Extended Data Table 1 Mätlik et al. Knock Up via 3’UTR editing to study gene function in vivo

Differentially expressed -coding in GdnfcKU/cKU;Nestin-Cre mice that have been associated with in mouse and/or human studies.

Gene P-value Differential Genetic Animal Reference symbol expression association model Adora2a <0.0001 + + 71-73 Adcy7 0,00032 + 74 Alas2 0,00048 + 75 Aldh1a1 <0.0001 + + 73,76 Als2cl <0.0001 + 77 Ano2 0,00066 + 78 Arc <0.0001 + + + 73,79,80 Arnt 0,00015 + 81,82 Btg2 <0.0001 + + 73,83 Cbln4 0,00026 + 73 Celsr3 0,00021 + 74 Cnp <0.0001 + 84 Col16a1 <0.0001 + 74 Col19a1 0,00014 + 85 Cpeb1 0,00056 + 82,86 Cyr61 <0.0001 + 73 Dennd6b <0.0001 + 74 Dnah6 <0.0001 + 74 Drd1 <0.0001 + + 81,87-91 Drd2 <0.0001 + + + 72,81,87,92-99 Dusp1 <0.0001 + 100 Egr1 0,00029 + + 73,92 Egr2 <0.0001 + 73 Fos <0.0001 + 101 Galnt9 <0.0001 + 73 Gpr88 <0.0001 + + 102,103 Hr 0,00029 + 73 Ier2 0,00055 + 74 Il18bp 0,00053 + 104 Il3ra <0.0001 + 105-107 Inf2 0,00011 + 73 Lin28b <0.0001 + 86 Mag <0.0001 + + 108-111 Masp2 0,00074 + 74 Mbp <0.0001 + + 76,112,113 Mobp <0.0001 + + 76,111,114,115 Mog 0,00047 + + 111,116-119 Mov10 0,00015 + 74 Ndrg1 0,00045 + 73 Ndst3 0,00015 + 120-122 Npas4 <0.0001 + 123 Nr4a1 <0.0001 + 100,124 Pde10a <0.0001 + + 125,126 Pde7b <0.0001 + + 73,127,128 Peg3 0,00024 + 74 Penk <0.0001 + 129,130 Pkd1 0,00061 + 73 Plekhh1 <0.0001 + 74 Plp1 <0.0001 + + 111,131,132 Rasd2 <0.0001 + + + 133,134 Rtel1 0,00073 + 73 Tac1 0,00072 + 73 Th <0.0001 + 135-137 Thpo 0,0005 + 73 Trf <0.0001 + + 84,111,113,138- 140 Trh <0.0001 + 74,141 Tspan2 0,00014 + 73 Xaf1 <0.0001 + 73

References

71 Villar-Menendez, I. et al. Reduced striatal adenosine A2A receptor levels define a molecular subgroup in schizophrenia. J Psychiatr Res 51, 49-59, doi:10.1016/j.jpsychires.2013.12.013 (2014). 72 Jagannathan, K. et al. Genetic associations of brain structural networks in schizophrenia: a preliminary study. Biol Psychiatry 68, 657-666, doi:10.1016/j.biopsych.2010.06.002 (2010). 73 Maycox, P. R. et al. Analysis of gene expression in two large schizophrenia cohorts identifies multiple changes associated with nerve terminal function. Mol Psychiatry 14, 1083-1094, doi:10.1038/mp.2009.18 (2009). 74 Fromer, M. et al. De novo mutations in schizophrenia implicate synaptic networks. Nature 506, 179- 184, doi:10.1038/nature12929 (2014). 75 Dann, J. et al. A linkage study of schizophrenia to markers within Xp11 near the MAOB gene. Psychiatry Res 70, 131-143 (1997). 76 Ayalew, M. et al. Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction. Mol Psychiatry 17, 887-905, doi:10.1038/mp.2012.37 (2012). 77 Girard, S. L. et al. Increased exonic de novo mutation rate in individuals with schizophrenia. Nat Genet 43, 860-863, doi:10.1038/ng.886 (2011). 78 Giacopuzzi, E. et al. Exome sequencing in schizophrenic patients with high levels of homozygosity identifies novel and extremely rare mutations in the GABA/glutamatergic pathways. PLoS One 12, e0182778, doi:10.1371/journal.pone.0182778 (2017). 79 Manago, F. et al. Genetic Disruption of Arc/Arg3.1 in Mice Causes Alterations in Dopamine and Neurobehavioral Phenotypes Related to Schizophrenia. Cell Rep 16, 2116-2128, doi:10.1016/j.celrep.2016.07.044 (2016). 80 Huentelman, M. J. et al. Association of SNPs in EGR3 and ARC with Schizophrenia Supports a Biological Pathway for Schizophrenia Risk. PLoS One 10, e0135076, doi:10.1371/journal.pone.0135076 (2015). 81 Ng, M. Y. et al. Meta-analysis of 32 genome-wide linkage studies of schizophrenia. Mol Psychiatry 14, 774-785, doi:10.1038/mp.2008.135 (2009). 82 Wu, Y., Yao, Y. G. & Luo, X. J. SZDB: A Database for Schizophrenia Genetic Research. Schizophr Bull 43, 459-471, doi:10.1093/schbul/sbw102 (2017). 83 Deng, X. et al. Positive association of phencyclidine-responsive genes, PDE4A and PLAT, with schizophrenia. Am J Med Genet B Neuropsychiatr Genet 156B, 850-858, doi:10.1002/ajmg.b.31233 (2011). 84 Prabakaran, S. et al. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 9, 684-697, 643, doi:10.1038/sj.mp.4001511 (2004). 85 Liao, H. M. et al. Identification and characterization of three inherited genomic copy number variations associated with familial schizophrenia. Schizophr Res 139, 229-236, doi:10.1016/j.schres.2012.05.015 (2012). 86 Li, Z. et al. Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia. Nat Genet 49, 1576-1583, doi:10.1038/ng.3973 (2017). 87 Allen, N. C. et al. Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet 40, 827-834, doi:10.1038/ng.171 (2008). 88 Pan, Y., Yao, J. & Wang, B. Association of dopamine D1 receptor gene polymorphism with schizophrenia: a meta-analysis. Neuropsychiatr Dis Treat 10, 1133-1139, doi:10.2147/NDT.S63776 (2014). 89 Zhu, F. et al. An association study between dopamine D1 receptor gene polymorphisms and the risk of schizophrenia. Brain Res 1420, 106-113, doi:10.1016/j.brainres.2011.08.069 (2011). 90 Lee, K. Y. et al. Associations between DRDs and schizophrenia in a Korean population: multi-stage association analyses. Exp Mol Med 43, 44-52, doi:10.3858/emm.2011.43.1.005 (2011). 91 Abi-Dargham, A. et al. Increased prefrontal cortical D(1) receptors in drug naive patients with schizophrenia: a PET study with [(1)(1)C]NNC112. J Psychopharmacol 26, 794-805, doi:10.1177/0269881111409265 (2012). 92 Schizophrenia Working Group of the Psychiatric Genomics, C. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421-427, doi:10.1038/nature13595 (2014). 93 Sun, J., Kuo, P. H., Riley, B. P., Kendler, K. S. & Zhao, Z. Candidate genes for schizophrenia: a survey of association studies and gene ranking. Am J Med Genet B Neuropsychiatr Genet 147B, 1173-1181, doi:10.1002/ajmg.b.30743 (2008). 94 Lewis, C. M. et al. Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: Schizophrenia. Am J Hum Genet 73, 34-48, doi:10.1086/376549 (2003). 95 Pergola, G. et al. DRD2 co-expression network and a related polygenic index predict imaging, behavioral and clinical phenotypes linked to schizophrenia. Transl Psychiatry 7, e1006, doi:10.1038/tp.2016.253 (2017). 96 Vercammen, A. et al. Common polymorphisms in dopamine-related genes combine to produce a 'schizophrenia-like' prefrontal hypoactivity. Transl Psychiatry 4, e356, doi:10.1038/tp.2013.125 (2014). 97 Zhan, L. et al. Altered expression and coregulation of dopamine signalling genes in schizophrenia and bipolar disorder. Neuropathol Appl Neurobiol 37, 206-219, doi:10.1111/j.1365-2990.2010.01128.x (2011). 98 Li, Y. C., Kellendonk, C., Simpson, E. H., Kandel, E. R. & Gao, W. J. D2 receptor overexpression in the striatum leads to a deficit in inhibitory transmission and dopamine sensitivity in mouse prefrontal cortex. Proc Natl Acad Sci U S A 108, 12107-12112, doi:10.1073/pnas.1109718108 (2011). 99 Kellendonk, C. et al. Transient and selective overexpression of dopamine D2 receptors in the striatum causes persistent abnormalities in prefrontal cortex functioning. Neuron 49, 603-615, doi:10.1016/j.neuron.2006.01.023 (2006). 100 Corley, S. M., Tsai, S. Y., Wilkins, M. R. & Shannon Weickert, C. Transcriptomic Analysis Shows Decreased Cortical Expression of NR4A1, NR4A2 and RXRB in Schizophrenia and Provides Evidence for Nuclear Receptor Dysregulation. PLoS One 11, e0166944, doi:10.1371/journal.pone.0166944 (2016). 101 Boyajyan, A., Zakharyan, R., Atshemyan, S., Chavushyan, A. & Mkrtchyan, G. Schizophrenia-associated Risk and Protective Variants of c-Fos Encoding Gene. Recent Adv DNA Gene Seq 9, 51-57 (2015). 102 Del Zompo, M. et al. Association study in three different populations between the GPR88 gene and major psychoses. Mol Genet Genomic Med 2, 152-159, doi:10.1002/mgg3.54 (2014). 103 Logue, S. F. et al. The orphan GPCR, GPR88, modulates function of the striatal dopamine system: a possible therapeutic target for psychiatric disorders? Mol Cell Neurosci 42, 438-447, doi:10.1016/j.mcn.2009.09.007 (2009). 104 Shirts, B. H., Wood, J., Yolken, R. H. & Nimgaonkar, V. L. Comprehensive evaluation of positional candidates in the IL-18 pathway reveals suggestive associations with schizophrenia and herpes virus seropositivity. Am J Med Genet B Neuropsychiatr Genet 147, 343-350, doi:10.1002/ajmg.b.30603 (2008). 105 Sun, S. et al. A family-based study of the IL3RA gene on susceptibility to schizophrenia in a Chinese Han population. Brain Res 1268, 13-16, doi:10.1016/j.brainres.2009.02.071 (2009). 106 Sun, S. et al. Association between -3 receptor alpha polymorphism and schizophrenia in the Chinese population. Neurosci Lett 440, 35-37, doi:10.1016/j.neulet.2008.05.029 (2008). 107 Lencz, T. et al. Converging evidence for a pseudoautosomal receptor gene in schizophrenia. Mol Psychiatry 12, 572-580, doi:10.1038/sj.mp.4001983 (2007). 108 Yang, Y. F. et al. Possible association of the MAG locus with schizophrenia in a Chinese Han cohort of family trios. Schizophr Res 75, 11-19, doi:10.1016/j.schres.2004.11.013 (2005). 109 Wan, C. et al. Polymorphisms of myelin-associated glycoprotein gene are associated with schizophrenia in the Chinese Han population. Neurosci Lett 388, 126-131, doi:10.1016/j.neulet.2005.06.051 (2005). 110 Felsky, D. et al. Myelin-associated glycoprotein gene and brain morphometry in schizophrenia. Front Psychiatry 3, 40, doi:10.3389/fpsyt.2012.00040 (2012). 111 Tkachev, D. et al. Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 362, 798- 805, doi:10.1016/S0140-6736(03)14289-4 (2003). 112 Purcell, S. M. et al. A polygenic burden of rare disruptive mutations in schizophrenia. Nature 506, 185- 190, doi:10.1038/nature12975 (2014). 113 Martins-de-Souza, D. et al. Proteomic analysis of dorsolateral prefrontal cortex indicates the involvement of cytoskeleton, oligodendrocyte, energy metabolism and new potential markers in schizophrenia. J Psychiatr Res 43, 978-986, doi:10.1016/j.jpsychires.2008.11.006 (2009). 114 Hegyi, H. Connecting myelin-related and synaptic dysfunction in schizophrenia with SNP-rich gene expression hubs. Sci Rep 7, 45494, doi:10.1038/srep45494 (2017). 115 Richetto, J. et al. Genome-Wide Transcriptional Profiling and Structural Magnetic Resonance Imaging in the Maternal Immune Activation Model of Neurodevelopmental Disorders. Cereb Cortex 27, 3397- 3413, doi:10.1093/cercor/bhw320 (2017). 116 Cannon, D. M. et al. The association of white matter volume in psychotic disorders with genotypic variation in NRG1, MOG and CNP: a voxel-based analysis in affected individuals and their unaffected relatives. Transl Psychiatry 2, e167, doi:10.1038/tp.2012.82 (2012). 117 Barley, K., Dracheva, S. & Byne, W. Subcortical oligodendrocyte- and astrocyte-associated gene expression in subjects with schizophrenia, major depression and bipolar disorder. Schizophr Res 112, 54-64, doi:10.1016/j.schres.2009.04.019 (2009). 118 Sokolov, B. P. Oligodendroglial abnormalities in schizophrenia, mood disorders and substance abuse. Comorbidity, shared traits, or molecular phenocopies? Int J Neuropsychopharmacol 10, 547-555, doi:10.1017/S1461145706007322 (2007). 119 Liu, X. et al. A family-based association study of the MOG gene with schizophrenia in the Chinese population. Schizophr Res 73, 275-280, doi:10.1016/j.schres.2004.07.018 (2005). 120 Xiao, X., Luo, X. J., Chang, H., Liu, Z. & Li, M. Evaluation of European Schizophrenia GWAS Loci in Asian Populations via Comprehensive Meta-Analyses. Mol Neurobiol 54, 4071-4080, doi:10.1007/s12035- 016-9990-3 (2017). 121 Zhang, C. et al. A comprehensive analysis of NDST3 for schizophrenia and bipolar disorder in Han Chinese. Transl Psychiatry 6, e701, doi:10.1038/tp.2015.199 (2016). 122 Lencz, T. et al. Genome-wide association study implicates NDST3 in schizophrenia and bipolar disorder. Nat Commun 4, 2739, doi:10.1038/ncomms3739 (2013). 123 Alachkar, A. et al. Prenatal one-carbon metabolism dysregulation programs schizophrenia-like deficits. Mol Psychiatry 23, 282-294, doi:10.1038/mp.2017.164 (2018). 124 Xing, G., Zhang, L., Russell, S. & Post, R. Reduction of dopamine-related transcription factors Nurr1 and NGFI-B in the prefrontal cortex in schizophrenia and bipolar disorders. Schizophr Res 84, 36-56, doi:10.1016/j.schres.2005.11.006 (2006). 125 Tam, G. W. et al. Confirmed rare copy number variants implicate novel genes in schizophrenia. Biochem Soc Trans 38, 445-451, doi:10.1042/BST0380445 (2010). 126 Boden, R. et al. Striatal phosphodiesterase 10A and medial prefrontal cortical thickness in patients with schizophrenia: a PET and MRI study. Transl Psychiatry 7, e1050, doi:10.1038/tp.2017.11 (2017). 127 Ikeda, M. et al. Identification of novel candidate genes for treatment response to risperidone and susceptibility for schizophrenia: integrated analysis among pharmacogenomics, mouse expression, and genetic case-control association approaches. Biol Psychiatry 67, 263-269, doi:10.1016/j.biopsych.2009.08.030 (2010). 128 Ingason, A. et al. A large replication study and meta-analysis in European samples provides further support for association of AHI1 markers with schizophrenia. Hum Mol Genet 19, 1379-1386, doi:10.1093/hmg/ddq009 (2010). 129 Mikesell, M. J. et al. Gly(247)-->Asp proenkephalin A mutation is rare in schizophrenia populations. Am J Med Genet 74, 213-215 (1997). 130 Mikesell, M. J., Sobell, J. L., Sommer, S. S. & McMurray, C. T. Identification of a missense mutation and several polymorphisms in the proenkephalin A gene of schizophrenic patients. Am J Med Genet 67, 459-467, doi:10.1002/(SICI)1096-8628(19960920)67:5<459::AID-AJMG4>3.0.CO;2-F (1996). 131 Qin, W. et al. A family-based association study of PLP1 and schizophrenia. Neurosci Lett 375, 207-210, doi:10.1016/j.neulet.2004.11.013 (2005). 132 English, J. A., Dicker, P., Focking, M., Dunn, M. J. & Cotter, D. R. 2-D DIGE analysis implicates cytoskeletal abnormalities in psychiatric disease. Proteomics 9, 3368-3382, doi:10.1002/pmic.200900015 (2009). 133 Vitucci, D. et al. Rasd2 Modulates Prefronto-Striatal Phenotypes in Humans and 'Schizophrenia-Like Behaviors' in Mice. Neuropsychopharmacology 41, 916-927, doi:10.1038/npp.2015.228 (2016). 134 Liu, Y. L. et al. RASD2, MYH9, and CACNG2 genes at 22q12 associated with the subgroup of schizophrenia with non-deficit in sustained attention and executive function. Biol Psychiatry 64, 789- 796, doi:10.1016/j.biopsych.2008.04.035 (2008). 135 Srivastava, V., Deshpande, S. N. & Thelma, B. K. Dopaminergic pathway gene polymorphisms and genetic susceptibility to schizophrenia among north Indians. Neuropsychobiology 61, 64-70, doi:10.1159/000265131 (2010). 136 Kurumaji, A., Kuroda, T., Yamada, K., Yoshikawa, T. & Toru, M. An association of the polymorphic repeat of tetranucleotide (TCAT) in the first intron of the human tyrosine hydroxylase gene with schizophrenia in a Japanese sample. J Neural Transm (Vienna) 108, 489-495, doi:10.1007/s007020170069 (2001). 137 Meloni, R. et al. A rare allele of a microsatellite located in the tyrosine hydroxylase gene found in schizophrenic patients. C R Acad Sci III 318, 803-809 (1995). 138 Qu, M. et al. Polymorphisms of Transferrin gene are associated with schizophrenia in Chinese Han population. J Psychiatr Res 42, 877-883, doi:10.1016/j.jpsychires.2007.10.005 (2008). 139 McCullumsmith, R. E. et al. Expression of transcripts for myelination-related genes in the anterior cingulate cortex in schizophrenia. Schizophr Res 90, 15-27, doi:10.1016/j.schres.2006.11.017 (2007). 140 Pennington, K. et al. Prominent synaptic and metabolic abnormalities revealed by proteomic analysis of the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder. Mol Psychiatry 13, 1102-1117, doi:10.1038/sj.mp.4002098 (2008). 141 Caceda, R., Kinkead, B. & Nemeroff, C. B. Involvement of neuropeptide systems in schizophrenia: human studies. Int Rev Neurobiol 78, 327-376, doi:10.1016/S0074-7742(06)78011-4 (2007).