The Role of Metabolic Activation and Colony Integration

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Metabolic Activation and Colony Integration ABSTRACT METABOLIC SCALING IN COLONIAL ANIMALS: THE ROLE OF METABOLIC ACTIVATION AND COLONY INTEGRATION Maram Almegbel, MS Department of Biological Sciences Northern Illinois University, 2018 Neil W. Blackstone, Director Metabolism, one of the canonical features of life, shows a clear correlation to organismal size. Metabolic scaling is explaining the relationship between organism body mass and metabolic rate. To explain the relationship between the metabolism and body size, several factors have to be examined, including resource uptake, usage, and transportation of resources throughout the body. Empirically, metabolism usually scales as approximately mass to the 3/4 power. Many theories seek to explain this relationship in terms of surface area to volume. These theories typically model unitary organisms as spheres, with surface area to volume increasing as roughly volume to the 2/3 power. In this context, the study of metabolic scaling in colonial or modular animals may provide insight. These organisms differ significantly from unitary organism, e.g., in geometry and hence surface -to- volume relationships. Modular organisms can be modeled as “sheet,” with surface area increasing area roughly in proportion to volume. Nevertheless, the biology of colonial organisms remains relatively poorly known. For instance, it is widely recognized that metabolic state affects metabolic scaling in unitary organisms, but the effects of metabolic state on scaling in modular organisms is untested. In this context, the intraspecific metabolic scaling relationships were examined in two colonial cnidarians, Hydractinia symbiolongicarpus and Sympodium species. The former is heterotrophic and circulates gastrovascular fluid using muscular contractions, while the latter has photosynthetic symbionts and circulates gastrovascular fluid using cilia. Nevertheless, both are “sheet-like,” encrusting forms. Experimental colonies of each species were grown on 12 mm diameter cover glass, and metabolism was measured by oxygen uptake in the dark ( Hydractinia 20.5 o C, Sympodium 27o C). Several size variables were measured using a protein assay and image analysis (total protein, total area, feeding polyp area, number of feeding polyps, and number of reproductive polyps). Principal components analysis of the log-transformed variance covariance matrix in Hydractina suggests that the best size measure is based on total protein, feeding polyp area, and number of feeding polyps. Using oxygen uptake regressed against this size measure, the slope was not significantly different from 2/3 or 3/4 but was significantly less than 1. Using the individual variables as size measures yielded various exponents, yet in every case there was no difference between fed (active) and unfed (resting) colonies. The differences in the intercept suggests that feeding activates metabolism by roughly 2.5 times, and a paired comparison t test shows that this difference is highly significant. In corals containing photosynthetic symbionts, light has been shown to activate metabolism in the same manner as feeding activates a heterotroph. Nevertheless, with Sympodium , colonies that were dark adapted exhibited similar oxygen uptake as colonies that were light treated (140 μm) for 90 min. With regard to metabolic scaling in this species, several size variables were measured using a protein assay and image analysis (total protein, total area, polyp area, number of feeding polyps and weight). Principal components analysis of the log- transformed variance covariance matrix in Sympodium suggests that the best size measure is based on total weight, followed by total polyps area and total area. Using oxygen uptake regressed against this size measure, the slope was not significantly different from < 3/4 but was significantly less than 1. As colonial animals can provide more understanding of metabolic scaling, it will possibly need more investigation for these colonial animals and the factors that might be affecting metabolic scaling. NORTHERN ILLINOIS UNIVERSITY DEKALB, ILLINOIS MAY 2018 ROLE OF COLONY INTEGRATION IN METABOLIC SCALING OF COLONIAL ANIMALS BY MARAM ALMEGBEL © 2018 Maram Almegbel A THESIS SUBMITTED TO THE GRADUATE SCHOOL IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE MASTER OF SCIENCE DEPARTMENT OF BIOLOGICAL SCIENCES Thesis Director: Neil W. Blackstone ACKNOWLEDGEMENTS First and foremost, I would like to thank my advisor and mentor, Dr. Neil W. Blackstone, for all of the help and advice he has provided over the past few years. I would also like to acknowledge my committee members, Dr. Jozef J. Bujarski and Dr. Shengde Zhou, for their valued suggestions and advice. DEDICATION This work is dedicated to the soul of my father, Nasser Almegbel, and to the soul my mother, Dulail Alnumai. It is also dedicated to my husband, Mohammed Abahussain, for the invaluable love and support he has given me. TABLE OF CONTENTS Page LIST OF TABLES…………………………………………………………………………... vi LIST OF FIGURES…………………………………………………………………………... vii Chapter 1. INTRODUCTION…………………….…………………………………………….... 1 Metabolic Scaling in Group-Living Organisms………………………………. 4 Metabolic Activation………………………………………………………....... 9 Metabolic Scaling and Modular Animals……………………………………. 10 Current Research……………………………………………………………... 16 2. MATERIALS AND METHODS …………………….………………………………… 18 Laboratory Study Species and Culture Conditions……………………………. 18 General Imaging and Image Analysis Protocols……………………………. 22 Measures of Oxygen Uptake Rate…………………………………………… 24 Protein Assay…………………………………………………………………. 26 Statistical Analysis…………………………………………………………… 28 3. RESULTS…………………….……………………………………………................... 30 Oxygen Uptake for Hydractinia symbiolongicarpus …………………………..... 31 The Best Model for Converting Absorbance to Total Protein…………………... 32 Metabolic Activation…………………………………………….................... 32 Metabolic Scaling in H. symbiolongicarpus with Individual Size Measures……. 33 v Chapter Page Metabolic Scaling in H. symbiolongicarpus with Refined Size Measures…... 40 Oxygen Uptake for Sympodium sp…………………………………………. 45 Metabolic Scaling of Sympodium sp……………………………………….... 47 . 4. DISCUSSION….……………………………………………………........................... 51 Future Directions …………………………………………………………… 54 REFERENCES…………………….……………………………………….…………… 55 LIST OF TABLES Table Page 1. Summary of metabolic activation using the paired-comparison t test………….. 33 2. Least-squares slopes (± standard errors) and intercepts for oxygen uptake and individual size measures under fed unfed conditions …................................... 34 3. The linear combination of different variables included in the principal components analysis…………………… 42 4. Metabolic scaling of log oxygen uptake and PC1 under fed and unfed conditions…………………………………………………………………...… 42 5. Difference in metabolic rates for Sympodium sp. under different experimental conditions……………………………………………………………………… 47 6. Least-squares regression slopes of indicated variable and log oxygen uptake …49 7. The linear combination of different variables included in the principal components analysis………………………………………. .…… 49 8. Combined effect of polyp area, total area, total protein, and number of feeding polyps and weight on oxygen uptake…………………………………… 49 LIST OF FIGURES Figure Page b 1. Kleiber’s law, Y = Y oM …………..…………..…….….......................................... 2 2. Kleiber’s law, Log Y = Log Y o + b log M…....…....…....…....…....…....…....….... 3 3. Schemata of the phylogenetic relationships of cnidarians, showing the affinities of the two -study species.………….. 16 4. Hydractinia symbiolongicarpus species growing on round cover glass.…………… 19 5. Sympodium species growing on terra cotta.............………………………...…............20 6. Oxygen uptake concentration versus time for a representative fed colony of H. symbiolongicarpus …………………………………………………………………….30 7. Oxygen uptake concentration versus time for a representative unfed colony of H. symbiolongicarpus …………………………………………………………………… 31 8. Translating measured absorbance (x axis) into total protein (y axis) for H. symbiolongicarpus using linear values……………………………………………… 31 9. Translating measured absorbance (x axis) into total protein (y axis) for H. symbiolongicarpus using log-linear values………………………………………........32 10. Translating measured absorbance (x axis) into total protein (y axis) for H. symbiolongicarpus using log-log values………………………………………………32 11. The bivariate graph of absolute values of slopes of oxygen uptake regressions for fed and unfed colonies………… ……………………………………………............. 33 12. Least-squares regression of log-transformed oxygen uptake and feeding polyp area for fed colonies of H. symbiolongicarpus , 20.5 C…………………………………… 35 viii Figure Page 13. Least-squares regression of log-transformed oxygen uptake and feeding polyp area for unfed colonies of H. symbiolongicarpus , 20.5 C………... 35 14. Least-squares regression of log-transformed oxygen uptake and total area for fed colonies of H. symbiolongicarpus , 20.5 C…………………………………… 36 15. Least-squares regression of log-transformed oxygen uptake and total area for unfed colonies of H. symbiolongicarpus , 20.5 C……….… 36 16. Least-squares regression of log-transformed oxygen uptake and total protein for fed colonies of H. symbiolongicarpus , 20.5 C…………………………… 37 17. Least-squares regression of log-transformed oxygen uptake and total protein for unfed colonies of H. symbiolongicarpus , 20.5 C…………… 37 18. Least-squares regression of log-transformed oxygen uptake and number of feeding polyps for fed colonies of H. symbiolongicarpus
Recommended publications
  • Preliminary Report on the Octocorals (Cnidaria: Anthozoa: Octocorallia) from the Ogasawara Islands
    国立科博専報,(52), pp. 65–94 , 2018 年 3 月 28 日 Mem. Natl. Mus. Nat. Sci., Tokyo, (52), pp. 65–94, March 28, 2018 Preliminary Report on the Octocorals (Cnidaria: Anthozoa: Octocorallia) from the Ogasawara Islands Yukimitsu Imahara1* and Hiroshi Namikawa2 1Wakayama Laboratory, Biological Institute on Kuroshio, 300–11 Kire, Wakayama, Wakayama 640–0351, Japan *E-mail: [email protected] 2Showa Memorial Institute, National Museum of Nature and Science, 4–1–1 Amakubo, Tsukuba, Ibaraki 305–0005, Japan Abstract. Approximately 400 octocoral specimens were collected from the Ogasawara Islands by SCUBA diving during 2013–2016 and by dredging surveys by the R/V Koyo of the Tokyo Met- ropolitan Ogasawara Fisheries Center in 2014 as part of the project “Biological Properties of Bio- diversity Hotspots in Japan” at the National Museum of Nature and Science. Here we report on 52 lots of these octocoral specimens that have been identified to 42 species thus far. The specimens include seven species of three genera in two families of Stolonifera, 25 species of ten genera in two families of Alcyoniina, one species of Scleraxonia, and nine species of four genera in three families of Pennatulacea. Among them, three species of Stolonifera: Clavularia cf. durum Hick- son, C. cf. margaritiferae Thomson & Henderson and C. cf. repens Thomson & Henderson, and five species of Alcyoniina: Lobophytum variatum Tixier-Durivault, L. cf. mirabile Tixier- Durivault, Lohowia koosi Alderslade, Sarcophyton cf. boletiforme Tixier-Durivault and Sinularia linnei Ofwegen, are new to Japan. In particular, Lohowia koosi is the first discovery since the orig- inal description from the east coast of Australia.
    [Show full text]
  • A First Phylogenetic Study on Stoloniferous Octocorals Off the Coast of Kota Kinabalu, Sabah, Malaysia, with the Description of Two New Genera and Five New Species
    A peer-reviewed open-access journal ZooKeys 872: 127–158Phylogenetic (2019) study on stoloniferous octocorals off the coast of Kota Kinabalu 127 doi: 10.3897/zookeys.872.36288 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A first phylogenetic study on stoloniferous octocorals off the coast of Kota Kinabalu, Sabah, Malaysia, with the description of two new genera and five new species Yee Wah Lau1, James D. Reimer1,2 1 Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan 2 Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan Corresponding author: Lau YW ([email protected]) Academic editor: B.W. Hoeksema | Received 17 May 2019 | Accepted 12 July 2019 | Published 26 August 2019 http://zoobank.org/BDF92DBF-34CE-4600-939D-2573C7D4F0B4 Citation: Lau YW, Reimer JD (2019) A first phylogenetic study on stoloniferous octocorals off the coast of Kota Kinabalu, Sabah, Malaysia, with the description of two new genera and five new species. ZooKeys 872: 127–158. https://doi.org/10.3897/zookeys.872.36288 Abstract Sabah, Malaysia, is well known for its extensive and diverse coral reefs. It is located on the northwestern edge of the Coral Triangle, the region with the highest marine biodiversity. Much of the marine fauna here is still unknown, especially inconspicuous animals, such as small stoloniferous octocorals, which are common on coral reefs. Here, we describe two new monospecific genera of the family Arulidae found off the coast of Kota Kinabalu, Sabah, East Malaysia; Bunga payung gen.
    [Show full text]
  • Genetic Divergence and Polyphyly in the Octocoral Genus Swiftia [Cnidaria: Octocorallia], Including a Species Impacted by the DWH Oil Spill
    diversity Article Genetic Divergence and Polyphyly in the Octocoral Genus Swiftia [Cnidaria: Octocorallia], Including a Species Impacted by the DWH Oil Spill Janessy Frometa 1,2,* , Peter J. Etnoyer 2, Andrea M. Quattrini 3, Santiago Herrera 4 and Thomas W. Greig 2 1 CSS Dynamac, Inc., 10301 Democracy Lane, Suite 300, Fairfax, VA 22030, USA 2 Hollings Marine Laboratory, NOAA National Centers for Coastal Ocean Sciences, National Ocean Service, National Oceanic and Atmospheric Administration, 331 Fort Johnson Rd, Charleston, SC 29412, USA; [email protected] (P.J.E.); [email protected] (T.W.G.) 3 Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th and Constitution Ave NW, Washington, DC 20560, USA; [email protected] 4 Department of Biological Sciences, Lehigh University, 111 Research Dr, Bethlehem, PA 18015, USA; [email protected] * Correspondence: [email protected] Abstract: Mesophotic coral ecosystems (MCEs) are recognized around the world as diverse and ecologically important habitats. In the northern Gulf of Mexico (GoMx), MCEs are rocky reefs with abundant black corals and octocorals, including the species Swiftia exserta. Surveys following the Deepwater Horizon (DWH) oil spill in 2010 revealed significant injury to these and other species, the restoration of which requires an in-depth understanding of the biology, ecology, and genetic diversity of each species. To support a larger population connectivity study of impacted octocorals in the Citation: Frometa, J.; Etnoyer, P.J.; GoMx, this study combined sequences of mtMutS and nuclear 28S rDNA to confirm the identity Quattrini, A.M.; Herrera, S.; Greig, Swiftia T.W.
    [Show full text]
  • Search for Mesophotic Octocorals (Cnidaria, Anthozoa) and Their Phylogeny: I
    A peer-reviewed open-access journal ZooKeys 680: 1–11 (2017) New sclerite-free mesophotic octocoral 1 doi: 10.3897/zookeys.680.12727 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Search for mesophotic octocorals (Cnidaria, Anthozoa) and their phylogeny: I. A new sclerite-free genus from Eilat, northern Red Sea Yehuda Benayahu1, Catherine S. McFadden2, Erez Shoham1 1 School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978, Israel 2 Department of Biology, Harvey Mudd College, Claremont, CA 91711-5990, USA Corresponding author: Yehuda Benayahu ([email protected]) Academic editor: B.W. Hoeksema | Received 15 March 2017 | Accepted 12 May 2017 | Published 14 June 2017 http://zoobank.org/578016B2-623B-4A75-8429-4D122E0D3279 Citation: Benayahu Y, McFadden CS, Shoham E (2017) Search for mesophotic octocorals (Cnidaria, Anthozoa) and their phylogeny: I. A new sclerite-free genus from Eilat, northern Red Sea. ZooKeys 680: 1–11. https://doi.org/10.3897/ zookeys.680.12727 Abstract This communication describes a new octocoral, Altumia delicata gen. n. & sp. n. (Octocorallia: Clavu- lariidae), from mesophotic reefs of Eilat (northern Gulf of Aqaba, Red Sea). This species lives on dead antipatharian colonies and on artificial substrates. It has been recorded from deeper than 60 m down to 140 m and is thus considered to be a lower mesophotic octocoral. It has no sclerites and features no symbiotic zooxanthellae. The new genus is compared to other known sclerite-free octocorals. Molecular phylogenetic analyses place it in a clade with members of families Clavulariidae and Acanthoaxiidae, and for now we assign it to the former, based on colony morphology.
    [Show full text]
  • Octocorallia: Alcyonacea)
    Identification of Cultured Xeniids (Octocorallia: Alcyonacea) Michael P. Janes AquaTouch, 12040 North 32nd Street, Phoenix, Arizona 85028, USA An examination of xeniid octocorals was carried out on specimens collected from the coral culture aquariums of Oceans, Reefs, and Aquariums, Fort Pierce, Florida, USA. Gross morphological analysis was performed. Pinnule arrangements, size and shape of the colony, and sclerite shapes very closely matched the original description of Cespitularia erecta. Keywords: Cnidaria; Coelenterata; Xeniidae; Cespitularia; soft corals Introduction The family Xeniidae has a broad geographical range from the Eastern coast of Africa, throughout the Indian Ocean to the Western Pacific Ocean. Extensive work has been published on the species diversity from the Red Sea (Benayahu 1990; Reinicke 1997a), Seychelles (Janes 2008), the Philippines (Roxas 1933), and as far north as Japan (Utinomi 1955). In contrast, there are only a few records from Indonesia (Schenk 1896; Ashworth 1899), Sri Lanka (Hickson 1931; De Zylva 1944), and the Maldives (Hickson 1903). Within the family Xeniidae the genus Cespitularia contains seventeen nominal species. This genus is often confused with the xeniid genus Efflatounaria where living colonies can appear morphologically similar. There are few morphological differences between the two genera, the most notable of which are the polyps. Polyps from colonies of Cespitularia are only slightly contractile if at all, whereas polyps in living colonies of Efflatounaria are highly contractile when agitated. Colonies of Efflatounaria are typically considered more lobed compared to the branched stalks in Cespitularia. Some early SEM evidence suggests that the ultra-structure of Cespitularia sclerites differs from all other xeniid genera (M.
    [Show full text]
  • Two New Records of Octocorals (Anthozoa, Octocorallia) from North-West Australia Monika Bryce1,3 and Angelo Poliseno2
    RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 29 159–168 (2014) SHORT COMMUNICATION Two new records of octocorals (Anthozoa, Octocorallia) from north-west Australia Monika Bryce1,3 and Angelo Poliseno2 1 Western Australian Museum, Locked Bag 49, Welshpool DC, Perth,Western Australia 6986, Australia 2 Department of Earth and Environmental Sciences, Paleontology and Geobiology Ludwig-Maximilians- University Munich, Richard-Wagner Strasse 10, 80333 Munich, Germany 3 Queensland Museum, PO Box 3300, South Brisbane BC, Queensland 4101, Australia Email: [email protected] KEYWORDS: Stolonifera, Indian Ocean, new locality records, Western Australia; Ashmore Reef, Hibernia Reef, Coelogorgiidae, Coelogorgia palmosa, Ifalukellidae, Plumigorgia hydroides INTRODUCTION MATERIALS AND METHODS In 2012 and 2013 the Western Australian Museum Material was collected by SCUBA (Figure 1). (WAM) undertook a comprehensive biodiversity survey Specimens were photographed in situ and on deck in the Sahul Shelf Bioregion, which encompassed the and preserved in both 70% ethanol for taxonomic intertidal and shallow subtidal reef communities of the investigation and in 100% ethanol for genetic outer shelf atolls of Ashmore and Hibernia Reefs, and investigation. DNA extraction of preserved tissue was several submerged midshelf shoals. While the outer done using a Phenol/Chloroform method. Amplifi cation of the octocoral-specifi c gene mtMutS was performed shelf has seen some octocoral sampling effort in the following standard PCR protocols using primers past, there was no information from the midshelf region ND42599F (France and Hoover, 2002) and Mut3458R (Marsh 1986, 1993; Griffi th 1997; Kospartov et al. 2006, (Sánchez et al., 2003). The mtMutS sequences obtained Fabricius 2008; Bryce and Sampey 2014).
    [Show full text]
  • Using Dna to Figure out Soft Coral Taxonomy – Phylogenetics of Red Sea Octocorals
    USING DNA TO FIGURE OUT SOFT CORAL TAXONOMY – PHYLOGENETICS OF RED SEA OCTOCORALS A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAIʻI AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTERS OF SCIENCE IN ZOOLOGY DECEMBER 2012 By Roxanne D. Haverkort-Yeh Thesis Committee: Robert J. Toonen, Chairperson Brian W. Bowen Daniel Rubinoff Keywords: Alcyonacea, soft corals, taxonomy, phylogenetics, systematics, Red Sea i ACKNOWLEDGEMENTS This research was performed in collaboration with C. S. McFadden, A. Reynolds, Y. Benayahu, A. Halász, and M. Berumen and I thank them for their contributions to this project. Support for this project came from the Binational Science Foundation #2008186 to Y. Benayahu, C. S. McFadden & R. J. Toonen and the National Science Foundation OCE-0623699 to R. J. Toonen, and the Office of National Marine Sanctuaries which provided an education & outreach fellowship for salary support. The expedition to Saudi Arabia was funded by National Science Foundation grant OCE-0929031 to B.W. Bowen and NSF OCE-0623699 to R. J. Toonen. I thank J. DiBattista for organizing the expedition to Saudi Arabia, and members of the Berumen Lab and the King Abdullah University of Science and Technology for their hospitality and helpfulness. The expedition to Israel was funded by the Graduate Student Organization of the University of Hawaiʻi at Mānoa. Also I thank members of the To Bo lab at the Hawaiʻi Institute of Marine Biology, especially Z. Forsman, for guidance and advice with lab work and analyses, and S. Hou and A. G. Young for sequencing nDNA markers and A.
    [Show full text]
  • Downloaded from Genbank (Table1)
    biology Article Morphological and Molecular Characterization of Five Species Including Three New Species of Golden Gorgonians (Cnidaria: Octocorallia) from Seamounts in the Western Pacific Yu Xu 1,2,3,†, Zifeng Zhan 1,† and Kuidong Xu 1,2,3,* 1 Laboratory of Marine Organism Taxonomy and Phylogeny, Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; [email protected] (Y.X.); [email protected] (Z.Z.) 2 Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China 3 University of Chinese Academy of Sciences, Beijing 100049, China * Correspondence: [email protected]; Tel.: +86-0532-8289-8776 † Contributed equally to this work. Simple Summary: Deep-water octocorals are main components of vulnerable marine ecosystems (VMEs) and play an important role in conservation and research. Iridogorgia Verill, 1883 is a distinct octocoral group characterized by a remarkably spiral structure and large size in deep sea, where the diversity of Iridogorgia is poorly known in the Western Pacific. Based on the collection of Iridogorgia specimens from seamounts in the tropical Western Pacific, we described five species including three new species using an integrated morphological-molecular approach. We assessed the potential of Citation: Xu, Y.; Zhan, Z.; Xu, K. the mitochondrial genes MutS and COI, and the nuclear 28S rDNA for species delimitation and Morphological and Molecular phylogenetic reconstruction of Iridogorgia. The results suggest that the mitochondrial markers are Characterization of Five Species not able to resolve the species boundaries and deeply divergent relationships adequately, while 28S Including Three New Species of rDNA showed potential application in DNA barcoding and phylogenetic reconstruction for this Golden Gorgonians (Cnidaria: genus.
    [Show full text]
  • A Review of Gorgonian Coral Species (Cnidaria, Octocorallia, Alcyonacea
    A peer-reviewed open-access journal ZooKeysA 860: review 1–66 of(2019) gorgonian coral species held in the Santa Barbara Museum of Natural History... 1 doi: 10.3897/zookeys.860.19961 MONOGRAPH http://zookeys.pensoft.net Launched to accelerate biodiversity research A review of gorgonian coral species (Cnidaria, Octocorallia, Alcyonacea) held in the Santa Barbara Museum of Natural History research collection: focus on species from Scleraxonia, Holaxonia, and Calcaxonia – Part I: Introduction, species of Scleraxonia and Holaxonia (Family Acanthogorgiidae) Elizabeth Anne Horvath1,2 1 Westmont College, 955 La Paz Road, Santa Barbara, California 93108 USA 2 Invertebrate Laboratory, Santa Barbara Museum of Natural History, 2559 Puesta del Sol Road, Santa Barbara, California 93105, USA Corresponding author: Elizabeth Anne Horvath ([email protected]) Academic editor: James Reimer | Received 1 August 2017 | Accepted 25 March 2019 | Published 4 July 2019 http://zoobank.org/11140DC9-9744-4A47-9EC8-3AF9E2891BAB Citation: Horvath EA (2019) A review of gorgonian coral species (Cnidaria, Octocorallia, Alcyonacea) held in the Santa Barbara Museum of Natural History research collection: focus on species from Scleraxonia, Holaxonia, and Calcaxonia – Part I: Introduction, species of Scleraxonia and Holaxonia (Family Acanthogorgiidae). ZooKeys 860: 1–66. https://doi.org/10.3897/zookeys.860.19961 Abstract Gorgonian specimens collected from the California Bight (northeastern Pacific Ocean) and adjacent areas held in the collection of the Santa Barbara Museum of Natural History (SBMNH) were reviewed and evaluated for species identification; much of this material is of historic significance as a large percentage of the specimens were collected by the Allan Hancock Foundation (AHF) ‘Velero’ Expeditions of 1931– 1941 and 1948–1985.
    [Show full text]
  • Distribution and Diversity of the Soft Coral Family Xeniidae (Coelenterata: Octocorallia) in Lembeh Strait, Indonesia
    Galaxea, Journal of Coral Reef Studies (Special Issue): 195-200(2013) Proc 2nd APCRS Distribution and diversity of the soft coral family Xeniidae (Coelenterata: Octocorallia) in Lembeh Strait, Indonesia Michael P. JANES1, * 1 AquaTouch, 12040 North 32nd Street, Phoenix, Arizona 85028 USA * Corresponding author: M. P. Janes E-mail: [email protected] Abstract The Xeniidae are a major component of benthic coral reef communities in Lembeh, Indonesia. A two- Introduction week survey of the xeniids from this region was conducted. Scuba collections were carried out to a depth of 25 meters. The Xeniidae soft corals inhabit warm, shallow tropical A total of 48 samples were examined, encompassing a waters from the coast of East Africa, Red Sea and South- variety of species found in Lembeh Strait. Representatives east Asia to the Central Pacific. Their presence in the of the genera Anthelia, Cespitularia, Heteroxenia, San­ Indo-Pacific and the islands of Indonesia has received sibia, Sympodium, and Xenia were recorded using micro- limited investigation (Tomascik et al. 1997). Most pub- scopic analysis. Visual estimates were made of the under- lished descriptions were recorded prior to the twentieth water abundance and distribution of these genera. Three century (Quoy and Gaimard 1833; Dana 1846; Schenk habitats containing xeniids were identified. Sand slopes, 1896; Ashworth 1899). Later, Verseveldt (1960) identified which were limited to the genera Anthelia, and Xenia. five species collected during the Snellius expedition. In Hard substratum patch reefs supported the greatest diver- 1996 Imahara published a review of Indonesian octocorals sity, which included communities of Anthelia, Cespitularia, including members of the Xeniidae.
    [Show full text]
  • Kahng Supplement
    The following supplement accompanies the article Sexual reproduction in octocorals Samuel E. Kahng1,*, Yehuda Benayahu2, Howard R. Lasker3 1Hawaii Pacific University, College of Natural Science, Waimanalo, Hawaii 96795, USA 2Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel 3Department of Geology and Graduate Program in Evolution, Ecology and Behavior, University at Buffalo, Buffalo, New York 14260, USA *Email: [email protected] Marine Ecology Progress Series 443:265–283 (2011) Table S1. Octocoral species and data used in the analysis and species assignment to taxonomic groups and to Clades and Subclades (Subcladecons: conservative subclade classification based only on genera in McFadden et. al. 2006) cons Clade Climate Latitude Location Subclade Sexuality Symbiont Subclade Sex ratio (F:M) Polyp fecundity Breeding period Max oocyte (um) Oogenesis (months) Group/Family Genus species Mode of reproduction References Alcyonacea Stolonifera Cornulariidae Cervera komaii 1 Japan 35 subtrop A G E 350 May-June Suzuki 1971 (Cornularia komaii) Cervera sagamiensis 1 Japan 35 subtrop A G E 630 Mar-June Suzuki 1971 (Cornularia sagamiensis) Clavulariidae Kahng et al. 2008; 1b 1c Hawaii 21 trop A G+ 1:1 S 550 <=12 7.4 continuous Carijoa riisei 1 Kahng 2006 Carijoa riisei 1 1b 1c Puerto Rico 18 trop A G+ 1:1 ? continuous Bardales 1981 (Telesto riisei) 1h Morocco 35 temp A ? E Benayahu & Loya Clavularia crassa 1 (Mediterranean) 1983; Benayahu 1989 GBR, 105 Alino & Coll 1989; 1n 1j 18 trop Z G E Oct-Nov Clavularia inflata 1 Phlippines 0 Bermas et al. 1992 11- Clavularia koellikeri 1 1n 1j GBR 12 trop Z ? B Bastidas et al 2002 Alcyoniina Alcyoniidae South Africa 27 subtrop ? G ? 200 Hickson 1900 Acrophytum claviger 1 0 Hartnoll 1975; Spain, France 1i 1g (NW 42 temp A G E June-July Garrabou 1999; Alcyonium acaule 1 McFadden 2001; E Mediterranean) Sala, pers.
    [Show full text]
  • Sexual Reproduction in Octocorals
    Vol. 443: 265–283, 2011 MARINE ECOLOGY PROGRESS SERIES Published December 20 doi: 10.3354/meps09414 Mar Ecol Prog Ser REVIEW Sexual reproduction in octocorals Samuel E. Kahng1,*, Yehuda Benayahu2, Howard R. Lasker3 1Hawaii Pacific University, College of Natural Science, Waimanalo, Hawaii 96795, USA 2Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel 3Department of Geology and Graduate Program in Evolution, Ecology and Behavior, University at Buffalo, Buffalo, New York 14260, USA ABSTRACT: For octocorals, sexual reproductive processes are fundamental to maintaining popu- lations and influencing macroevolutionary processes. While ecological data on octocorals have lagged behind their scleractinian counterparts, the proliferation of reproductive studies in recent years now enables comparisons between these important anthozoan taxa. Here we review the systematic and biogeographic patterns of reproductive biology within Octocorallia from 182 spe- cies across 25 families and 79 genera. As in scleractinians, sexuality in octocorals appears to be highly conserved. However, gonochorism (89%) in octocorals predominates, and hermaphro- ditism is relatively rare, in stark contrast to scleractinians. Mode of reproduction is relatively plas- tic and evenly split between broadcast spawning (49%) and the 2 forms of brooding (internal 40% and external 11%). External surface brooding which appears to be absent in scleractinians may represent an intermediate strategy to broadcast spawning and internal brooding and may be enabled by chemical defenses. Octocorals tend to have large oocytes, but size bears no statistically significant relationship to sexuality, mode of reproduction, or polyp fecundity. Oocyte size is sig- nificantly associated with subclade suggesting evolutionary conservatism, and zooxanthellate species have significantly larger oocytes than azooxanthellate species.
    [Show full text]