The Geometric Block Model
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Basic Models and Questions in Statistical Network Analysis
Basic models and questions in statistical network analysis Mikl´osZ. R´acz ∗ with S´ebastienBubeck y September 12, 2016 Abstract Extracting information from large graphs has become an important statistical problem since network data is now common in various fields. In this minicourse we will investigate the most natural statistical questions for three canonical probabilistic models of networks: (i) community detection in the stochastic block model, (ii) finding the embedding of a random geometric graph, and (iii) finding the original vertex in a preferential attachment tree. Along the way we will cover many interesting topics in probability theory such as P´olya urns, large deviation theory, concentration of measure in high dimension, entropic central limit theorems, and more. Outline: • Lecture 1: A primer on exact recovery in the general stochastic block model. • Lecture 2: Estimating the dimension of a random geometric graph on a high-dimensional sphere. • Lecture 3: Introduction to entropic central limit theorems and a proof of the fundamental limits of dimension estimation in random geometric graphs. • Lectures 4 & 5: Confidence sets for the root in uniform and preferential attachment trees. Acknowledgements These notes were prepared for a minicourse presented at University of Washington during June 6{10, 2016, and at the XX Brazilian School of Probability held at the S~aoCarlos campus of Universidade de S~aoPaulo during July 4{9, 2016. We thank the organizers of the Brazilian School of Probability, Paulo Faria da Veiga, Roberto Imbuzeiro Oliveira, Leandro Pimentel, and Luiz Renato Fontes, for inviting us to present a minicourse on this topic. We also thank Sham Kakade, Anna Karlin, and Marina Meila for help with organizing at University of Washington. -
Arxiv:1705.10225V8 [Stat.ML] 6 Feb 2020
Bayesian stochastic blockmodelinga Tiago P. Peixotoy Department of Mathematical Sciences and Centre for Networks and Collective Behaviour, University of Bath, United Kingdom and ISI Foundation, Turin, Italy This chapter provides a self-contained introduction to the use of Bayesian inference to ex- tract large-scale modular structures from network data, based on the stochastic blockmodel (SBM), as well as its degree-corrected and overlapping generalizations. We focus on non- parametric formulations that allow their inference in a manner that prevents overfitting, and enables model selection. We discuss aspects of the choice of priors, in particular how to avoid underfitting via increased Bayesian hierarchies, and we contrast the task of sampling network partitions from the posterior distribution with finding the single point estimate that maximizes it, while describing efficient algorithms to perform either one. We also show how inferring the SBM can be used to predict missing and spurious links, and shed light on the fundamental limitations of the detectability of modular structures in networks. arXiv:1705.10225v8 [stat.ML] 6 Feb 2020 aTo appear in “Advances in Network Clustering and Blockmodeling,” edited by P. Doreian, V. Batagelj, A. Ferligoj, (Wiley, New York, 2019 [forthcoming]). y [email protected] 2 CONTENTS I. Introduction 3 II. Structure versus randomness in networks 3 III. The stochastic blockmodel (SBM) 5 IV. Bayesian inference: the posterior probability of partitions 7 V. Microcanonical models and the minimum description length principle (MDL) 11 VI. The “resolution limit” underfitting problem, and the nested SBM 13 VII. Model variations 17 A. Model selection 18 B. Degree correction 18 C. -
Networkx Reference Release 1.9.1
NetworkX Reference Release 1.9.1 Aric Hagberg, Dan Schult, Pieter Swart September 20, 2014 CONTENTS 1 Overview 1 1.1 Who uses NetworkX?..........................................1 1.2 Goals...................................................1 1.3 The Python programming language...................................1 1.4 Free software...............................................2 1.5 History..................................................2 2 Introduction 3 2.1 NetworkX Basics.............................................3 2.2 Nodes and Edges.............................................4 3 Graph types 9 3.1 Which graph class should I use?.....................................9 3.2 Basic graph types.............................................9 4 Algorithms 127 4.1 Approximation.............................................. 127 4.2 Assortativity............................................... 132 4.3 Bipartite................................................. 141 4.4 Blockmodeling.............................................. 161 4.5 Boundary................................................. 162 4.6 Centrality................................................. 163 4.7 Chordal.................................................. 184 4.8 Clique.................................................. 187 4.9 Clustering................................................ 190 4.10 Communities............................................... 193 4.11 Components............................................... 194 4.12 Connectivity.............................................. -
Latent Distance Estimation for Random Geometric Graphs ∗
Latent Distance Estimation for Random Geometric Graphs ∗ Ernesto Araya Valdivia Laboratoire de Math´ematiquesd'Orsay (LMO) Universit´eParis-Sud 91405 Orsay Cedex France Yohann De Castro Ecole des Ponts ParisTech-CERMICS 6 et 8 avenue Blaise Pascal, Cit´eDescartes Champs sur Marne, 77455 Marne la Vall´ee,Cedex 2 France Abstract: Random geometric graphs are a popular choice for a latent points generative model for networks. Their definition is based on a sample of n points X1;X2; ··· ;Xn on d−1 the Euclidean sphere S which represents the latent positions of nodes of the network. The connection probabilities between the nodes are determined by an unknown function (referred to as the \link" function) evaluated at the distance between the latent points. We introduce a spectral estimator of the pairwise distance between latent points and we prove that its rate of convergence is the same as the nonparametric estimation of a d−1 function on S , up to a logarithmic factor. In addition, we provide an efficient spectral algorithm to compute this estimator without any knowledge on the nonparametric link function. As a byproduct, our method can also consistently estimate the dimension d of the latent space. MSC 2010 subject classifications: Primary 68Q32; secondary 60F99, 68T01. Keywords and phrases: Graphon model, Random Geometric Graph, Latent distances estimation, Latent position graph, Spectral methods. 1. Introduction Random geometric graph (RGG) models have received attention lately as alternative to some simpler yet unrealistic models as the ubiquitous Erd¨os-R´enyi model [11]. They are generative latent point models for graphs, where it is assumed that each node has associated a latent d point in a metric space (usually the Euclidean unit sphere or the unit cube in R ) and the connection probability between two nodes depends on the position of their associated latent points. -
On Community Structure in Complex Networks: Challenges and Opportunities
On community structure in complex networks: challenges and opportunities Hocine Cherifi · Gergely Palla · Boleslaw K. Szymanski · Xiaoyan Lu Received: November 5, 2019 Abstract Community structure is one of the most relevant features encoun- tered in numerous real-world applications of networked systems. Despite the tremendous effort of a large interdisciplinary community of scientists working on this subject over the past few decades to characterize, model, and analyze communities, more investigations are needed in order to better understand the impact of community structure and its dynamics on networked systems. Here, we first focus on generative models of communities in complex networks and their role in developing strong foundation for community detection algorithms. We discuss modularity and the use of modularity maximization as the basis for community detection. Then, we follow with an overview of the Stochastic Block Model and its different variants as well as inference of community structures from such models. Next, we focus on time evolving networks, where existing nodes and links can disappear, and in parallel new nodes and links may be introduced. The extraction of communities under such circumstances poses an interesting and non-trivial problem that has gained considerable interest over Hocine Cherifi LIB EA 7534 University of Burgundy, Esplanade Erasme, Dijon, France E-mail: hocine.cherifi@u-bourgogne.fr Gergely Palla MTA-ELTE Statistical and Biological Physics Research Group P´azm´any P. stny. 1/A, Budapest, H-1117, Hungary E-mail: [email protected] Boleslaw K. Szymanski Department of Computer Science & Network Science and Technology Center Rensselaer Polytechnic Institute 110 8th Street, Troy, NY 12180, USA E-mail: [email protected] Xiaoyan Lu Department of Computer Science & Network Science and Technology Center Rensselaer Polytechnic Institute 110 8th Street, Troy, NY 12180, USA E-mail: [email protected] arXiv:1908.04901v3 [physics.soc-ph] 6 Nov 2019 2 Cherifi, Palla, Szymanski, Lu the last decade. -
Community Detection with Dependent Connectivity∗
Submitted to the Annals of Statistics arXiv: arXiv:0000.0000 COMMUNITY DETECTION WITH DEPENDENT CONNECTIVITY∗ BY YUBAI YUANy AND ANNIE QUy University of Illinois at Urbana-Champaigny In network analysis, within-community members are more likely to be connected than between-community members, which is reflected in that the edges within a community are intercorrelated. However, existing probabilistic models for community detection such as the stochastic block model (SBM) are not designed to capture the dependence among edges. In this paper, we propose a new community detection approach to incorporate intra-community dependence of connectivities through the Bahadur representation. The pro- posed method does not require specifying the likelihood function, which could be intractable for correlated binary connectivities. In addition, the pro- posed method allows for heterogeneity among edges between different com- munities. In theory, we show that incorporating correlation information can achieve a faster convergence rate compared to the independent SBM, and the proposed algorithm has a lower estimation bias and accelerated convergence compared to the variational EM. Our simulation studies show that the pro- posed algorithm outperforms the popular variational EM algorithm assuming conditional independence among edges. We also demonstrate the application of the proposed method to agricultural product trading networks from differ- ent countries. 1. Introduction. Network data has arisen as one of the most common forms of information collection. This is due to the fact that the scope of study not only focuses on subjects alone, but also on the relationships among subjects. Networks consist of two components: (1) nodes or ver- tices corresponding to basic units of a system, and (2) edges representing connections between nodes. -
Developing a Credit Scoring Model Using Social Network Analysis
Developing a Credit Scoring Model Using Social Network Analysis Ahmad Abd Rabuh UP821483 This thesis is submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy in the School of Business and Law at the University of Portsmouth November 2020 1 Author’s Declaration Whilst registered as a candidate for the above degree, I have not been registered for any other research award. The results and conclusions embodied in this thesis are the work of the named candidate and have not been submitted for any other academic award. Signature: Name: Ahmad Abd Rabuh Date: the 30th of April 2020 Word Count: 63,809 2 Acknowledgements As I witness this global pandemic, my greatest gratitude goes to my mother, Hanan, for her moral support and encouragement through the good, the bad and the ugly. During the period of my PhD revision, I received mentoring and help from my future lifetime partner, Kawthar. Also, I have been blessed with the help of wonderful people from Scholars at Risk, Rose Anderson and Sarina Rosenthal, who assisted me in the PhD application and scholarship processes. Additionally, I cannot be thankful enough to the Associate Dean of Research, Andy Thorpe, who supported me in every possible way during my time at the University of Portsmouth. Finally, many thanks to my supervisors, Mark Xu and Renatas Kizys for their continuous guidance. 3 Developing a Credit Scoring Model Using Social Network Analysis Table of Contents Abstract ......................................................................................................................................... 10 CHAPTER 1: INTRODUCTION ................................................................................................. 12 1.1. Research Questions ........................................................................................................ 16 1.2. Aims and Objectives ..................................................................................................... -
The Domination Number of On-Line Social Networks and Random Geometric Graphs?
The domination number of on-line social networks and random geometric graphs? Anthony Bonato1, Marc Lozier1, Dieter Mitsche2, Xavier P´erez-Gim´enez1, and Pawe lPra lat1 1 Ryerson University, Toronto, Canada, [email protected], [email protected], [email protected], [email protected] 2 Universit´ede Nice Sophia-Antipolis, Nice, France [email protected] Abstract. We consider the domination number for on-line social networks, both in a stochastic net- work model, and for real-world, networked data. Asymptotic sublinear bounds are rigorously derived for the domination number of graphs generated by the memoryless geometric protean random graph model. We establish sublinear bounds for the domination number of graphs in the Facebook 100 data set, and these bounds are well-correlated with those predicted by the stochastic model. In addition, we derive the asymptotic value of the domination number in classical random geometric graphs. 1. Introduction On-line social networks (or OSNs) such as Facebook have emerged as a hot topic within the network science community. Several studies suggest OSNs satisfy many properties in common with other complex networks, such as: power-law degree distributions [2, 13], high local cluster- ing [36], constant [36] or even shrinking diameter with network size [23], densification [23], and localized information flow bottlenecks [12, 24]. Several models were designed to simulate these properties [19, 20], and one model that rigorously asymptotically captures all these properties is the geometric protean model (GEO-P) [5{7] (see [16, 25, 30, 31] for models where various ranking schemes were first used, and which inspired the GEO-P model). -
Clique Colourings of Geometric Graphs
CLIQUE COLOURINGS OF GEOMETRIC GRAPHS COLIN MCDIARMID, DIETER MITSCHE, AND PAWELPRA LAT Abstract. A clique colouring of a graph is a colouring of the vertices such that no maximal clique is monochromatic (ignoring isolated vertices). The least number of colours in such a colouring is the clique chromatic number. Given n points x1;:::; xn in the plane, and a threshold r > 0, the corre- sponding geometric graph has vertex set fv1; : : : ; vng, and distinct vi and vj are adjacent when the Euclidean distance between xi and xj is at most r. We investigate the clique chromatic number of such graphs. We first show that the clique chromatic number is at most 9 for any geometric graph in the plane, and briefly consider geometric graphs in higher dimensions. Then we study the asymptotic behaviour of the clique chromatic number for the random geometric graph G(n; r) in the plane, where n random points are independently and uniformly distributed in a suitable square. We see that as r increases from 0, with high probability the clique chromatic number is 1 for very small r, then 2 for small r, then at least 3 for larger r, and finally drops back to 2. 1. Introduction and main results In this section we introduce clique colourings and geometric graphs; and we present our main results, on clique colourings of deterministic and random geometric graphs. Recall that a proper colouring of a graph is a labeling of its vertices with colours such that no two vertices sharing the same edge have the same colour; and the smallest number of colours in a proper colouring of a graph G = (V; E) is its chromatic number, denoted by χ(G). -
Betweenness Centrality in Dense Random Geometric Networks
Betweenness Centrality in Dense Random Geometric Networks Alexander P. Giles Orestis Georgiou Carl P. Dettmann School of Mathematics Toshiba Telecommunications Research Laboratory School of Mathematics University of Bristol 32 Queen Square University of Bristol Bristol, UK, BS8 1TW Bristol, UK, BS1 4ND Bristol, UK, BS8 1TW [email protected] [email protected] [email protected] Abstract—Random geometric networks are mathematical are routed in a multi-hop fashion between any two nodes that structures consisting of a set of nodes placed randomly within wish to communicate, allowing much larger, more flexible d a bounded set V ⊆ R mutually coupled with a probability de- networks (due to the lack of pre-established infrastructure or pendent on their Euclidean separation, and are the classic model used within the expanding field of ad-hoc wireless networks. In the need to be within range of a switch). Commercial ad hoc order to rank the importance of the network’s communicating networks are nowadays realised under Wi-Fi Direct standards, nodes, we consider the well established ‘betweenness’ centrality enabling device-to-device (D2D) offloading in LTE cellular measure (quantifying how often a node is on a shortest path of networks [5]. links between any pair of nodes), providing an analytic treatment This new diversity in machine betweenness needs to be of betweenness within a random graph model by deriving a closed form expression for the expected betweenness of a node understood, and moreover can be harnessed in at least three placed within a dense random geometric network formed inside separate ways: historically, in 2005 Gupta et al. -
Robustness of Community Detection to Random Geometric Perturbations
Robustness of Community Detection to Random Geometric Perturbations Sandrine Péché Vianney Perchet LPSM, University Paris Diderot Crest, ENSAE & Criteo AI Lab [email protected] [email protected] Abstract We consider the stochastic block model where connection between vertices is perturbed by some latent (and unobserved) random geometric graph. The objective is to prove that spectral methods are robust to this type of noise, even if they are agnostic to the presence (or not) of the random graph. We provide explicit regimes where the second eigenvector of the adjacency matrix is highly correlated to the true community vector (and therefore when weak/exact recovery is possible). This is possible thanks to a detailed analysis of the spectrum of the latent random graph, of its own interest. Introduction In a d-dimensional random geometric graph, N vertices are assigned random coordinates in Rd, and only points close enough to each other are connected by an edge. Random geometric graphs are used to model complex networks such as social networks, the world wide web and so on. We refer to [19]- and references therein - for a comprehensive introduction to random geometric graphs. On the other hand, in social networks, users are more likely to connect if they belong to some specific community (groups of friends, political party, etc.). This has motivated the introduction of the stochastic block models (see the recent survey [1] and the more recent breakthrough [5] for more details), where in the simplest case, each of the N vertices belongs to one (and only one) of the two communities that are present in the network. -
Exploratory Analysis of Networks
Exploratory Analysis of Networks James D. Wilson Data Institute Conference 2017 James D. Wilson (USF) Exploratory Analysis of Networks 1 / 35 Summarizing Networks Goals 1 Provide one number summaries of network 2 Develop hypotheses about observed data 3 Motivate predictive models 4 Augment standard multivariate analyses James D. Wilson (USF) Exploratory Analysis of Networks 2 / 35 At first glance: Network Summary Statistics Measures of Connectivity Degree: number of edges incident to each node (popularity) For directed networks, we consider In- and Out-Degree Geodesic distance: shortest path between two nodes Diameter: longest geodesic distance Clustering coefficient: fraction of triangles to total triples Reciprocity: fraction of reciprocated ties (directed graphs only) James D. Wilson (USF) Exploratory Analysis of Networks 3 / 35 Examples in Social Networks James D. Wilson (USF) Exploratory Analysis of Networks 4 / 35 At first glance: Network Summary Statistics Measures of Nodal Influence / Centrality Centrality: how ”central” is a node in the observed network? Degree: popularity of a node Eigenvector: self- neighbor- importance Betweenness: extent+ to which a node lies on the shortest path between two nodes Closeness: mean distance from node to all other vertices Authorities: vertices with useful information on a topic Hubs: vertices that point to authorities James D. Wilson (USF) Exploratory Analysis of Networks 5 / 35 Examples Internet Search PageRank Algorithm Popular web-search scoring and search algorithm (Google) Score based on eigenvector centrality HITS Algorithm (Kleinberg, 1999) Hyperlink-induced topic search Uses hub and authority scores as basis for measuring importance of webpages James D. Wilson (USF) Exploratory Analysis of Networks 6 / 35 Example: Recommendation Systems Figure: eye2data.blogspot.com Want individual (node) with most influence James D.