Oral PREDICTING CHANGES to HYDRODYNAMICS, WATER
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Eclectic Overview of the SA Marine Science Community
A biologists’ personal overview of the SA Marine Science community and its outputs (2001-2006)*1 Mark J Gibbons, Department of Biodiversity and Conservation Biology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa. Email: [email protected] ABSTRACT I have analysed 1 295 of the outputs published by the South African Marine Science Community (SAMSC) in either peer-reviewed journals or as books/book chapters for the period 2001-2006, with a view to identifying trends in the field, summarizing institutional overlaps and assessing the demographic state-of-play. Although almost 70% of our outputs were published internationally, we published the bulk of our research in strictly marine science journals which suggests, perhaps, that we need to be thinking bigger. More than 22% of all outputs were led by International colleagues, and these were published in journals with a significantly higher Impact Factor than those led by local authors. Women led less than 25%, and persons from previously disadvantaged backgrounds led less than 10%, of all outputs: this needs monitoring, discussion and pro-active response by employers. Thirty-six authors (~95% male, ~97% white) were responsible for more than 50% of all outputs, which suggests that the field is not totally dominated by an ageing cohort. Despite the fact that the bulk of the SAMSC is centred in the SW Cape, our study areas are approximately equally spread around the coastline, though there is an obvious institutional bias to the geographical location of study sites. Globally-orientated studies were generally published in “better” outlets than locally-orientated work, and were more likely to be led by international colleagues. -
Crustacea, Isopoda) from the Indian Ocean Coast of South Africa, with a Key to the Externally Attaching Genera of Cymothoidae
A peer-reviewed open-access journal ZooKeys 889: 1–15 (2019) Bambalocra, a new genus of Cymothoidae 1 doi: 10.3897/zookeys.889.38638 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A new genus and species of fish parasitic cymothoid (Crustacea, Isopoda) from the Indian Ocean coast of South Africa, with a key to the externally attaching genera of Cymothoidae Niel L. Bruce1,2, Rachel L. Welicky2,3, Kerry A. Hadfield2, Nico J. Smit2 1 Biodiversity & Geosciences Program, Queensland Museum, PO Box: 3300, South Brisbane BC, Queensland 4101, Australia 2 Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa 3 School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle, WA, 98105, USA Corresponding author: Niel L. Bruce ([email protected]) Academic editor: Saskia Brix | Received 30 July 2019 | Accepted 9 October 2019 | Published 14 November 2019 http://zoobank.org/88E937E5-7C48-49F8-8260-09872CB08683 Citation: Bruce NL, Welicky RL, Hadfield KA, Smit NJ (2019) A new genus and species of fish parasitic cymothoid (Crustacea, Isopoda) from the Indian Ocean coast of South Africa, with a key to the externally attaching genera of Cymothoidae. ZooKeys 889: 1–15. https://doi.org/10.3897/zookeys.889.38638 Abstract Bambalocra intwala gen. et sp. nov. is described from Sodwana Bay, north-eastern South Africa. The monotypic genus is characterised by the broadly truncate anterior margin of the head with a ventral ros- trum, coxae 2–5 being ventral in position not forming part of the body outline and not or barely visible in dorsal view, and the posterolateral margins of pereonites 6 and 7 are posteriorly produced and broadly rounded. -
Quantitative Variability of the Copepod Assemblages in the Northern Adriatic Sea from 1993 to 1997
Estuarine, Coastal and Shelf Science 74 (2007) 528e538 www.elsevier.com/locate/ecss Quantitative variability of the copepod assemblages in the northern Adriatic Sea from 1993 to 1997 Frano Krsˇinic´ a,*, Dubravka Bojanic´ b, Robert Precali c, Romina Kraus c a Institute of Oceanography and Fisheries Split, Ivana Mesˇtrovic´a 63, 21000 Split, Croatia b Institute for Marine and Coastal Research, University of Dubrovnik, Kneza Damjana Jude 12, 20000 Dubrovnik, Croatia c RuCer Bosˇkovic´ Institute, Center for Marine Research, 52210 Rovinj, Croatia Received 25 January 2007; accepted 23 May 2007 Available online 20 July 2007 Abstract Quantitative variability of the copepod assemblages in the northern Adriatic Sea was investigated at two stations, during 43 cruises, from January 1993 to October 1997. Samples were taken at 0.5, 10, and 20 m, as well as near the bottom, using 5-l Niskin bottles. For inter-annual variation in the density of copepod assemblages data were presented as total number of nauplii and copepodites with adult copepods of the fol- lowing groups: Calanoida, Cyclopoida-oithonids, Cyclopoida-oncaeids and Harpacticoida. Moreover, hydrographic conditions, both fractions of phytoplankton, non-loricate ciliates and tintinnids were taken into consideration. Nauplii are the most numerous fraction at both stations with an average over 74% in the total number of all copepod groups. Their numbers were significantly higher at the western eutrophic station, while at the eastern oligotrophic station, an absolute maximum of 693 ind. lÀ1 was noted. The maximum values of calanoids and oithonids occur gen- erally during summer and these copepods are always more numerous at the western station: 33e50% and 50e63%, respectively. -
Sub-Regional Report On
EP United Nations Environment UNEP(DEPI)/MED WG 359/Inf.10 Programme October 2010 ENGLISH ORIGINAL: ENGLISH MEDITERRANEAN ACTION PLAN Tenth Meeting of Focal Points for SPAs Marseille, France 17-20 May 2011 Sub-regional report on the “Identification of important ecosystem properties and assessment of ecological status and pressures to the Mediterranean marine and coastal biodiversity in the Adriatic Sea” PNUE CAR/ASP - Tunis, 2011 Note : The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of UNEP concerning the legal status of any State, Territory, city or area, or of its authorities, or concerning the delimitation of their frontiers or boundaries. © 2011 United Nations Environment Programme 2011 Mediterranean Action Plan Regional Activity Centre for Specially Protected Areas (RAC/SPA) Boulevard du leader Yasser Arafat B.P.337 – 1080 Tunis Cedex E-mail : [email protected] The original version (English) of this document has been prepared for the Regional Activity Centre for Specially Protected Areas by: Bayram ÖZTÜRK , RAC/SPA International consultant With the participation of: Daniel Cebrian. SAP BIO Programme officer (overall co-ordination and review) Atef Limam. RAC/SPA International consultant (overall co-ordination and review) Zamir Dedej, Pellumb Abeshi, Nehat Dragoti (Albania) Branko Vujicak, Tarik Kuposovic (Bosnia ad Herzegovina) Jasminka Radovic, Ivna Vuksic (Croatia) Lovrenc Lipej, Borut Mavric, Robert Turk (Slovenia) CONTENTS INTRODUCTORY NOTE ............................................................................................ 1 METHODOLOGY ....................................................................................................... 2 1. CONTEXT ..................................................... ERREUR ! SIGNET NON DÉFINI.4 2. SCIENTIFIC KNOWLEDGE AND AVAILABLE INFORMATION........................ 6 2.1. REFERENCE DOCUMENTS AND AVAILABLE INFORMATION ...................................... 6 2.2. -
Triple Barcoding for a Hyperparasite, Its Parasitic Host, and the Host Itself
Parasite 28, 49 (2021) Ó C. Bouguerche et al., published by EDP Sciences, 2021 https://doi.org/10.1051/parasite/2021044 Available online at: www.parasite-journal.org RESEARCH ARTICLE OPEN ACCESS Triple barcoding for a hyperparasite, its parasitic host, and the host itself: a study of Cyclocotyla bellones (Monogenea) on Ceratothoa parallela (Isopoda) on Boops boops (Teleostei) Chahinez Bouguerche1,4, Fadila Tazerouti1, Delphine Gey2,3, and Jean-Lou Justine4,* 1 Université des Sciences et de la Technologie Houari Boumediene, Faculté des Sciences Biologiques, Laboratoire de Biodiversité et Environnement : Interactions – Génomes, BP 32, El Alia, Bab Ezzouar, Algiers, Algeria 2 Service de Systématique moléculaire, UMS 2700 CNRS, Muséum National d’Histoire Naturelle, Sorbonne Universités, 43 rue Cuvier, CP 26, 75231 Paris Cedex 05, France 3 UMR7245 MCAM, Muséum National d’Histoire Naturelle, 43 rue Cuvier, CP 52, 75231 Paris Cedex 05, France 4 Institut Systématique Évolution Biodiversité (ISYEB), Muséum National d’Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 43 rue Cuvier, CP 51, 75231 Paris Cedex 05, France Received 15 October 2020, Accepted 7 May 2021, Published online 7 June 2021 Abstract – Cyclocotyla bellones Otto, 1823 (Diclidophoridae) is a monogenean characterised by an exceptional way of life. It is a hyperparasite that attaches itself to the dorsal face of isopods, themselves parasites in the buccal cavity of fishes. In this study, Cy. bellones was found on Ceratothoa parallela (Otto, 1828), a cymothoid isopod parasite of the sparid fish Boops boops off Algeria in the Mediterranean Sea. We provide, for the first time, molecular barcoding information of a hyperparasitic monogenean, the parasitic crustacean host, and the fish host, with COI sequences. -
Pelagic Cnidarians in the Boka Kotorska Bay, Montenegro (South Adriatic)
View metadata, citation and similar papers at core.ac.uk brought to you by CORE ISSN: 0001-5113 ACTA ADRIAT., UDC: 593.74: 574.583 (262.3.04) AADRAY 53(2): 291 - 302, 2012 (497.16 Boka Kotorska) “ 2009/2010” Pelagic cnidarians in the Boka Kotorska Bay, Montenegro (South Adriatic) Branka PESTORIĆ*, Jasmina kRPO-ĆETkOVIĆ2, Barbara GANGAI3 and Davor LUČIĆ3 1Institute of Marine Biology, P.O. Box 69, Dobrota bb, 85330 Kotor, Montenegro 2Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia 3Institute for Marine and Coastal Research, University of Dubrovnik, Kneza Damjana Jude 12, 20000 Dubrovnik, Croatia *Corresponding author: [email protected] Planktonic cnidarians were investigated at six stations in the Boka Kotorska Bay from March 2009 to June 2010 by vertical hauls of plankton net from bottom to surface. In total, 12 species of hydromedusae and six species of siphonophores were found. With the exception of the instant blooms of Obelia spp. (341 ind. m-3 in December), hydromedusae were generally less frequent and abundant: their average and median values rarely exceed 1 ind. m-3. On the contrary, siphonophores were both frequent and abundant. The most numerous were Muggiaea kochi, Muggiaea atlantica, and Sphaeronectes gracilis. Their total number was highest during the spring-summer period with a maximum of 38 ind. m-3 observed in May 2009 and April 2010. M. atlantica dominated in the more eutrophicated inner area, while M. kochi was more numerous in the outer area, highly influenced by open sea waters. This study confirms a shift of dominant species within the coastal calycophores in the Adriatic Sea observed from 1996: autochthonous M. -
Mapping Aquatic Animal Diseases in Southern Africa
Mapping Study of Aquatic Animal Diseases in Southern Africa – Walakira J. K Mapping Aquatic Animal Diseases in Southern Africa Inter African Bureau for Animal Resources Fisheries Governance Project 1st Final Draft Report February, 2016 Prepared by: John K. Walakira (PhD) Mapping Aquatic Animal Diseases in Southern Africa – Walakira J. K Table of Contents Acknowledgments Executive Summary List of Tables List of Figures 1. Background 2. Purpose and Scope 3. Methodology 4. An Overview of the Status of Aquaculture in the Region 4.1. Fish Production Systems in the Region 4.2. Overview of the Levels and Systems of Production between the Countries within the Region 5. Status of Aquatic Animal Disease in the Region 5.1. Prevalence and Incidences and of aquatic animal diseases in the region 5.2. The distribution of reported aquatic animal diseases in the region 5.3. A Brief Overview of the Factors associated with the occurrence and spread of aquatic animal diseases in the region. 5.3.1. Biological Factors (e.g. Species, production system) 5.3.2. Environmental Factors (e.g. Season, geographical attributes, watershed/water body, etc) 5.3.3. Socio-Economic Factors (e.g. Trade, commodity, live fish, processed, etc.) 6. Overview of Aquatic Animal Disease Control In the Region 6.1. Presence of National and Regional Aquatic Animal Disease Control Policies and Measures. 6.2. Opportunities, Issues and Challenges 6.2.1. Production Systems 6.3. A General Overview/Analysis of the Status and Control of Aquatic Animal Diseases in the Region: Issues, Challenges, and Recommendations. List of Annexes 1. TORs of the study 2. -
Iris Hendricks, Jan Marcin Węsławski , Paolo Magni, Chris Emblow, Fred
MARBENA Creating a long term infrastructure for marine biodiversity research in the European Economic Area and the Newly Associated States. CONTRACT N°: EVR1-CT-2002-40029 Deliverable The status of European marine biodiversity research and potential extensions of the related network of institutes Iris Hendriks, Jan Marcin Węsławski , Ward Appeltans , Paolo Magni, Frederico Cardigos, Chris Emblow, Fred Buchholz, Alexandra Kraberg, Vesna Flander-Putrle , Damia Jaume, Carlos Duarte, Ricardo Serrão Santos, Carlo Heip, Herman Hummel, Pim van Avesaath PROJECT CO-ORDINATOR: Prof. Dr. Carlo Heip Netherlands-Institute of Ecology- Centre for Estuarine and Marine Ecology PARTNERS : 1. Netherlands Institute of Ecology Centre for Estuarine and Coastal Ecology (NIOO-CEME) - The Netherlands 2. Flanders Marine Institute (VLIZ) - Belgium 3. Centro de Investigação Interdisciplinar Marinha e Ambiental (CIIMAR)- Portugal 4. Natural Environment Research Council (NERC) Centre for Ecology and Hydrology - United Kingdom 5. Ecological consultancy Services Limited (EcoServe) - Ireland 6. Fundació Universitat-Empresa De Les Illes Balears (FUEIB) - Illes Balears, Spain 7. University of Oslo (UO) - Norway 8. Forshungsinstitut Senckenberg (SNG) - Germany 9. Instituto do Mar (IMAR), Center of IMAR of the University of the Azores - Portugal 10. National Environmental Research Institute (NERI), Department of Marine Ecology - Denmark 11. Institute of Marine Biology of Crete (IMBC) - Greece 12. Marine Biological Association of the United Kingdom (MBA) - United Kingdom 13. Polish Academy of Sciences, Institute of Oceanology (IOPAS) - Poland 14. Institute of Oceanology, Bulgarion Academy of sciences (IO BAS) - Bulgaria 15. National Institute of Biology (NIB) - Slovenia 16. Centro Marino Internazionale (IMC) - Italy 17. Estonian Marine Institute (MEI) - Estonia 18. Akvaplan-Niva AS and University Studies on Svalbard (AN/UNIS) - Norway 19. -
Ecology of Gelatinous Carnivores in the Mondego Estuary: the Role of Siphonophores
Ecology of gelatinous carnivores in the Mondego estuary: the role of siphonophores Doctoral thesis in Biosciences, scientific area of Ecology, supervised by Prof. Dr. Miguel Ângelo do Carmo Pardal, by Prof. Dr. Ulisses Miranda Azeiteiro and by Dr. Sónia Cristina Ferreira Cotrim Marques, presented to the Department of Life Sciences of the Faculty of Sciences and Technology of the University of Coimbra Tese de doutoramento em Biociências, ramo de especialização em Ecologia, orientada por Professor Doutor Miguel Ângelo do Carmo Pardal, por Professor Doutor Ulisses Miranda Azeiteiro, e por Doutora Sónia Cristina Ferreira Cotrim Marques e apresentada ao Departamento de Ciências da Vida da Faculdade de Ciências e Tecnologia da Universidade de Coimbra Mariaelena D’Ambrosio Department of Life Sciences – University of Coimbra Coimbra, 2017 This Thesis was supported by: The CFE - Center for Functional Ecology, University of Coimbra and by the Portuguese Foundation for Science and Technology (FCT) through a Ph.D. grant attributed to Mariaelena D’Ambrosio (SFRH/BD/91541/2012) subsidized by the European Social Fund and MCTES (Portuguese Ministry of Science, Technology and Higher Education), through the POPH (Human Potential Operational Programme), QREN (National Strategic Reference Framework) and COMPETE (Programa Operacional Factores de Competitividade). Cover image: Siphonophores’s illustration of Ernst Haeckel (1834-1919) from: “Art forms in nature”, 1904. This thesis includes three manuscripts listed below, published or submitted for publication in scientific journals in the areas of ecology and marine biology: Chapter I D’Ambrosio, M, Molinero JC, Azeiteiro UM, Pardal MA, Primo AL, Nyitrai D, Marques SC (2016). Interannual abundance changes of gelatinous carnivore zooplankton unveil climate- driven hydrographic variations in the Iberian Peninsula, Portugal. -
Diversity and Aggregation Areas of Planktonic Cnidarians of the Southern Channels of Chile (Boca Del Guafo to Pulluche Channel)
Invest. Mar., Valparaíso, 35(2):Diversity 71-82, and 2007 aggregation areas of planktonic cnidarians of the southern channels 71 Diversity and aggregation areas of planktonic cnidarians of the southern channels of Chile (Boca del Guafo to Pulluche Channel) Sergio Palma1, Pedro Apablaza1 & Daniela Soto1 1Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso Casilla 1020, Valparaíso, Chile ABSTRACT. We identified 36 species of cnidarians (27 hydromedusae, 9 siphonophores) collected from the Moraleda, King, Darwin, and Pulluche channels, located in southern Chile. The hydromedusae Gossea brachymera, Hybocodon unicus, and Sarsia coccometra, and the siphonophores Rosacea cymbiformis and R. plicata were recorded for the first time in the southern channels. Diversity values were higher for Hydromedusae (2.66 bits) than for Siphonophorae (1.15 bits). The largest aggregates were found in the Moraleda and Pulluche channels, with densities that exceeded 7,000 ind·1000 m-3. The vertical distribution of the dominant species showed Solmundella bitentaculata to be located near the surface (0-20 m), whereas Sphaeronectes gracilis, Muggiaea atlantica, Clytia simplex, and Proboscidactyla ornata were found in subsurface waters (20-50 m) and Amphogona apicata in deeper waters (50-100 m). According to the Pearson analysis, salinity correlated positively with S. gracilis and S. bitentaculata and negatively with P. ornata. C. simplex was indirectly associated with temperature and the dissolved oxygen concentration. Key words: cnidarians, gelatinous zooplankton, distribution, diversity, southern channels, Chile. Diversidad y áreas de agregación de los cnidarios planctónicos en los canales del sur de Chile (Boca del Guafo a Canal Pulluche) RESUMEN. Se identificaron 36 especies de cnidarios, 27 hidromedusas y 9 sifonóforos, colectadas en los canales Moraleda, King, Darwin y Pulluche, localizados en aguas interiores del sur de Chile. -
(Isopoda: Cymothoidae), with Description of Six New Species of Anilocra Leach, 1818 from Africa Rachel L
Welicky and Smit Parasites Vectors (2019) 12:387 https://doi.org/10.1186/s13071-019-3578-5 Parasites & Vectors RESEARCH Open Access Redescription and molecular characterisation of the fsh ectoparasite Anilocra capensis Leach, 1818 (Isopoda: Cymothoidae), with description of six new species of Anilocra Leach, 1818 from Africa Rachel L. Welicky1,2* and Nico J. Smit1 Abstract Background: Anilocra capensis Leach, 1818 is the only named species of Anilocra Leach, 1818 from South Africa. Anilocra is a large genus (> 40 species) with high levels of diversity reported from the Caribbean and Indo-West Pacifc. Considering it is highly unlikely that all records of Anilocra from South Africa can be of a single species, the aim of this study was to better understand the diversity of Anilocra from this region and continent. Methods: To redescribe A. capensis, the syntypes of A. capensis and specimens recorded as A. capensis from Africa were borrowed from the Natural History Museum, London, UK, and The iZiko South African Museum, Cape Town. Newly collected fresh samples of A. capensis were collected from of Cape Town, South Africa. Morphological rede- scriptions of the syntypes, and other museum and fresh material were conducted. Fresh samples were used to charac- terise molecularly A. capensis using the mitochondrial cytochrome c oxidase subunit 1 gene (cox1). Results: Morphological analyses demonstrated that apart from A. capensis there are six Anilocra species new to sci- ence from Africa: Anilocra ianhudsoni n. sp., Anilocra bunkleywilliamsae n. sp., Anilocra paulsikkeli n. sp., Anilocra jovanasi n. sp., Anilocra angeladaviesae n. sp. and Anilocra hadfeldae n. sp. -
Biostor-74657.Pdf
PROC. BIOL. SOC. WASH. 101(3), 1988, pp. 585-602 NEW RECORDS OF FISH PARASITIC MARINE ISOPOD CRUSTACEANS (CYMOTHOIDAE, SUBFAMILY ANILOCRINAE) FROM THE INDO-WEST PACIFIC Niel L. Bruce and Elizabeth B. Harrison-Nelson Abstract. —New records of Indo-Pacific Anilocrinae are reported on, prin- cipally from the collections of the Smithsonian Institution, British Museum (Natural History), and the Zoologisch Museum, Amsterdam.Twenty-nine species from the genera Anilocra, Creniola, Nerocila, Pleopodias and Renocila are recorded or reported on, with remarks given for all species, and figures for those species that are poorly known. The hosts of three isopod species are recorded for the first time, and new host records are given for a further six species. New figures are given for Anilocra marginata (Bleeker), Anilocra rhodotaenia Bleeker is relegated to species inquirenda. The following new synonyms are recorded: Nerocila arres Bowman & Tareen with A^. sigani Bowman & Tareen; Anilocra acuminata Haller with A. capensis Leach; and Pleopodias superatus Williams & Williams with P. diaphus Avdeev. Bruce (1987a, b, c) recently revised the imens from Ambon, two from Madang, Pa- Australian genera and species of the pua New Guinea, all of which show they subfamily Anilocrinae. In the course of that are distinct from Anilocra apogonae Bruce), work the type material of most species of another ^A7/7ocra from Madang, and a num- Anilocra, Nerocila, Renocila and Pleopodias ber of specimens belonging to the Anilocra was examined and drawn. In 1986 the se- dimidiata-leptosoma complex of species. nior author visited the Smithsonian Insti- The low number of unnamed taxa encoun- tution, the British Museum (Natural His- tered suggests the probability that most of tory), and other museums in Europe.