LA, LC, LK, LR, LS, LU
    ( 2 (51) International Patent Classification: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, A61K 39/42 (2006.01) C07K 16/10 (2006.01) HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, C07K 16/08 (2006.01) KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (21) International Application Number: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, PCT/US20 19/033 995 SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (22) International Filing Date: TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. 24 May 2019 (24.05.2019) (84) Designated States (unless otherwise indicated, for every (25) Filing Language: English kind of regional protection available) . ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (26) Publication Language: English UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (30) Priority Data: TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, 62/676,045 24 May 2018 (24.05.2018) US EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, (71) Applicant: LANKENAU INSTITUTE FOR MEDICAL TR), OAPI (BF, BJ, CF, CG, Cl, CM, GA, GN, GQ, GW, RESEARCH [US/US]; 100 Lancaster Avenue, Wyn- KM, ML, MR, NE, SN, TD, TG).
    [Show full text]
  • 2010.01) C07k 14/74 (2006.01
    ( (51) International Patent Classification: su 215 123 (CN). LIN, Yanni; F2, Building B20, Sangt- C07K 19/00 (2006.0 1) C12N 5/0783 (20 10.01) ian Street 218, Suzhou Industrial Park, Suzhou, Jiangsu C07K 14/74 (2006.01) A61K 35/1 7 (2015.01) 215123 (CN). ZHENG, Xiaocui; F2, Building B20, Sangt- C12N 15/62 (2006.01) A61P 35/00 (2006.01) ian Street 218, Suzhou Industrial Park, Suzhou, Jiangsu 215123 (CN). KONG, Hongmei; F2, Building B20, Sangt- (21) International Application Number: ian Street 218, Suzhou Industrial Park, Suzhou, Jiangsu PCT/ CN2020/ 1081 16 215123 (CN). WANG, Wenbo; F2, Building B20, Sangtian (22) International Filing Date: Street 218, Suzhou Industrial Park, Suzhou, Jiangsu 215 123 10 August 2020 (10.08.2020) (CN). FENG, Aihua; F2, Building B20, Sangtian Street 218, Suzhou Industrial Park, Suzhou, Jiangsu 215 123 (CN). (25) Filing Language: English (74) Agent: J. Z. M. C. PATENT AND TRADEMARK LAW (26) Publication Language: English OFFICE (GENERAL PARTNERSHIP); YU, Mingwei, (30) Priority Data: Room 5022, No. 335, Guo Ding Road, Yang Pu District, 201910746355.8 13 August 2019 (13.08.2019) CN Shanghai 200433 (CN). PCT/ CN20 19/124321 (81) Designated States (unless otherwise indicated, for every 10 December 2019 (10. 12.2019) CN kind of national protection av ailable) . AE, AG, AL, AM, (71) Applicant: CURE GENETICS CO., LTD. [CN/CN]; AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, Biobay A4-5 10, Xinghu Street 218, Suzhou Industrial Park, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, Suzhou, Jiangsu 215 123 (CN).
    [Show full text]
  • Article in Press
    G Model MIMM-4561; No. of Pages 12 ARTICLE IN PRESS Molecular Immunology xxx (2015) xxx–xxx Contents lists available at ScienceDirect Molecular Immunology j ournal homepage: www.elsevier.com/locate/molimm Review Alternative molecular formats and therapeutic applications for ଝ bispecific antibodies ∗ Christoph Spiess, Qianting Zhai, Paul J. Carter Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA a r t i c l e i n f o a b s t r a c t Article history: Bispecific antibodies are on the cusp of coming of age as therapeutics more than half a century after they Received 28 November 2014 ® were first described. Two bispecific antibodies, catumaxomab (Removab , anti-EpCAM × anti-CD3) and Received in revised form ® blinatumomab (Blincyto , anti-CD19 × anti-CD3) are approved for therapy, and >30 additional bispecific 30 December 2014 antibodies are currently in clinical development. Many of these investigational bispecific antibody drugs Accepted 2 January 2015 are designed to retarget T cells to kill tumor cells, whereas most others are intended to interact with two Available online xxx different disease mediators such as cell surface receptors, soluble ligands and other proteins. The modular architecture of antibodies has been exploited to create more than 60 different bispecific antibody formats. Keywords: These formats vary in many ways including their molecular weight, number of antigen-binding sites, Bispecific antibodies spatial relationship between different binding sites, valency for each antigen, ability to support secondary Antibody engineering Antibody therapeutics immune functions and pharmacokinetic half-life. These diverse formats provide great opportunity to tailor the design of bispecific antibodies to match the proposed mechanisms of action and the intended clinical application.
    [Show full text]
  • WO 2014/152006 A2 25 September 2014 (25.09.2014) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/152006 A2 25 September 2014 (25.09.2014) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K 39/395 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, PCT/US20 14/026804 KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, (22) International Filing Date: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 13 March 2014 (13.03.2014) OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (25) Filing Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (26) Publication Language: English ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 61/791,953 15 March 2013 (15.03.2013) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, (71) Applicant: INTRINSIC LIFESCIENCES, LLC UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, [US/US]; 505 Coast Boulevard South, Suite 408, La Jolla, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, California 92037 (US).
    [Show full text]