Proteorhodopsin Photosystem Gene Expression Enables Photophosphorylation in a Heterologous Host

Total Page:16

File Type:pdf, Size:1020Kb

Proteorhodopsin Photosystem Gene Expression Enables Photophosphorylation in a Heterologous Host Proteorhodopsin photosystem gene expression enables photophosphorylation in a heterologous host A. Martinez*, A. S. Bradley†, J. R. Waldbauer‡, R. E. Summons†, and E. F. DeLong*§ *Department of Civil and Environmental Engineering, Division of Biological Engineering, and †Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; and ‡Joint Program in Chemical Oceanography, Woods Hole Oceanographic Institution and Massachusetts Institute of Technology, Cambridge, MA 02139 Edited by W. Ford Doolittle, Dalhousie University, Halifax, NS, Canada, and approved February 9, 2007 (received for review December 22, 2006) Proteorhodopsins (PRs) are retinal-containing proteins that cata- To further characterize PR photosystem structure and func- lyze light-activated proton efflux across the cell membrane. These tion, we directly screened large-insert DNA libraries derived photoproteins are known to be globally distributed in the ocean’s from marine picoplankton for visibly detectable PR-expressing photic zone, and they are found in a diverse array of Bacteria and phenotypes. In this report, we describe completely intact PR- Archaea. Recently, light-enhanced growth rates and yields have based photosystems that can be functionally expressed in E. coli, been reported in at least one PR-containing marine bacterium, but without addition of exogenous photopigment (e.g., retinal or its the physiological basis of light-activated growth stimulation has precursors). Analyses of insertional mutants verified the func- not yet been determined. To describe more fully PR photosystem tional annotation of each gene product in the photosystem genetics and biochemistry, we functionally surveyed a marine biosynthetic pathway. We also show that light-activated, PR- picoplankton large-insert genomic library for recombinant clones catalyzed proton translocation, by the chemiosmotic potential it expressing PR photosystems in vivo. Our screening approach ex- generates, activates photophosphorylation in E. coli. ploited transient increases in vector copy number that significantly Results enhanced the sensitivity of phenotypic detection. Two genetically distinct recombinants, initially identified by their orange pigmen- Screening a Fosmid Library for in Vivo PR Photosystem Expression. tation, expressed a small cluster of genes encoding a complete When E. coli expresses a PR apoprotein from an inducible PR-based photosystem. Genetic and biochemical analyses of trans- promoter on a high-copy number plasmid, the cells acquire a red or orange pigmentation in the presence of exogenous all-trans poson mutants verified the function of gene products in the retinal (1, 12). Retinal addition is required because E. coli lacks photopigment and opsin biosynthetic pathways. Heterologous the ability to biosynthesize retinal or its precursor, ␤-carotene. expression of six genes, five encoding photopigment biosynthetic Based on these observations, we screened for PR-containing proteins and one encoding a PR, generated a fully functional PR clones on retinal-containing LB agar plating medium, which we photosystem that enabled photophosphorylation in recombinant expected would display an orange to red phenotype under these Escherichia coli cells exposed to light. Our results demonstrate that conditions. To enhance assay sensitivity, we used the copy- a single genetic event can result in the acquisition of phototrophic control system present in our fosmid vector that allowed a capabilities in an otherwise chemoorganotrophic microorganism, controlled transition from one copy per cell to multiple (up to and they explain in part the ubiquity of PR photosystems among 100) vector copies upon addition of the inducer L-arabinose (13). diverse microbial taxa. A fosmid library prepared from ocean surface water pico- plankton containing 12,280 clones (Ϸ440 Mb of cloned DNA) photoheterotrophy ͉ rhodopsin ͉ lateral gene transfer ͉ marine ͉ (14) was screened by using the above approach. Three orange metagenomics colonies were identified as potential PR-expressing clones on the LB-retinal-L-arabinose agar plates. All three showed no pigmen- roteorhodopsins (PRs) are retinal-binding membrane pro- tation in the absence of the high-copy number inducer. Unex- Pteins belonging to the rhodopsin family. Prokaryotic mem- pectedly, these clones also displayed an orange phenotype in the bers of this family include photosensors (sensory rhodopsins), absence of L-retinal when induced to high copy number. The transmembrane proton pumps (bacteriorhodopsins, xanthoro- sequence of one clone, HF10࿝19P19, revealed the presence of a hodopsin, and PRs), and transmembrane chloride pumps (halor- PR gene near the fosmid vector junction (see below). Because hodopsins). Originally discovered in Archaea, rhodopsins were the clones exhibited orange pigmentation in the absence of later identified in Gammaproteobacteria of the SAR86 group exogenous retinal, we expected that they must also be expressing ࿝ during a cultivation-independent genomic survey. Dubbed pro- retinal biosynthetic genes. Two clones, HF10 25F10 and teorhodopsin, this photoprotein functions as a light-activated proton pump when expressed in Escherichia coli in the presence Author contributions: A.M. and E.F.D. designed research; A.M., A.S.B., and J.R.W. per- of exogenously added retinal (1). Since then, numerous molec- formed research; A.M., A.S.B., J.R.W., R.E.S., and E.F.D. analyzed data; and A.M. and E.F.D. ular surveys have demonstrated that PR genes are ubiquitous in wrote the paper. bacteria inhabiting the ocean’s photic zone (2–9). An estimated The authors declare no conflict of interest. 13% of bacteria in marine picoplankton populations, as well as This article is a PNAS Direct Submission. a significant fraction of planktonic Euryarchaeota, contain a PR Abbreviations: CCCP, carbonylcyanide m-chlorophenylhydrazone; DCCD, N,NЈ-dicyclo- gene (4, 8). In a number of marine bacteria, retinal biosynthetic hexylcarbodiimide; FPP, farnesyl diphosphate; GGPP, geranylgeranyl pyrophosphate; IPP, genes and PR are genetically linked, and their lateral transfer isopentenyl diphosphate; PR, proteorhodopsin. and retention appear to be relatively common events, indicating Data deposition: The sequences reported in this paper have been deposited in the GenBank database [accession nos. EF100190 (HF10࿝19P19) and EF100191 (HF10࿝25F10)]. that the photosystem confers a significant fitness advantage (3, §To whom correspondence should be addressed at: Department of Civil and Environmental 4, 7, 10, 11). A recent report of light-stimulated growth in a Engineering, 48-427, Massachusetts Institute of Technology, 15 Vassar Street, Cambridge, PR-containing marine flavobacterium supports this hypothesis MA 02139. E-mail: [email protected]. (11). Despite all of these observations however, the various This article contains supporting information online at www.pnas.org/cgi/content/full/ specific functions and physiological roles of diverse marine 0611470104/DC1. microbial PRs remain to be fully described. © 2007 by The National Academy of Sciences of the USA 5590–5595 ͉ PNAS ͉ March 27, 2007 ͉ vol. 104 ͉ no. 13 www.pnas.org͞cgi͞doi͞10.1073͞pnas.0611470104 Downloaded by guest on September 30, 2021 A idi blh crtY crtB crtI crtE PR HF10_19P19 HF10_25F10 B HF10_19P19 idi blh crtY crtB crtI crtE PR C D IPP δ-isomerase (idi) IPP CH 2 O P P CH O P P DMAPP 2 Lycopene FPP synthase IPP CrtY - IPP nm λ=473nm 200 250 300 350 400 450 500 550 600 650 700 750 800 (ispA) λ (nm) Lycopene CH O P P - 2 FPP polyisoprenoids CrtY ubiquinones HF10_19P19 GGPP synthase IPP CrtI - Blh - crtE 25.00 30.00 35.00 40.00 45.00 50.00 Rt (min) CH 2 O P P GGPP Phytoene synthase GGPP crtB β-carotene Blh- n 200 250 300 350 400 450 500 550 600 650 700 750 800 Phytoene λ =454nm λ (nm) β-carotene Blh- Phytoene dehydrogenase HF10_19P19 crtI CrtY- CrtI- 20.00 25.00 30.00 35.00 40.00 45.00 Lycopene Rt (min) 1 9 .2 MICROBIOLOGY Lycopene cyclase crtY Retinal β-Carotene HF10_19P19 n λ=386nm 200 250 300 350 400 450 500 550 600 650 700 750 800 λ (nm) O Retinal 2 15,15’-β-carotene dioxygenase HF10_19P19 blh CrtY- CrtI- Blh- COH Retinal 10.0 0000 115.005 00 220.00 000 2525.0000 3030.00 00 3535.00 tR ( m )ni Fig. 1. Genetic and phenotypic analysis of PR photosystem transposon mutants. (A) Schematic representation of the PR gene clusters identified in this work. Predicted transcription terminators in the clusters are indicated. (B) Color phenotype of intact cells of transposon-insertion mutants grown in liquid cultures with arabinose. (C) Retinal biosynthesis pathway. Names of genes encoding pathway enzymes are indicated. The genes that are present in E. coli are in parentheses. (D) HPLC profiles of wild-type and transposon mutant extracts. Detection wavelengths are indicated. Absorption spectrum of relevant peaks, including standards used for identification, are shown on the top for each panel. HF10࿝19P19, were analyzed further for PR photosystem gene PR-containing BAC clones from Alphaproteobacteria from the expression and function. Mediterranean and Red Seas (8). This similarity was evident across the entire cloned insert, although some large-scale rear- Genomic Analyses of Candidate PR Photosystem-Expressing Clones. rangements were apparent. The HF10࿝19P19 PR-inferred pro- The full DNA sequence of the two putative PR photosystem- tein sequence was most similar to a homologue from another containing fosmids was obtained by sequencing a collection of environmental BAC, MedeBAC66A03
Recommended publications
  • POSTER LIST (Alphabetical by Author)
    POSTER LIST (alphabetical by author) First author Poster Title Session or General Archibald, Kevin Modeling the impact of zooplankton diel vertical migration on General the carbon export flux of the biological pump Arroyo, Mar CO2 System Dynamics in the Dalton Polynya, East Antarctica Polar Bif, Mariana Using cruises and Bio-Argo floats data to estimate dissolved Time-series organic carbon in the Northeast Pacific Ocean Bochdansky, Net carbon remineralization (defined here as CO2 release) of Microzooplankton Alexander stable isotope-labeled phytoplankton measured in the mesopelagic environment with a newly designed deep-sea incubator Bociu, Ioana Initial DECK analysis of the carbon cycle in GFDL's CM4 Time-series contribution to CMIP6 Boyd, Philip A web- based Best Practice Guide to design marine multiple General driver experiments Buchanan, Marine nitrogen fixers crucial for dust-driven strengthening of Phytoplankton/models Pearse the biological carbon pump Busecke, Julius How important are forced changes in the equatorial current General system for the extent of tropical oxygen minimum zones? Cael, B.B. A metabolic model of biogeochemistry Phytoplankton/models Campbell, Mesozooplankton are not herbivores: The importance of Microzooplankton Robert microzooplankton in mesozooplankton diets and in arctic and *C. Ashjian, sub-arctic trophic linkages presenting Chappell, P. Both dissolved iron and coastal water additions to Southern Polar Dreux Drake Passage waters stimulate similar growth responses and shifts in diatom community composition.
    [Show full text]
  • Ecosystem Structure and Dynamics in the North Pacific Subtropical Gyre
    Ecosystems DOI: 10.1007/s10021-017-0117-0 Ó 2017 The Author(s). This article is published with open access at Springerlink.com 20th Anniversary Paper Ecosystem Structure and Dynamics in the North Pacific Subtropical Gyre: New Views of an Old Ocean David M. Karl1,2* and Matthew J. Church1,2,3 1Center for Microbial Oceanography: Research and Education, C-MORE Hale, University of Hawaii at Manoa, 1950 East-West Rd., Honolulu, Hawaii 96822, USA; 2School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA; 3Present address: Flathead Lake Biological Station, University of Montana, Polson, MT 59860, USA ABSTRACT The North Pacific Subtropical Gyre (NPSG) is one of community with a relatively stable plankton com- the largest biomes on Earth. It has a semi-enclosed munity structure and relatively low variability in key surface area of about 2 9 107 km2 and mean depth of microbiological rates and processes. Now, after nearly nearly 5 km and includes a broad range of habitats three decades of observations and experimentation from warm, light-saturated, nutrient-starved surface we present a new view of this old ocean, one that waters to the cold, nutrient-rich abyss. Microorgan- highlights temporal variability in ecosystem pro- isms are found throughout the water column and are cesses across a broad range of scales from diel to vertically stratified by their genetically determined decadal and beyond. Our revised paradigm is built on metabolic capabilities that establish physiological the strength of high-quality time-series observations, tolerances to temperature, light, pressure, as well as on insights from the application of state-of-the-art organic and inorganic growth substrates.
    [Show full text]
  • Proteorhodopsin Phototrophy in the Ocean
    letters to nature 17. Schatz, J. F. & Simmons, G. Thermal conductivity of Earth materials at high temperatures. J. Geophys. an H+-ATPase4. Similar rhodopsin-mediated, light-driven proton Res. 77, 6966±6983 (1972). pumping, formerly thought to exist only in halophilic archaea, has 18. Holt, J. B. Thermal diffusivity of olivine. Earth Planet. Sci. Lett. 27, 404±408 (1975). 1 19. Seipold, U. Temperature dependence of thermal transport properties of crystalline rocks±general law. been discovered in an uncultivated marine bacterium of the Tectonophysics 291, 161±171 (1998). `SAR86' phylogenetic group5. This ®nding suggested that a pre- 20. Hofmeister, A. M. Mantle values of thermal conductivity and the geotherm from phonon lifetimes. viously unrecognized phototrophic pathway may occur in the Science 283, 1699±1706 (1999). 21. Klemens, P. G. Thermal conductivity and lattice vibrational modes. Solid State Phys. 7, 1±98 (1958). ocean's photic zone; however, all earlier data are based solely on 22. Bouhifd, M. A., Andrault, D., Fiquet, G. & Richet, P.Thermal expansion of forsterite up to the melting recombinant DNA and in vitro biochemical analyses, and this point. Geophys. Res. Lett. 23, 134±1136 (1996). phenomenon has not yet been observed in the sea. 23. Vauchez, A., Barruol, G. & Tommasi,A. Why do continents break up parallel to ancient orogenic belts? To test whether rhodopsin-like molecules form photoactive Terra Nova 9, 62±66 (1997). 24. Tommasi, A. & Vauchez, A. Continental rifting parallel to ancient collisional belts: An effect of the proteins in native marine bacteria, we analysed membrane prepara- mechanical anisotropy of the lithospheric mantle.
    [Show full text]
  • Proteorhodopsin Variability and Distribution in the North Pacific
    The ISME Journal (2018) 12:1047–1060 https://doi.org/10.1038/s41396-018-0074-4 ARTICLE Proteorhodopsin variability and distribution in the North Pacific Subtropical Gyre 1 2 1 2,3 1 Daniel K. Olson ● Susumu Yoshizawa ● Dominique Boeuf ● Wataru Iwasaki ● Edward F. DeLong Received: 30 August 2017 / Revised: 21 November 2017 / Accepted: 5 December 2017 / Published online: 23 February 2018 © The Author(s) 2018. This article is published with open access Abstract Proteorhodopsin is a light-activated retinal-containing proton pump found in many marine bacteria. These photoproteins are globally distributed in the ocean’s photic zone and are capable of generating a proton motive force across the cell membrane. We investigated the phylogenetic diversity, distribution, and abundance of proteorhodopsin encoding genes in free-living bacterioplankton in the North Pacific Subtropical Gyre, leveraging a gene catalog derived from metagenomic samples from the ocean’s surface to 1000 m depth. Proteorhodopsin genes were identified at all depths sampled, but were most abundant at depths shallower than 200 m. The majority of proteorhodopsin gene sequences (60.9%) belonged to members of the SAR11 lineage, with remaining sequences distributed among other diverse taxa. We observed variations in the conserved residues fi 1234567890();,: involved in ion pumping and spectral tuning, and biochemically con rmed four different proton pumping proteorhodopsin motifs, including one unique to deep-water SAR11. We also identified a new group of putative proteorhodopsins having unknown function. Our results reveal a broad organismal and unexpected depth distribution for different proteorhodopsin types, as well as substantial within-taxon variability. These data provide a framework for exploring the ecological relevance of proteorhodopsins and their spatiotemporal variation and function in heterotrophic bacteria in the open ocean.
    [Show full text]
  • Seasonality of Archaeal Proteorhodopsin and Associated Marine Group Iib Ecotypes (Ca
    The ISME Journal (2021) 15:1302–1316 https://doi.org/10.1038/s41396-020-00851-4 ARTICLE Seasonality of archaeal proteorhodopsin and associated Marine Group IIb ecotypes (Ca. Poseidoniales) in the North Western Mediterranean Sea 1,5 1 2 3 4 Olivier Pereira ● Corentin Hochart ● Dominique Boeuf ● Jean Christophe Auguet ● Didier Debroas ● Pierre E. Galand 1 Received: 23 July 2020 / Revised: 9 November 2020 / Accepted: 18 November 2020 / Published online: 7 December 2020 © The Author(s), under exclusive licence to International Society for Microbial Ecology 2020 Abstract The Archaea Marine Group II (MGII) is widespread in the world’s ocean where it plays an important role in the carbon cycle. Despite recent discoveries on the group’s metabolisms, the ecology of this newly proposed order (Candidatus Poseidoniales) remains poorly understood. Here we used a combination of time-series metagenome-assembled genomes (MAGs) and high-frequency 16S rRNA data from the NW Mediterranean Sea to test if the taxonomic diversity within the MGIIb family (Candidatus Thalassarchaeaceae) reflects the presence of different ecotypes. The MAGs’ seasonality revealed 1234567890();,: 1234567890();,: a MGIIb family composed of different subclades that have distinct lifestyles and physiologies. The vitamin metabolisms were notably different between ecotypes with, in some, a possible link to sunlight’s energy. Diverse archaeal proteorhodopsin variants, with unusual signature in key amino acid residues, had distinct seasonal patterns corresponding to changing day length. In addition, we show that in summer, archaea, as opposed to bacteria, disappeared completely from surface waters. Our results shed light on the diversity and the distribution of the euryarchaeotal proteorhodopsin, and highlight that MGIIb is a diverse ecological group.
    [Show full text]
  • Diel Vertical Migration in Marine Dinoflagellates Jephson, Therese
    Diel vertical migration in marine dinoflagellates Jephson, Therese 2012 Link to publication Citation for published version (APA): Jephson, T. (2012). Diel vertical migration in marine dinoflagellates. Department of Biology, Lund University. Total number of authors: 1 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 Diel vertical migration in marine dinoflagellates Therese Jephson AKADEMISK AVHANDLING som för avläggande av filosofie doktorsexamen vid naturvetenskapliga fakulteten, Lunds universitet kommer att offentligen försvaras i Blå Hallen, Ekologihuset, Sölvegatan 37, Lund, torsdagen den 15 november 2012 kl 9:30 Fakultetens opponent: Associate Professor Tammi L. Richardson, Dept. of Marine Science Program and Biological Sciences University of South Carolina, USA Avhandlingen kommer att försvaras på engelska Dissertation Lund 2012 List of papers This thesis is based on the following papers, referred to in the text by their roman numerals: I.
    [Show full text]
  • Early Evolution of Purple Retinal Pigments on Earth and Implications
    International Journal of Early evolution of purple retinal pigments on Astrobiology Earth and implications for exoplanet cambridge.org/ija biosignatures Shiladitya DasSarma1 and Edward W. Schwieterman2,3,4,5 Review 1Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, MD, USA; 2Department of Earth Sciences, University of California, Riverside, Cite this article: DasSarma S, Schwieterman CA, USA; 3NASA Postdoctoral Program Fellow, Universities Space Research Association, Columbia, MD, USA; EW (2018). Early evolution of purple retinal 4NASA Astrobiology Institute’s Alternative Earths and Virtual Planetary Laboratory Teams and 5Blue Marble Space pigments on Earth and implications for Institute of Science, Seattle, WA, USA exoplanet biosignatures. International Journal of Astrobiology 1–10. https://doi.org/10.1017/ S1473550418000423 Abstract Received: 20 June 2018 We propose that retinal-based phototrophy arose early in the evolution of life on Earth, pro- Revised: 4 September 2018 foundly impacting the development of photosynthesis and creating implications for the search Accepted: 10 September 2018 for life beyond our planet. While the early evolutionary history of phototrophy is largely in the realm of the unknown, the onset of oxygenic photosynthesis in primitive cyanobacteria sig- Key words: ’ ∼ Bacteriorhodopsin; biosignatures; carotenoids; nificantly altered the Earth s atmosphere by contributing to the rise of oxygen 2.3 billion chemiosmotic
    [Show full text]
  • Light-Stimulated Growth of Proteorhodopsin-Bearing Sea-Ice Psychrophile Psychroflexus Torquis Is Salinity Dependent
    The ISME Journal (2013) 7, 2206–2213 & 2013 International Society for Microbial Ecology All rights reserved 1751-7362/13 OPEN www.nature.com/ismej ORIGINAL ARTICLE Light-stimulated growth of proteorhodopsin-bearing sea-ice psychrophile Psychroflexus torquis is salinity dependent Shi Feng1, Shane M Powell1, Richard Wilson2 and John P Bowman1 1Food Safety Centre, School of Agriculture Science, Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia and 2Central Science Laboratory, University of Tasmania, Hobart, Tasmania, Australia Proteorhodopsins (PRs) are commonly found in marine prokaryotes and allow microbes to use light as an energy source. In recent studies, it was reported that PR stimulates growth and survival under nutrient-limited conditions. In this study, we tested the effect of nutrient and salinity stress on the extremely psychrophilic sea-ice bacterial species Psychroflexus torquis, which possesses PR. We demonstrated for the first time that light-stimulated growth occurs under conditions of salinity stress rather than nutrient limitation and that elevated salinity is related to increased growth yields, PR levels and associated proton-pumping activity. PR abundance in P. torquis also is post- transcriptionally regulated by both light and salinity and thus could represent an adaptation to its sea-ice habitat. Our findings extend the existing paradigm that light provides an energy source for marine prokaryotes under stress conditions other than nutrient limitation. The ISME Journal (2013) 7, 2206–2213; doi:10.1038/ismej.2013.97; published online 20 June 2013 Subject Category: Microbial ecology and functional diversity of natural habitats Keywords: post-transcriptional regulation; proteomics; proteorhodopsin; salinity stress; sea-ice Introduction then exhibited increased proton pumping (Be´ja` et al., 2000).
    [Show full text]
  • Diel, Daily, and Spatial Variation of Coral Reef Seawater Microbial Communities
    Diel, daily, and spatial variation of coral reef seawater microbial communities The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Weber, Laura, and Amy ApprillI, "Diel, daily, and spatial variation of coral reef seawater microbial communities." PloS one 15, 3 (March 2020): no.: e0229442 doi 10.1371/journal.pone.0229442 ©2020 Author(s) As Published 10.1371/journal.pone.0229442 Publisher PLOS Version Final published version Citable link https://hdl.handle.net/1721.1/124753 Terms of Use Creative Commons Attribution 4.0 International license Detailed Terms https://creativecommons.org/licenses/by/4.0/ RESEARCH ARTICLE Diel, daily, and spatial variation of coral reef seawater microbial communities 1,2 1 Laura WeberID , Amy ApprillID * 1 Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America, 2 MIT-WHOI Joint PhD Program in Biological Oceanography, Woods Hole, MA, United States of America * [email protected] a1111111111 a1111111111 a1111111111 Abstract a1111111111 a1111111111 Reef organisms influence microorganisms within the surrounding seawater, yet the spatial and temporal dynamics of seawater microbial communities located in proximity to corals are rarely investigated. To better understand reef seawater microbial community dynamics over time and space, we collected small-volume seawater samples during the day and night over a 72 hour period from three locations that differed in spatial distance from 5 Porites OPEN ACCESS astreoides coral colonies on a shallow reef in St. John, U.S. Virgin Islands: near-coral (sam- Citation: Weber L, Apprill A (2020) Diel, daily, and pled 5 cm horizontally from each colony), reef-depth (sampled 2 m above each colony) and spatial variation of coral reef seawater microbial communities.
    [Show full text]
  • A Versatile Class of Microbial Rhodopsins
    J. Microbiol. Biotechnol. 2020. 30(5): 633–641 https://doi.org/10.4014/jmb.1912.12010 Review Omega Rhodopsins: A Versatile Class of Microbial Rhodopsins Soon-Kyeong Kwon1*, Sung-Hoon Jun2, and Jihyun F. Kim3* 1Division of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea 2Electron Microscopy Research Center, Korea Basic Science Institute, Cheongju 28119, Republic of Korea 3Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea Microbial rhodopsins are a superfamily of photoactive membrane proteins with the covalently bound retinal cofactor. Isomerization of the retinal chromophore upon absorption of a photon triggers conformational changes of the protein to function as ion pumps or sensors. After the discovery of proteorhodopsin in an uncultivated γ-proteobacterium, light-activated proton pumps have been widely detected among marine bacteria and, together with chlorophyll-based photosynthesis, are considered as an important axis responsible for primary production in the biosphere. Rhodopsins and related proteins show a high level of phylogenetic diversity; we focus on a specific class of bacterial rhodopsins containing the ‘3 omega motif.’ This motif forms a stack of three non-consecutive aromatic amino acids that correlates with the B–C loop orientation and is shared among the phylogenetically close ion pumps such as the NDQ motif-containing sodium- pumping rhodopsin, the NTQ motif-containing chloride-pumping
    [Show full text]
  • Spectroscopic and Photochemical Analysis of Proteorhodopsin Variants from the Surface of the Arctic Ocean
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS Letters 582 (2008) 1679–1684 Spectroscopic and photochemical analysis of proteorhodopsin variants from the surface of the Arctic Ocean Jae Yong Junga,1, Ah Reum Choia,1, Yoo Kyung Leeb, Hong Kum Leeb, Kwang-Hwan Junga,* a Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Shinsu-Dong 1, Mapo-Gu, Seoul 121-742, Republic of Korea b Polar BioCenter, Korea Polar Research Institute, KORDI, Songdo Techno Park, Songdo-dong 7-50, Yeonsu-gu, Incheon 406-840, Republic of Korea Received 18 January 2008; revised 14 April 2008; accepted 15 April 2008 Available online 22 April 2008 Edited by Peter Brzezinski The absorption maxima of PR variants depend on the places Abstract Proteorhodopsin (PR), a retinal-containing seven transmembrane helix protein, functions as a light-driven proton and depth of the ocean where their hosts reside [3,5]. PR vari- pump. Using PCR, we isolated 18 PR variants originating from ants from the surface or from the deep ocean of the same place the surface of the Arctic Ocean. Their absorption maxima were (e.g., Hawaiian Pacific Ocean) have different absorption max- between 517 and 546 nm at pH 7. One of the isolates turned out ima being spectrally tuned to usable light in their environment to be identical to GPR (green light-absorbing proteorhodopsin) [3]. PR from Monterey Bay and HOT_0m have green absorp- from Monterey Bay. Interestingly, 10 isolates had replaced a tion maxima (525 nm), whereas PRs from the Antarctic Ocean tyrosine in the retinal-binding site (Tyr200 in GPR) with Asn.
    [Show full text]
  • The Origin of Phototrophy Reveals the Importance of Pri
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 December 2020 1 The Origin of Phototrophy Reveals the Importance of Pri- 2 ority Effects for Evolutionary Innovation 1 1 3 Anthony Burnetti ,William C. Ratcliff 1 4 Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA, USA. 5 The history of life on Earth has been shaped by a series of major evolutionary innovations. 6 While some of these innovations occur repeatedly, some of the most important evolutionary 7 innovations (e.g., the origin of life itself, eukaryotes, or the genetic code) are evolutionary 8 singularities, arising just once in the history of life. This historical fact has often been in- 9 terpreted to mean that singularities are particularly difficult, low-probability evolutionary 10 events, thus making the long-term course of life on Earth highly contingent on their chance 11 appearances. Alternatively, singularities may arise from evolutionary priority effects, where 12 first-movers suppress subsequent independent origins. Here, we disentangle these hypothe- 13 ses by examining a distinctive innovation: phototrophy. The ability to use light to generate 14 metabolic energy evolved twice, preserving information about the origins of rare, transfor- 15 mative innovations that is lost when examining singular innovations. We show that the two 16 forms of phototrophy occupy opposite ends of several key trade-offs: efficiency of light cap- 17 ture vs. return on investment in protein infrastructure, dependence on limiting nutrients vs. 18 metabolic versatility, and complexity vs. simplicity. Our results suggest that the ‘dual singu- 19 larity’ of phototrophy exists due to evolutionary interactions between nascent phototrophs, 20 with phototrophic niche space too large for a first mover to fill all niches and fully suppress fu- 1 © 2020 by the author(s).
    [Show full text]