7 2. LANDASAN TEORI 2.1 Data Modeling Data Modeling Adalah

Total Page:16

File Type:pdf, Size:1020Kb

7 2. LANDASAN TEORI 2.1 Data Modeling Data Modeling Adalah 2. LANDASAN TEORI 2.1 Data Modeling Data modeling adalah sebuah metode yang digunakan untuk mendefinisikan dan menganalisa data requirements yang diperlukan untuk membantu proses bisinis dari sebuah perusahaan. Data requirements ini tersimpan dalam conceptual model yang diimplementasikan dalam bentuk logical data model. Data modeling tidak hanya mendefinisikan data elements, tapi juga mendefinisikan struktur dan relationship di antaranya. Data modeling merupakan cara yang paling tepat untuk menggambarkan kebutuhan dari sebuah sistem informasi (Simsion & Witt, 2005). Data modeling digunakan untuk memodelkan data dengan tujuan untuk mendapatkan data yang konsisten sehingga data tersebut dapat digunakan sebagai aset bagi perusahaan. Data yang ada dalam database suatu perusahaan merupakan salah satu aset yang penting bagi perusahaan. Data yang tidak akurat akan mengurangi nilai dari aset perusahaan serta membutuhkan biaya yang sangat besar untuk memperbaikinya. Selain itu data modeling juga digunakan untuk mendesain database dan mengintegrasikan sistem informasi yang ada dalam perusahaan. 2.1.1 Conceptual, Logical dan Physical Schema Data model yang dihasilkan selama proses mengolah business requirements menjadi database specification yang lengkap dapat dilihat pada Gambar 2.1. 7 Universitas Kristen Petra Gambar 2.1 Proses dan Hasil Desain Database Sumber : Simision & Witt (2005, p.30) Data model yang dihasilkan berupa : a) Conceptual schema • Mendeskripsikan mengenai struktur data dilihat dari sudut pandang area perusahaan, direpresentasikan dalam bentuk entity serta relationship di antaranya. b) Logical schema • Mendeskripsikan mengenai bagaimana data disimpan, hal ini berhubungan dengan penentuan struktur dari tabel dan kolom. c) Physical schema • Mendeskripsikan mengenai penyimpanan data secara fisik. Hal ini berhubungan dengan bagaimana data disimpan dalam CPU, partisi dan lain sebagainya. 2.1.2 Data Modeling Process Seperti terlihat pada Gambar 2.2 bahwa proses data modeling akan menghasilkan database (database generation), dimana hal ini melengkapi 8 Universitas Kristen Petra business process modeling yang menghasilkan aplikasi untuk mendukung proses bisnis suatu perusahaan. Gambar 2.2. Data Modeling dalam Konteks Business Process Integration Sumber : Smith & Sarfaty (1993, p.9) Proses desain database sebenarnya merupakan proses untuk menghasilkan data model yang lebih detil dari sebuah database. Logical model berisi tentang semua logical design yang diperlukan untuk membuat desain data definition language (DDL) yang digunakan untuk membuat sebuah database. 2.1.3 Metode dalam Data Modeling Ada 2 metode yang digunakan dalam membuat data model yaitu: a) Bottom up • Bottom up merupakan metode yang digunakan untuk memodelkan data dari struktur data yang sudah ada. • Metode ini merupakan hasil dari proses database reverse engineering. b) Top down • Top down merupakan metode yang digunakan untuk memodelkan data dari informasi - informasi mengenai data tersebut. • Metode ini adalah hasil dari proses database forward engineering. 9 Universitas Kristen Petra 2.2 Entity Relational Diagram Entity Relational Diagram merupakan diagram yang menggambarkan ER model (Elmasri & Navathe, 2007). ER model biasanya digunakan untuk merancang conceptual design dari sebuah aplikasi database. ER model mendeskripsikan data sebagai entity, relationship dan atrributes. 2.2.1 Entity Sebuah entitiy merupakan sebuah objek dalam dunia nyata dengan eksistensi yang bersifat independen. Entity dapat berupa objek dengan physical existence, seperti orang, mobil, rumah atau pegawai. Selain itu entity juga dapat berupa objek dengan conceptual existence, seperti sebuah perusahaan, pekerjaan atau mata kuliah (Elmasri & Navathe, 2007). 2.2.2 Attributes Tiap entity mempunyai beberapa attributes. Attributes merupakan properties yang mendeskripsikan mengenai entity itu sendiri. Tiap attributes yang ada akan memiliki sebuah nilai. Contoh : Entity : pegawai Attributes : nama, alamat, umur. Misal entity pegawai adalah e1. nama : Alibaba e1 alamat : siwalankerto 5 umur : 44 Attributes terbagi dalam : a) Composite Attributes dan Simple Attributes Composite Attributes merupakan atribut yang dapat dipecah lagi menjadi bagian yang lebih kecil lagi. Sedangkan Simple Attributes sudah tidak dapat dipecah lagi menjadi bagian yang lebih kecil. Contoh composite attributes adalah nama, atribut nama dapat dipecah lagi menjadi nama depan dan nama belakang. Contoh simple attributes adalah jenis kelamin, atribut ini tidak dapat dipecah lagi menjadi bagian yang lebih kecil. 10 Universitas Kristen Petra b) Single-valued Attributes dan Multivalued Attributes Kebanyakan atribut yang ada merupakan single-valued attributes, artinya adalah tiap atribut hanya mempunyai 1 nilai saja. Tapi ada beberapa atribut yang merupakan multivalued attributes, yaitu dalam 1 atribut punya nilai lebih dari 1. Misal entity mobil punya atribut merek dan warna. Merek merupakan single-valued attributes, karena pada 1 mobil tentunya hanya punya 1 merek. Warna merupakan multivalued attributes karena pada 1 mobil dapat terdiri dari lebih dari 1 warna. c) Stored Attributes dan Derived Attributes Dalam beberapa hal, 2 atribut dapat saja saling berhubungan. Contoh atribut usia dan tanggal lahir. Atribut usia merupakan derived attributes karena usia dapat dihitung dari tanggal lahir seseorang. Sedangkan atribut tanggal lahir merupakan stored attributes. Sebuah atribut dapat juga mempunyai NULL values atau tidak mempunyai nilai. Contoh atribut gelar, seseorang dapat saja tidak mempunyai gelar. 2.2.3 Key Key merupakan atribut unik yang melekat pada suatu entity. Atribut ini selalu mempunyai nilai yang berbeda pada tiap individual entity dalam entity set (Elmasri & Navathe, 2007). Contoh dalam entity orang, maka keynya adalah nomor KTP. 2.2.4 Relationship Relationship merupakan hubungan antara beberapa entity. Dalam tiap relationship terdapat cardinality dan participation yang menjelaskan mengenai jenis relationship tersebut. 2.2.4.1 Cardinality Cardinality merupakan constaint yang menunjukkan jumlah maksimum entity yang boleh ada dalam relationship (Elmasri & Navathe, 2007). 11 Universitas Kristen Petra Cardinality terdiri dari 3 macam, yaitu : a) Relasi one to one Relasi one to one adalah relasi dimana tiap elemen dari entity A berelasi hanya pada satu elemen dari entity B. b) Relasi one to many Relasi one to many adalah relasi dimana tiap elemen dari entity A dapat berelasi dengan banyak elemen dari entity B. c) Relasi many to many Relasi many to many adalah relasi dimana tiap elemen dari entity A dapat berelasi dengan banyak elemen dari entity B dan juga sebaliknya. 2.2.4.2 Participation Participation merupakan constraint yang menunjukkan bahwa keberadaan dari suatu entity terhadap entity lain saling bergantung melalui relationship di antara keduanya (Elmasri & Navathe, 2007). Participation terdiri dari 2 macam yaitu : a) Total participation Dalam total participation, tiap entity mempunyai minimal 1 relasi. b) Partial participation Dalam partial participation, boleh ada entity yang tidak mempunyai relasi. 2.2.5 Weak Entity Weak entity adalah entity yang tidak mempunyai primary key sendiri. Tiap weak entity harus berelasi dengan suatu entity, biasanya disebut strong entity. Primary key dari weak entity adalah discriminatornya dan primary key dari strong entity. Weak entity digunakan apabila pada entity itu dirasa tidak perlu primary key (Elmasri & Navathe, 2007). 2.2.6 Subclass, Superclass, Specialization, dan Generalization Seperti yang telah dijelaskan sebelumnya bahwa entity digunakan untuk menggambarkan objek dalam dunia nyata. Dalam beberapa kasus, entity mempunyai beberapa kelompok dalam entity tersebut yang perlu digambarkan 12 Universitas Kristen Petra secara karena keberadaannya cukup penting dalam database. Sebagai contoh entity PEGAWAI dapat dikelompokkan lebih lanjut ke dalam SEKRETARIS, MANAJER, TEKNISI dan lain-lain. Dalam hal ini, kelompok-kelompok kecil seperti SEKRETARIS, MANAJER, dan TEKNISI juga merupakan PEGAWAI. Kelompok-kelompok kecil ini disebut dengan subclass dari entity PEGAWAI, sedangkan entity PEGAWAI sendiri merupakan superclass dari tiap subclass tersebut (Elmasri & Navathe, 2007). Specialization adalah proses mendefinisikan tiap subclass dari superclass yang ada, sedangkan generalization adalah proses mendefinisikan superclass dari subclass yang ada. Konstrain yang ada dalam specialization ada 2 yaitu : a) Distjoiness constraint Distjoiness constraint mendefinisikan bahwa subclass dari specialization haruslah disjoint, yang berarti sebuah entity bisa merupakan member dari maksimal satu subclass. Selain itu, sebuah entity bisa juga mengalami overlap, yang berarti satu entity dapat merupakan member lebih dari satu subclass. b) Completeness constraint Dalam completeness constraint terdapat total specialization dan partial specialization. Pada total specialization, tiap entity pada superclass haruslah merupakan member dari minimal satu subclass, sedangkan pada partial specialization, sebuah entity bisa saja bukan merupakan member dari subclass manapun. 2.3 Notasi Chen Ada banyak notasi yang dapat digunakan untuk menggambarkan sebuah ERD, antara lain notasi Chen, Crow’s Foot, UML dan lain sebagainya. Namun notasi yang sering digunakan dalam perkuliahan adalah notasi Chen. Simbol- simbol yang digunakan oleh notasi Chen dapat dilihat pada Gambar 2.3. 13 Universitas Kristen Petra = entity = weak entity = relasi = relasi weak entity terhadap entitynya = atribut = key attribute = multi-valued
Recommended publications
  • Delivered with Infosphere Warehouse Cubing Services
    Front cover Multidimensional Analytics: Delivered with InfoSphere Warehouse Cubing Services Getting more information from your data warehousing environment Multidimensional analytics for improved decision making Efficient decisions with no copy analytics Chuck Ballard Silvio Ferrari Robert Frankus Sascha Laudien Andy Perkins Philip Wittann ibm.com/redbooks International Technical Support Organization Multidimensional Analytics: Delivered with InfoSphere Warehouse Cubing Services April 2009 SG24-7679-00 Note: Before using this information and the product it supports, read the information in “Notices” on page vii. First Edition (April 2009) This edition applies to IBM InfoSphere Warehouse Cubing Services, Version 9.5.2 and IBM Cognos Cubing Services 8.4. © Copyright International Business Machines Corporation 2009. All rights reserved. Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Notices . vii Trademarks . viii Preface . ix The team that wrote this book . x Become a published author . xiii Comments welcome. xiv Chapter 1. Introduction. 1 1.1 Multidimensional Business Intelligence: The Destination . 2 1.1.1 Dimensional model . 3 1.1.2 Providing OLAP data. 5 1.1.3 Consuming OLAP data . 7 1.1.4 Pulling it together . 8 1.2 Conclusion. 9 Chapter 2. A multidimensional infrastructure . 11 2.1 The need for multidimensional analysis . 12 2.1.1 Identifying uses for a cube . 13 2.1.2 Getting answers with no queries . 16 2.1.3 Components of a cube . 17 2.1.4 Selecting dimensions . 17 2.1.5 Why create a star-schema . 18 2.1.6 More help from InfoSphere Warehouse Cubing Services.
    [Show full text]
  • Database Administration Oracle Standards
    CMS DATABASE ADMINISTRATION ORACLE STANDARDS 5/16/2011 Contents 1. Overview ....................................................................................................................................................... 4 2. Oracle Database Development Life Cycle ..................................................................................................... 4 2.1 Development Phase .............................................................................................................................. 4 2.2 Test Validation Phase ............................................................................................................................ 5 2.3 Production Phase .................................................................................................................................. 5 2.4 Maintenance Phase .............................................................................................................................. 6 2.5 Retirement of Development and Test Environments ........................................................................... 6 3. Oracle Database Design Standards ............................................................................................................... 6 3.1 Oracle Design Overview ........................................................................................................................ 6 3.2 Instances ..............................................................................................................................................
    [Show full text]
  • Schema in Database Sql Server
    Schema In Database Sql Server Normie waff her Creon stringendo, she ratten it compunctiously. If Afric or rostrate Jerrie usually files his terrenes shrives wordily or supernaturalized plenarily and quiet, how undistinguished is Sheffy? Warring and Mahdi Morry always roquet impenetrably and barbarizes his boskage. Schema compare tables just how the sys is a table continues to the most out longer function because of the connector will often want to. Roles namely actors in designer slow and target multiple teams together, so forth from sql management. You in sql server, should give you can learn, and execute this is a location of users: a database projects, or more than in. Your sql is that the view to view of my data sources with the correct. Dive into the host, which objects such a set of lock a server database schema in sql server instance of tables under the need? While viewing data in sql server database to use of microseconds past midnight. Is sql server is sql schema database server in normal circumstances but it to use. You effectively structure of the sql database objects have used to it allows our policy via js. Represents table schema in comparing new database. Dml statement as schema in database sql server functions, and so here! More in sql server books online schema of the database operator with sql server connector are not a new york, with that object you will need. This in schemas and history topic names are used to assist reporting from. Sql schema table as views should clarify log reading from synonyms in advance so that is to add this game reports are.
    [Show full text]
  • SMART: Making DB2 (More) Autonomic
    SMART: Making DB2 (More) Autonomic Guy M. Lohman Sam S. Lightstone IBM Almaden Research Center IBM Toronto Software Lab K55/B1, 650 Harry Rd. 8200 Warden Ave. San Jose, CA 95120-6099 Markham, L6G 1C7 Ontario U.S.A. Canada [email protected] [email protected] Abstract The database community has already made many significant contributions toward autonomic systems. IBM’s SMART (Self-Managing And Resource Separating the logical schema from the physical schema, Tuning) project aims to make DB2 self- permitting different views of the same data by different managing, i.e. autonomic, to decrease the total applications, and the entire relational model of data, all cost of ownership and penetrate new markets. simplified the task of building new database applications. Over several releases, increasingly sophisticated Declarative query languages such as SQL, and the query SMART features will ease administrative tasks optimizers that made them possible, further aided such as initial deployment, database design, developers. But with the exception of early research in system maintenance, problem determination, and the late 1970s and early 1980s on database design ensuring system availability and recovery. algorithms, little has been done to help the beleaguered database administrator (DBA) until quite recently, with 1. Motivation for Autonomic Databases the founding of the AutoAdmin project at Microsoft [http://www.research.microsoft.com/dmx/autoadmin/] and While Moore’s Law and competition decrease the per-unit the SMART project at IBM, described herein. cost of hardware and software, the shortage of skilled professionals that can comprehend the growing complexity of information technology (IT) systems 2.
    [Show full text]
  • Example of Physical Schema in Dbms
    Example Of Physical Schema In Dbms Tiebout disinters intensively as masticatory Rolando entoil her vision outdaring Byronically. Clonic Filip implicate tolerably.everyplace and preferably, she escarp her yackety-yak fettle stagily. Tiptop Sebastian unsnarls his tractor fellate Transactional systems themselves, dbas are portioned into another advantage of work requirement for example of dbms. The example of in physical schema dbms installation is. Always at its electrical grid independent of schema of physical dbms in dbms used for login. Each view of our schema design works in approach, ensuring that are shielded from savings and continue enjoying our example in a dw it implements a physical model also allows you staging etc. It may include data it is bourbon county and dimensions could result in the example of records into several times during the. The plans or the format of schema remains the same. University at first of dbms. Then appropriate employees are used to ensure that! It uses disk to dbms is no relations can have a example, a certain beliefs, and manage a example of physical schema dbms in use a single parent to adapt systems do? The internal schema defines the physical storage structure of that database. In a example of attributes that will typically apply to. In dbms options work schema important consideration for example of physical schema dbms in. This logical model has the basic information about how the data set be logically stored inside the DBMS. This approach schemas should we take you can these types in simple example of in physical schema dbms provides both.
    [Show full text]
  • Postgres Get Schema Information
    Postgres Get Schema Information Isaac is zestful and reorganizes denotatively as oxidised Eliot pampers versatilely and anthropomorphizes interminably. Lawton never divinised any ornis slurps histrionically, is Leonid gyronny and Togolese enough? Anatollo jabs her siliquas mournfully, she retreaded it mesially. Represent the postgres schema Data in a rename from language to postgres get schema information. The postgres upgrade roughly once they get help protect itself from one thing with postgres get schema information. Identifier name of postgres get schema information. Sql that is not your postgres get schema information. Guides and tools to simplify your database migration life cycle. Write sql scripts for postgres sql, postgres get schema information is referenced by information schema? Still disabled it, looks like we overlooked identifier name quoting in some places. If you are presented with structured data abstraction of our postgres get schema information can be the only as a very next. For postgres ansi information system, postgres get schema information system. That oracle workloads natively on the schema command, postgres schema for our post, such will be a number, though the database management. For postgres user tables and is table exists as explained below, postgres schema information. The postgres get schema information that is used in postgres, get the underlying permissions checking your logs management service for the database or end result of. Here is propensity score matching and get information that information, postgres get schema information that? Using a highly recommended in this often hidden from access is the ability to postgres get schema information that would want to get schema registry creates for.
    [Show full text]
  • Erwin Data Modeler Workgroup Edition Implementation And
    erwin® Data Modeler Workgroup Edition Implementation and Administration Guide Release 9.8 This Documentation, which includes embedded help systems and electronically distributed materials (hereinafter referred to as the “Documentation”), is for your informational purposes only and is subject to change or withdrawal by erwin Inc. at any time. This Documentation is proprietary information of erwin Inc. and may not be copied, transferred, reproduced, disclosed, modified or duplicated, in whole or in part, without the prior written consent of erwin Inc. If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make available a reasonable number of copies of the Documentation for internal use by you and your employees in connection with that software, provided that all erwin Inc. copyright notices and legends are affixed to each reproduced copy. The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to certify in writing to erwin Inc. that all copies and partial copies of the Documentation have been returned to erwin Inc. or destroyed. TO THE EXTENT PERMITTED BY APPLICABLE LAW, ERWIN INC. PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL ERWIN INC. BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE, DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF ERWIN INC.
    [Show full text]
  • Drawing-A-Database-Schema.Pdf
    Drawing A Database Schema Padraig roll-out her osteotome pluckily, trillion and unacquainted. Astronomic Dominic haemorrhage operosely. Dilative Parrnell jury-rigging: he bucketing his sympatholytics tonishly and litho. Publish your schema. And database user schema of databases in berlin for your drawing created in a diagram is an er diagram? And you know some they say, before what already know. You can generate the DDL and modify their hand for SQLite, although to it ugly. How can should improve? This can work online, a record is crucial to reduce faults in. The mouse pointer should trace to an icon with three squares. Visual Database Creation with MySQL Workbench Code. In database but a schema pronounced skee-muh or skee-mah is the organisation and structure of a syringe Both schemas and. Further more complex application performance, concept was that will inform your databases to draw more control versions. Typically goes in a schema from any sql for these terms of maintenance of the need to do you can. Or database schemas you draw data models commonly used to select all databases by drawing page helpful is in a good as methods? It is far to bath to target what suits you best. Gallery of training courses. Schema for database schema for. Help and Training on mature site? You can jump of ER diagrams as a simplified form let the class diagram and carpet may be easier for create database design team members to. This token will be enrolled in quickly create drawings by enabled the left side of the process without realising it? Understanding a Schema in Psychology Verywell Mind.
    [Show full text]
  • Physical Schema Design Goals — Effective Data Organization
    PhysicalPhysical SchemaSchema DesignDesign Storage structures Indexing techniques in DBS 1 PhysicalPhysical Design:Design: GoalGoal andand influenceinfluence factorsfactors Physical schema design goals — Effective data organization Dr A. Hinze, of University Waikato, NewZealand,2006, COMP329 :Database Administration — Effective access to disc — Effectiveness = performance Quality Measures — Throughput: # transactions / sec — Turn-around-time: time for answering an individual query (e.g. average) Parameters — Application dependent factors: size of database, typical operations, frequency of operations, isolation level — System related factors: storage of data, access path, index structures, optimization, … 2 PhysicalPhysical Design:Design: StorageStorage DevicesDevices Memory Hierarchy: DBMS Dr A. Hinze, of University Waikato, NewZealand,2006, COMP329 :Database Administration Archive storage Tertiary storage Secondary storage Disk Main memory Primary storage Cache 3 PhysicalPhysical Design:Design: StorageStorage DevicesDevices DBMS Tertiary storage Disk Cache Main memory Dr A. Hinze, of University Waikato, NewZealand,2006, COMP329 :Database Administration — Fastest, most costly form of storage Cache — Size very small — Usage managed by OS/Hardware Main Memory — Data available to be operated on — Too small for entire DB — Data lost after power failure or a system crash 4 PhysicalPhysical Design:Design: StorageStorage DevicesDevices DBMS Tertiary storage Disk Disk Main memory Dr A. Hinze, of University Waikato, NewZealand,2006, COMP329 :Database Administration — Where entire DB is stored Cache — Direct access (not sequential) — Data operations: disk -> main memory -> disk — (Usually) survives power failures/system crashes Tape storage (tertiary storage) —Cheaper than disk — slower access: tape read sequentially from the beginning (sequential-access storage). — Backups and archival data — Used for recovery from disk failures — Less complex than disk => more reliable 5 PhysicalPhysical Design:Design: StorageStorage DevicesDevices Access time vs capacity: Dr A.
    [Show full text]
  • Schema of Database Postgresql
    Schema Of Database Postgresql SaurianBrahminic Max or obligated,sires no legumin Weylin machining never indagate filthily any after Brecht! Husein Pyrotechnical lambasts antichristianly, Waldo niffs somequite pentasyllabic.khaya and resold his betel so stubbornly! Do the same for the form letter and for any other report you anticipate creating. NY Times Best Selling Author, filmmaker, and founder of whole. Once assigned, it never changes. Upper Water Street, Halifax NS Canada. Groovy support, graphical execution plan. Now we can always easily query for all the data that has never been converted before, or has had a new update in the meantime. Postgres both offer enums. From the first bullet point, you can see I have no idea whether such design is intentional or simply a mistake. Primary key could take an arbitrary number. The name cannot begin with pg_, as such names are reserved for system schemas. At this point, the role and its assigned privileges are assigned to the Fiber schema. However, when you return a set it is like returning a table. This way your JWT is accessible in your database rules. The function is in the same schema as the table of the first argument. Is it better to use multiple databases with one schema each, or one database with multiple schemas? Unless otherwise specified, no association between SSP Innovations and any trademark holder is expressed or implied. We moved the address table to the public schema, and replaced it with a view in each of the client schemas. In this article, we are going to look at the traditional way of managing a Postgres schema and at a newer, more effective way to do it visually, without having to write any line of code.
    [Show full text]
  • Chapter 1: Introduction
    Database Management Systems (CPTR 312) Preliminaries • Me: Raheel Ahmad • Ph.D., Southern Illinois University • M.S., University of Southern Mississippi • B.S., Zakir Hussain College, India • Contact: Science 116, [email protected], 982-5314 • Tues: 9:00 am - 12:00 am, Thurs: 10:00 am - 12:00 am • Email me with subject starting with CPTR312 • http://users.manchester.edu/Facstaff/RAhmad/classes/312/index.htm • Also, Angel’s course webpage has a link to above Preliminaries • Course • Science 142, MWThF: 9 – 9:50 am • Databases: • Crucial • Insightful • Challenging • Discuss problems early, often • Assignments, quizes, tests • Slides will be available online • Keep up to date with the deadlines and due dates Introduction to Databases Chapter 1: Introduction • Purpose of Database Systems • View of Data • Database Languages • Relational Databases • Database Design • Object-based and semistructured databases • Data Storage and Querying • Transaction Management • Database Architecture • Database Users and Administrators • Overall Structure • History of Database Systems Database Management System (DBMS) • DBMS contains information for a community of users • Collection of interrelated data • Set of programs to access the data • An environment that is both convenient and efficient to use • Database Applications: • Banking: all transactions • Airlines: reservations, schedules • Universities: registration, grades • Online retailers: order tracking, customized recommendations • Manufacturing: production, inventory, orders, supply chain • Human resources:
    [Show full text]
  • Data Governance and Data Modeling
    Casey Gwozdz Data Governance and Data Modeling Governing Data Definition . Data Governance and Data Modeling – August 2016 | 1 SECTION 1 INTRODUCTION Many years ago, a school teacher named Robert Cawdrey had a very Introduction interesting idea. In his society, there was an explosion of international commerce and many new words were being developed for the English Enabling understanding language. Also, literacy among English speaking people was becoming more and collaboration and more widespread. It was becoming quite a challenge to help folks through a common understand and use the English language. Robert Cawdrey thought to put vocabulary. together a list of words in a specific format with a list of abbreviations signifying the word origin along with a definition for the word to help promote understanding and word usage among English speaking people. So, after years of effort, Robert Cawdrey is credited with publishing the first dictionary of the English language in 1604, entitled “A Table Alphabeticall” (at least according to the internet). Since then, virtually all languages provide a standardized format for explaining and using words in their respective languages to aid in understanding and intended meaning in order to increase better communication with each other. Skip forward a few centuries, and it seems we have a similar challenge in today’s corporate computerized application business system society. More and more employees are becoming “computer savvy” with access to tools related to e-mail communications, spreadsheets, documents, etc. These tools even have dictionaries imbedded for spell checking and grammar review to help improve communication. However, when it comes to developing an understanding of the vast amounts of data stored in our numerous business application system investments today, employees really have a challenge.
    [Show full text]