Summary of Product Characteristics 1. Name Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Modifications of Nucleic Acid Precursors That Inhibit Plant Virus Multiplication
Molecular Plant Pathology Modifications of Nucleic Acid Precursors That Inhibit Plant Virus Multiplication William 0. Dawson and Carol Boyd Department of Plant Pathology, University of California, Riverside 92521. This work was supported in part by U.S. Department of Agriculture Grant 84-CTC-1-1402. Accepted for publication 4 April 1986. ABSTRACT Dawson, W. 0., and Boyd, C. 1987. Modifications of nucleic acid precursors that inhibit plant virus multiplication. Phytopathology 77:477-480. The relationship between chemical modifications of normal nucleic acid highest proportion of antiviral activity were modification of the sugar base or nucleoside precursors and ability to inhibit multiplication of moiety (five of 13 chemicals were inhibitory) and addition of abnormal side tobacco mosaic virus or cowpea chlorotic mottle virus in disks from groups (three of seven chemicals were inhibitory). Eight new inhibitors of mechanically inoculated leaves was tested with 131 analogues. Chemicals virus multiplication were identified: 6-aminocytosine; 6-ethyl- tested were selected from 10 general classes of modifications to determine mercaptopurine; isopentenyladenosine; 2-thiopyrimidine; 2,4-dithio- the types of modifications of normal nucleic acid precursors that have pyrimidine; melamine; 5'-iodo-5'-deoxyadenosine; and 5'- greater probabilities of inhibiting virus multiplication. No inhibitory methyl-5'-deoxythioadenosine. chemicals were found in several classes. Classes of modifications with the Additionalkey words: antivirals, chemotherapy, control, virus diseases. The ability to control virus diseases of plants with chemicals different taxonomic groups, tobacco mosaic virus (TMV) in would be a valuable addition to existing control strategies. This tobacco and cowpea chlorotic mottle virus (CCMV) in cowpea. could be particularly useful in in vitro culture procedures to Chemicals were chosen to be tested based on two different criteria. -
R&D Briefing 76
The Impact of Recent Regulatory Developments on the Mexican Therapeutic Landscape Access to innovative medicines is key to El acceso a medicamentos innovadores es clave para improving overall population health, reducing mejorar la salud de toda la población, para reducir los hospitalisation time and decreasing morbidity and tiempos de hospitalización, la morbilidad y la mortalidad mortality. An efficient regulatory process can be de un país. Un proceso regulatorio eficiente tiene un reflected in measurable positive health impacts; impacto positivo medible en la salud, y por el contrario, conversely, activities that slow or impede acciones que retrasan o impiden la eficiencia regulatoria y regulatory efficiency and predictability can be su predictibilidad pueden ser perjudiciales. La parálisis detrimental. Recent developments in the Mexican reciente del Sistema regulatorio mexicano respecto a la regulatory system for the assessments of evaluación de nuevos medicamentos innovadores innovative new products have had a negative conlleva un impacto negativo en la salud de la población impact on Mexican public health. mexicana. This Briefing addresses the impact of suspending Este informe analiza el impacto de la suspensión de las the activities of the New Molecules Committee actividades del Comité de Moléculas Nuevas (NMC, por (NMC) on the Mexican therapeutic landscape. sus siglas en inglés) sobre el horizonte terapéutico de First, we compared the way that “new medicines” México. En primer lugar, comparamos la definición de are defined within the context of the Mexican nuevos medicamentos según el contexto regulatorio regulatory system, with definitions used by mexicano con las definiciones adoptadas por otras comparable regulators and health organisations. agencias reguladoras u organizaciones de salud del We have also investigated the extent to which mundo. -
Cancer Drug Pharmacology Table
CANCER DRUG PHARMACOLOGY TABLE Cytotoxic Chemotherapy Drugs are classified according to the BC Cancer Drug Manual Monographs, unless otherwise specified (see asterisks). Subclassifications are in brackets where applicable. Alkylating Agents have reactive groups (usually alkyl) that attach to Antimetabolites are structural analogues of naturally occurring molecules DNA or RNA, leading to interruption in synthesis of DNA, RNA, or required for DNA and RNA synthesis. When substituted for the natural body proteins. substances, they disrupt DNA and RNA synthesis. bendamustine (nitrogen mustard) azacitidine (pyrimidine analogue) busulfan (alkyl sulfonate) capecitabine (pyrimidine analogue) carboplatin (platinum) cladribine (adenosine analogue) carmustine (nitrosurea) cytarabine (pyrimidine analogue) chlorambucil (nitrogen mustard) fludarabine (purine analogue) cisplatin (platinum) fluorouracil (pyrimidine analogue) cyclophosphamide (nitrogen mustard) gemcitabine (pyrimidine analogue) dacarbazine (triazine) mercaptopurine (purine analogue) estramustine (nitrogen mustard with 17-beta-estradiol) methotrexate (folate analogue) hydroxyurea pralatrexate (folate analogue) ifosfamide (nitrogen mustard) pemetrexed (folate analogue) lomustine (nitrosurea) pentostatin (purine analogue) mechlorethamine (nitrogen mustard) raltitrexed (folate analogue) melphalan (nitrogen mustard) thioguanine (purine analogue) oxaliplatin (platinum) trifluridine-tipiracil (pyrimidine analogue/thymidine phosphorylase procarbazine (triazine) inhibitor) -
Renal Clinical Pharmacy Services“
DISSERTATION „Renal clinical pharmacy services“ Mag.pharm. Gunar Stemer angestrebter akademischer Grad Doktor der Naturwissenschaften (Dr.rer.nat.) Wien, 2011 Studienkennzahl lt. Studienblatt: A 091 449 Dissertationsgebiet lt. Studien- Pharmazie blatt: Betreuerin / Betreuer: Ao. Univ. Prof. Mag. Dr. Rosa Lemmens 2 e pensando di lei mi sopragiunse uno soave sonno ego dominus tuus vide cor tuum e d’esto core ardendo cor tuum lei paventosa umilmente pascea appreso gir io ne vedea piangendo la letizia si convertia in amarissimo pianto io sono in pace cor meum io sono in pace vide cor meum Dante Alighieri La Vita Nuova ~1293 Gewidmet meinen Eltern Annelies und Franz, in aufrichtiger Dankbarkeit und Liebe Dedicated to my parents Annelies and Franz, in sincere gratitude and love 3 4 ACKNOWLEDGEMENTS This thesis would not have been possible without the continuous support, help, and contributions of so many colleagues, companions, friends, and beloved family members. First, I want to express my deepest gratitude to my doctoral advisor, Mrs. Prof. Rosa Lemmens, for her commitment in supervising my thesis work, her support during the writing of this thesis, several constructive discussions with her, and her critical comments. My sincerest thanks are extended to the head of the pharmacy department of the Vienna General Hospital, Mrs. SR Mag. Elfriede Dolinar, for providing me with this unique opportunity to work on the topic of clinical pharmacy and, thus, contribute to the evolution of the complete hospital pharmacy and clinical pharmacy discipline in Austria. I would like to thank her for her trust in my capabilities to succeed in this demanding project over the last three years by implementing new services, her vision regarding the discipline of hospital pharmacy, her overall contribution to the development of the profession of hospital pharmacy, and her continuous belief in the value of clinical pharmacy services. -
Structural Basis for the Inhibition of Human 5,10-Methenyltetrahydrofolate Synthetase by N10-Substituted Folate Analogues
Published OnlineFirst September 8, 2009; DOI: 10.1158/0008-5472.CAN-09-1927 Experimental Therapeutics, Molecular Targets, and Chemical Biology Structural Basis for the Inhibition of Human 5,10-Methenyltetrahydrofolate Synthetase by N10-Substituted Folate Analogues Dong Wu,1 Yang Li,1 Gaojie Song,1 Chongyun Cheng,1 Rongguang Zhang,2 Andrzej Joachimiak,2 NeilShaw, 1 and Zhi-Jie Liu1 1National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China and 2Structural Biology Center, Argonne National Laboratory, Argonne, Illinois Abstract of the one-carbon metabolic network, dihydrofolate reductase, 5,10-Methenyltetrahydrofolate synthetase (MTHFS) regulates which catalyzes the conversion of dihydrofolate to tetrahydrofolate. the flow of carbon through the one-carbon metabolic network, Similarly, colorectal and pancreatic cancers are routinely treated by which supplies essential components for the growth and administration of the pyrimidine analogue 5-fluorouracil (5-FU), proliferation of cells. Inhibition of MTHFS in human MCF-7 which inhibits thymidylate synthase (TS; ref. 6). TS converts breast cancer cells has been shown to arrest the growth of deoxyuridylate to deoxythymidylate using a carbon donated by cells. Absence of the three-dimensional structure of human 5,10-methylenetetrahydrofolate (Fig. 1). This conversion is essential MTHFS (hMTHFS) has hampered the rational design and for DNA synthesis (7). To increase the clinical efficiency of the optimization of drug candidates. Here, we report the treatment, 5-formyltetrahydrofolate is often coadministered along structures of native hMTHFS, a binary complex of hMTHFS with 5-FU. The beneficial effect of administering 5-formyltetrahy- with ADP, hMTHFS bound with the N5-iminium phosphate drofolate during the therapy with 5-FU is a consequence of the reaction intermediate, and an enzyme-product complex of 5,10-methenyltetrahydrofolate synthetase (MTHFS)–catalyzed hMTHFS. -
Bendamustine and Cytosine Arabinoside: a Highly Synergistic Combination Visco C*, Carli G and Rodeghiero F Further DNA Synthesis [24]
Open Access Austin Journal of Cancer and Clinical Research Editorial Bendamustine and Cytosine Arabinoside: A Highly Synergistic Combination Visco C*, Carli G and Rodeghiero F further DNA synthesis [24]. The synergistic effect of bendamustine Department of Cell Therapy and Hematology, San Bortolo and cytarabine could be related to the individual mechanism of Hospital, Italy action of the two drugs, whose serial administration would avoid *Corresponding author: Carlo Visco, Department of the saturation of the common pathways. Cells escaping the cell cycle Cell Therapy and Hematology, San Bortolo Hospital, Via arrest induced by bendamustine and trying to repair their damage Rodolfi 37, 36100 Vicenza, Italy, Tel: +39 0444 753626; would be prone to incorporate the metabolite ara-CTP into DNA, Fax: +39 0444 920708; Email: [email protected] as reported by Staib [19] in acute myeloid leukemia cells. Indeed, the Received: January 07, 2015; Accepted: March 16, sequential treatment with bendamustine followed by cytarabine was 2015; Published: April 03, 2015 proven to be more effective than simultaneous addition of the two drugs (Figure 2) [21-23]. The S phase of the cell cycle is a crucial step Editorial of replication in mantle cell lymphoma (MCL) cells, where cyclin D1 Bendamustine is a bifunctional compound that has shown clinical overexpression deregulates the cell cycle at the G1/S phase transition, activity against various human cancers including non-Hodgkin’s and and is likely the engine continuously pushing cells towards S-phase Hodgkin’s lymphoma [1,2], chronic lymphocytic leukemia (CLL) [3], (Figure 3). Indeed, both drugs are known to be particularly active in multiple myeloma [4,5], breast cancer [6], and small-cell lung cancer patients with MCL. -
PD-1 / PD-L1 Combination Therapies
PD-1 / PD-L1 Combination Therapies Jacob Plieth & Edwin Elmhirst – November 2015 Foreword Biopharma owes much of the past few years’ bull run to advances in cancer – specifically to immuno-oncology approaches that harness the natural power of the immune system to combat disease. The charge has been led by antibodies against CTLA4 and PD-1, which have seen the launches of Yervoy, Opdivo and Keytruda, initially for melanoma but with additional indications now getting under way. What does the industry do for an encore? There are several late-stage antibodies that work in identical or similar ways – tremelimumab, atezolizumab and durvalumab – and slightly further away stands an amazing array of novel immuno-oncology approaches, which target novel antigens or novel immune system checkpoints. But most experts are now looking to combinations to build on the success of the first few immuno-oncology drugs to hit the market. This is a vital theme because, in investment terms, biopharma looks like it might at last have overheated, and as such it is desperate for another lift. The coming 18 months could provide several. The key lies in the first clinical evidence from early trials of anti-PD-1 and anti-PD-L1 antibodies combined with novel immune system agents, as well as in combination with a barrage of old and new small-molecule and antibody drugs, chemotherapies, cancer vaccines and gene therapies. Combining numerous new and old approaches with anti-PD-1/PD-L1 agents is logical given that the latter already look like they are becoming standard treatment in certain populations within certain tumour types. -
Drug Therapy of Cancer Curt Peterson
Drug therapy of cancer Curt Peterson To cite this version: Curt Peterson. Drug therapy of cancer. European Journal of Clinical Pharmacology, Springer Verlag, 2011, 67 (5), pp.437-447. 10.1007/s00228-011-1011-x. hal-00671936 HAL Id: hal-00671936 https://hal.archives-ouvertes.fr/hal-00671936 Submitted on 20 Feb 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 110130 Drug therapy of cancer Curt Peterson Professor, MD, PhD Departments of Clinical Pharmacology and Oncology University hospital SE-581 85 Linköping Sweden [email protected], tel: +46101031090, fax: +4613104195 2 Abstract Cancer chemotherapy was introduced at the same time as antibacterial chemotherapy but has not at all been such a success. However, there is a growing optimism in oncology today due to the introduction of several more or less target specific drugs as complement to the conventional cytotoxic drugs introduced half a century ago. The success in the treatment of chronic myelogenous leukemia by imatinib, inhibiting the bcr-abl activated tyrosine kinase thereby interrupting the signal transduction pathways that lead to leukemic transformation. with impressive survival benefit has paved the way for this new optimism. -
VOL. XXVII, No. 3-4, 2011 20112011 Heart Diseases in Essential Thrombocythemia Review
VOL. XXVII, No. 3-4, 2011 20112011 Heart diseases in essential Thrombocythemia review Mihaela Rugină1 , L. Predescu 1, V.Molfea 1, I. M. Coman 1,2,Ş . Bubenek- Turconi 1,2 1. “C.C.Iliescu" Emergency Institute for Cardiovascular Diseases 2. “Carol Davila” University of Medicine and Pharmacy, Bucharestepartment of the Emergency Universitary Hospital –Bucharest Contact address: Dr. Mihaela Rugină,Ş , “C.C.Iliescu" Emergency Institute for Cardiovascular Diseases os. Fundeni 258, Sector 2, 022328, Bucharest • E-mail: [email protected] Abstract Essential thrombocythemia (ET) is a myeloproliferative disorder that raises questions about the characteristics of the disease treatment. ET evolution is grafted to a predisposition to bleeding and thrombotic events and microvascular events. Thrombotic events often affects medium-sized and large arteries including cerebral arteries, coronary and peripheral, but can also affect the veins causing recurrent venous thrombosis of the legs with thromboembolic complications. The most common cardiac complications occurred in the ET are the acute coronary syndromes or coronary thrombosis, and in some cases has been incriminated and coronary spasm. Possible cardiac valvular damage that can occur in ET (thickening, calcification, valvular regurgitation) and the possibility of associating with pulmonary arterial hypertension who aren't associated to a pulmonary embolism are reported in the literature but with an extremely rare incidence. Key words: essential thrombocythemia, acute coronary syndroms, thrombosis -
Summary of Product Characteristics
Health Products Regulatory Authority Summary of Product Characteristics 1 NAME OF THE MEDICINAL PRODUCT Etoposide ”Ebewe ” 20 mg/ml – Concentrate for solution for infusion 2 QUALITATIVE AND QUANTITATIVE COMPOSITION 1 ml of concentrate for solution for infusion contains 20 mg of etoposide. 1, 5, or 10 vials of 2.5 ml concentrate for solution for infusion contains 50 mg etoposide. 1, 5, or 10 vials of 5 ml concentrate for solution for infusion contains 100 mg etoposide. 1, 5, or 10 vials of 10 ml concentrate for solution for infusion contains 200 mg etoposide. 1, 5, or 10 vials of 20 ml concentrate for solution for infusion contains 400 mg etoposide. 1, 5, or 10 vials of 50 ml concentrate for solution for infusion contains 1000 mg etoposide. Excipients: Benzyl alcohol, ethanol. For a full list of excipients, see section 6.1. 3 PHARMACEUTICAL FORM Concentrate for solution for infusion. Clear, light yellow solution. 4 CLINICAL PARTICULARS 4.1 Therapeutic Indications Etoposide is a antineoplastic agent for intravenous use. It can be used alone or in combination with other oncolytic agents. Available data show that etoposide may be used in treatment of small -celled lung cancer, resistant non -seminomatous testicular carcinoma, acute myelomonocytic and myelocytic leukaemia (AML, FAB subtype M4 or M5) as part of combination therapy after failure of induction chemotherapy. 4.2 Posology and method of administration Etoposide should be administered only by or under the direct supervision of a qualified physician who is experienced in the use of cancer chemotherapeutic agents. Pregnant personnel should not handle chemotherapeutic agents. -
Highly Halaven-Resistant KBV20C Cancer Cells Can Be Sensitized by Co-Treatment with Fluphenazine JI HYUN CHEON, BYUNG MU LEE, HYUNG SIK KIM and SUNGPIL YOON
ANTICANCER RESEARCH 36 : 5867-5874 (2016) doi:10.21873/anticanres.11172 Highly Halaven-resistant KBV20C Cancer Cells Can Be Sensitized by Co-treatment with Fluphenazine JI HYUN CHEON, BYUNG MU LEE, HYUNG SIK KIM and SUNGPIL YOON School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea Abstract. Aim: To identify conditions that induce an increase developed and used in the clinic to treat resistant or metastatic in the sensitivity of highly Halaven (HAL)-resistant cancer cells cancer. HAL has been developed to overcome the resistance compared to sensitive cells. Materials and Methods: We of cancer cells to routinely used antimitotic drugs. HAL observed that drug-resistant KBV20C cells are highly resistant targets the depolymerization of microtubules (5, 6). HAL is to HAL compared to other antimitotic drugs. The concentration considered a promising drug for triple-negative breast cancer required to treat KBV20C cells was almost 500-fold higher than or certain resistant cancers (7, 8). Since patients are expected that used to treat sensitive parent KB cells. In order to increase to develop resistance to HAL, identifying the mechanism(s) sensitization, HAL-treated KBV20C cells were co-treated with that underlie cell sensitization to HAL would be an important the repositioned drug, fluphenazine (FLU). Results: HAL and step in the development of more effective treatments by FLU co-treatment inhibited the growth and increased apoptosis designing approaches to increase HAL-associated apoptosis. via G 2 arrest in HAL-treated KBV20C cancer cells. In the present study, we determined that P-glycoprotein Sensitization by HAL-FLU affected retinoblastoma protein (P-gp)-overexpressing KBV20C cells are highly resistant to (pRB), pHistone H3 and pH2AX protein levels. -
Dihydropyrimidine Dehydrogenase in the Metabolism of the Anticancer Drugs
Cancer Chemotherapy and Pharmacology (2019) 84:1157–1166 https://doi.org/10.1007/s00280-019-03936-w REVIEW ARTICLE Dihydropyrimidine dehydrogenase in the metabolism of the anticancer drugs Vinay Sharma1 · Sonu Kumar Gupta1 · Malkhey Verma1 Received: 3 May 2019 / Accepted: 21 August 2019 / Published online: 4 September 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Cancer caused by fundamental defects in cell cycle regulation leads to uncontrolled growth of cells. In spite of the treatment with chemotherapeutic agents of varying nature, multiple resistance mechanisms are identifed in cancer cells. Similarly, numerous variations, which decrease the metabolism of chemotherapeutics agents and thereby increasing the toxicity of anticancer drugs have been identifed. 5-Fluorouracil (5-FU) is an anticancer drug widely used to treat many cancers in the human body. Its broad targeting range is based upon its capacity to act as a uracil analogue, thereby disrupting RNA and DNA synthesis. Dihydropyrimidine dehydrogenase (DPD) is an enzyme majorly involved in the metabolism of pyrimidines in the human body and has the same metabolising efect on 5-FU, a pyrimidine analogue. Multiple mutations in the DPD gene have been linked to 5-FU toxicity and inadequate dosages. DPD inhibitors have also been used to inhibit excessive degradation of 5-FU for meeting appropriate dosage requirements. This article focusses on the role of dihydropyrimidine dehydrogenase in the metabolism of the anticancer drug 5-FU and other associated drugs. Keywords Cancer · Anticancer drugs · Dihydropyrimidine dehydrogenase (DPD) · 5-Fluorouracil (5-FU) · Drug resistance · Drug metabolism Introduction by Dihydropyrimidine dehydrogenase (DPD) through the pyrimidine degradation pathway.