Stress and Glucocorticoid Receptor Transcriptional Programming in Time and Space: Implications for the Brain–Gut Axis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Alternative Role of DNA Methylation in Splicing Regulation
TIGS-1191; No. of Pages 7 Review The alternative role of DNA methylation in splicing regulation Galit Lev Maor, Ahuvi Yearim, and Gil Ast Department of Human Molecular Genetics and Biochemistry, Sackler Medical School, Tel Aviv University, Tel Aviv, Israel Although DNA methylation was originally thought to only Alternative splicing is an evolutionarily conserved mech- affect transcription, emerging evidence shows that it also anism that increases transcriptome and proteome diversity regulates alternative splicing. Exons, and especially splice by allowing the generation of multiple mRNA products from sites, have higher levels of DNA methylation than flanking a single gene [10]. More than 90% of human genes were introns, and the splicing of about 22% of alternative exons shown to undergo alternative splicing [11,12]. Furthermore, is regulated by DNA methylation. Two different mecha- the average number of spliced isoforms per gene is higher in nisms convey DNA methylation information into the vertebrates [13], implying that the prevalence of alternative regulation of alternative splicing. The first involves mod- splicing in these organisms is important for their greater ulation of the elongation rate of RNA polymerase II (Pol II) complexity. The splicing reaction is regulated by various by CCCTC-binding factor (CTCF) and methyl-CpG binding activating and repressing elements such as cis-acting se- protein 2 (MeCP2); the second involves the formation of a quence signals and RNA-binding proteins [13–15]. Its regu- protein bridge by heterochromatin protein 1 (HP1) that lation is essential for providing cells and tissues their recruits splicing factors onto transcribed alternative specific features, and for their response to environmental exons. -
Play Clock Operator Guide
NFHS GENERAL INSTRUCTIONS FOR FOOTBALL GAME AND PLAY CLOCK OPERATORS A. The game and play clock operators should report to the game officials at the stadium at least 30 minutes before game time for the following purposes: 1. To synchronize timer’s watch with official game time as established by the game official responsible for timing. 2. To advise game officials whether the game clock operator and/or play clock operator will be in the press box or on the field/side- line. Determine procedure for communications with both operators and test procedures prior to the games. 3. To discuss coordination of starting, stopping and adjusting the game clock or play clock in accordance with the playing rules. 4. To discuss if the game clock horn (mechanical signal) can be turned off. Preference is for the game clock horn (mechanical signal) to be turned off for the duration of the game. B. The game clock is normally started 30 minutes before game time. The halftime intermission will start on the referee’s signal when the players and game officials leave the field. All pregame and halftime activities shall be synchronized with the game clock. The mandatory three-minute warm-up period will be put on the game clock after the intermission time has elapsed and shall be started immediately. C. The game clock operator shall have an extra stopwatch available. In case of failure of the game clock, the game clock operator shall immediately contact the game officials, giving them the correct data regarding the official time. The game official responsible for timing will then pick up the correct game time on the stopwatch. -
A Newly Assigned Role of CTCF in Cellular Response to Broken Dnas
biomolecules Review A Newly Assigned Role of CTCF in Cellular Response to Broken DNAs Mi Ae Kang and Jong-Soo Lee * Department of Life Sciences, Ajou University, Suwon 16499, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-31-219-1886; Fax: +82-31-219-1615 Abstract: Best known as a transcriptional factor, CCCTC-binding factor (CTCF) is a highly con- served multifunctional DNA-binding protein with 11 zinc fingers. It functions in diverse genomic processes, including transcriptional activation/repression, insulation, genome imprinting and three- dimensional genome organization. A big surprise has recently emerged with the identification of CTCF engaging in the repair of DNA double-strand breaks (DSBs) and in the maintenance of genome fidelity. This discovery now adds a new dimension to the multifaceted attributes of this protein. CTCF facilitates the most accurate DSB repair via homologous recombination (HR) that occurs through an elaborate pathway, which entails a chain of timely assembly/disassembly of various HR-repair complexes and chromatin modifications and coordinates multistep HR processes to faithfully restore the original DNA sequences of broken DNA sites. Understanding the functional crosstalks between CTCF and other HR factors will illuminate the molecular basis of various human diseases that range from developmental disorders to cancer and arise from impaired repair. Such knowledge will also help understand the molecular mechanisms underlying the diverse functions of CTCF in genome biology. In this review, we discuss the recent advances regarding this newly assigned versatile role of CTCF and the mechanism whereby CTCF functions in DSB repair. Keywords: CTCF; DNA damage repair; homologous recombination Citation: Kang, M.A.; Lee, J.-S. -
Agonists and Knockdown of Estrogen Receptor Β Differentially Affect
Schüler-Toprak et al. BMC Cancer (2016) 16:951 DOI 10.1186/s12885-016-2973-y RESEARCH ARTICLE Open Access Agonists and knockdown of estrogen receptor β differentially affect invasion of triple-negative breast cancer cells in vitro Susanne Schüler-Toprak1*, Julia Häring1, Elisabeth C. Inwald1, Christoph Moehle2, Olaf Ortmann1 and Oliver Treeck1 Abstract Background: Estrogen receptor β (ERβ) is expressed in the majority of invasive breast cancer cases, irrespective of their subtype, including triple-negative breast cancer (TNBC). Thus, ERβ might be a potential target for therapy of this challenging cancer type. In this in vitro study, we examined the role of ERβ in invasion of two triple-negative breast cancer cell lines. Methods: MDA-MB-231 and HS578T breast cancer cells were treated with the specific ERβ agonists ERB-041, WAY200070, Liquiritigenin and 3β-Adiol. Knockdown of ERβ expression was performed by means of siRNA transfection. Effects on cellular invasion were assessed in vitro by means of a modified Boyden chamber assay. Transcriptome analyses were performed using Affymetrix Human Gene 1.0 ST microarrays. Pathway and gene network analyses were performed by means of Genomatix and Ingenuity Pathway Analysis software. Results: Invasiveness of MBA-MB-231 and HS578T breast cancer cells decreased after treatment with ERβ agonists ERB-041 and WAY200070. Agonists Liquiritigenin and 3β-Adiol only reduced invasion of MDA-MB-231 cells. Knockdown of ERβ expression increased invasiveness of MDA-MB-231 cells about 3-fold. Transcriptome and pathway analyses revealed that ERβ knockdown led to activation of TGFβ signalling and induced expression of a network of genes with functions in extracellular matrix, tumor cell invasion and vitamin D3 metabolism. -
CCCTC-Binding Factor Is Essential to the Maintenance and Quiescence of Hematopoietic Stem Cells in Mice
OPEN Experimental & Molecular Medicine (2017) 49, e371; doi:10.1038/emm.2017.124 Official journal of the Korean Society for Biochemistry and Molecular Biology www.nature.com/emm ORIGINAL ARTICLE CCCTC-binding factor is essential to the maintenance and quiescence of hematopoietic stem cells in mice Tae-Gyun Kim1,2,3,4, Sueun Kim1,2,4, Soyeon Jung1, Mikyoung Kim1, Bobae Yang1,2, Min-Geol Lee2,3 and Hyoung-Pyo Kim1,2 Hematopoiesis involves a series of lineage differentiation programs initiated in hematopoietic stem cells (HSCs) found in bone marrow (BM). To ensure lifelong hematopoiesis, various molecular mechanisms are needed to maintain the HSC pool. CCCTC-binding factor (CTCF) is a DNA-binding, zinc-finger protein that regulates the expression of its target gene by organizing higher order chromatin structures. Currently, the role of CTCF in controlling HSC homeostasis is unknown. Using a tamoxifen- inducible CTCF conditional knockout mouse system, we aimed to determine whether CTCF regulates the homeostatic maintenance of HSCs. In adult mice, acute systemic CTCF ablation led to severe BM failure and the rapid shrinkage of multiple c-Kithi progenitor populations, including Sca-1+ HSCs. Similarly, hematopoietic system-confined CTCF depletion caused an acute loss of HSCs and highly increased mortality. Mixed BM chimeras reconstituted with supporting BM demonstrated that CTCF deficiency-mediated HSC depletion has both cell-extrinsic and cell-intrinsic effects. Although c-Kithi myeloid progenitor cell populations were severely reduced after ablating Ctcf, c-Kitint common lymphoid progenitors and their progenies were less affected by the lack of CTCF. Whole-transcriptome microarray and cell cycle analyses indicated that CTCF deficiency results in the enhanced expression of the cell cycle-promoting program, and that CTCF-depleted HSCs express higher levels of reactive oxygen species (ROS). -
Neurobiological Functions of the Period Circadian Clock 2 Gene, Per2
Review Biomol Ther 26(4), 358-367 (2018) Neurobiological Functions of the Period Circadian Clock 2 Gene, Per2 Mikyung Kim, June Bryan de la Peña, Jae Hoon Cheong and Hee Jin Kim* Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul 01795, Republic of Korea Abstract Most organisms have adapted to a circadian rhythm that follows a roughly 24-hour cycle, which is modulated by both internal (clock-related genes) and external (environment) factors. In such organisms, the central nervous system (CNS) is influenced by the circadian rhythm of individual cells. Furthermore, the period circadian clock 2 (Per2) gene is an important component of the circadian clock, which modulates the circadian rhythm. Per2 is mainly expressed in the suprachiasmatic nucleus (SCN) of the hypothalamus as well as other brain areas, including the midbrain and forebrain. This indicates that Per2 may affect various neurobiological activities such as sleeping, depression, and addiction. In this review, we focus on the neurobiological functions of Per2, which could help to better understand its roles in the CNS. Key Words: Circadian rhythm, Per2 gene, Sleep, Depression, Addiction, Neurotransmitter INTRODUCTION and lives in organisms because it can impart effects from the level of cells to organs including the brain. Thus, it is neces- A circadian rhythm is any physiological process that displays sary to understand clock-related genes that are controlling the a roughly 24 hour cycle in living beings, such as mammals, circadian rhythm endogenously. plants, fungi and cyanobacteria (Albrecht, 2012). In organ- The Period2 (Per2) gene is a member of the Period family isms, most biological functions such as sleeping and feeding of genes consisting of Per1, Per2, and Per3, and is mainly patterns are adapted to the circadian rhythm. -
The Period of the Circadian Oscillator Is Primarily Determined by the Balance Between Casein Kinase 1 and Protein Phosphatase 1
The period of the circadian oscillator is primarily determined by the balance between casein kinase 1 and protein phosphatase 1 Hyeong-min Leea,1,2, Rongmin Chena,1, Hyukmin Kima, Jean-Pierre Etchegarayb,3, David R. Weaverb, and Choogon Leea,4 aDepartment of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306; and bDepartment of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605-2324 Edited by Joseph S. Takahashi, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, and approved August 30, 2011 (received for review May 4, 2011) Mounting evidence suggests that PERIOD (PER) proteins play a PAGE—occurs progressively over several hours (12, 19), which is central role in setting the speed (period) and phase of the circadian critical for stretching the feedback loop to ∼24 h. However, PER2 clock. Pharmacological and genetic studies have shown that changes can be maximally phosphorylated by CK1ε in vitro kinase reac- in PER phosphorylation kinetics are associated with changes in tions within 30 min (20, 21), suggesting that PER phosphorylation circadian rhythm period and phase, which can lead to sleep disorders must be counterbalanced by phosphatases in vivo. such as Familial Advanced Sleep Phase Syndrome in humans. We Because the phase and period of the clock are primarily de- and others have shown that casein kinase 1δ and ε (CK1δ/ε) are termined by temporal regulation of PER phosphorylation (12, 15, essential PER kinases, but it is clear that additional, unknown mech- 21–26), the characterization of PER kinases and phosphatases is anisms are also crucial for regulating the kinetics of PER phosphor- vital to understanding the circadian clock mechanism. -
A Mutant Drosophila Homolog of Mammalian Clock Disrupts
Cell, Vol. 93, 791±804, May 29, 1998, Copyright 1998 by Cell Press AMutantDrosophila Homolog of Mammalian Clock Disrupts Circadian Rhythms and Transcription of period and timeless Ravi Allada,*²³§ Neal E. White,³ Aronson et al., 1994; Shearman et al., 1997; Sun et al., W. Venus So,²³ Jeffrey C. Hall,²³ 1997; Tei et al., 1997). ²³ and Michael Rosbash* k In Drosophila, there are two well-characterized clock *Howard Hughes Medical Institute genes: period (per) and timeless (tim). Protein levels, ² NSF, Center for Biological Timing RNA levels, and transcription rates of these two genes ³ Department of Biology undergo robust circadian oscillations (Zerr et al., 1990; Brandeis University Hardin et al., 1990, 1992; Hardin, 1994; Sehgal et al., Waltham, Massachusetts 02254 1995; So and Rosbash, 1997). In addition, mutations § Department of Pathology in the two proteins (PER and TIM) alter or abolish the Brigham and Women's Hospital periodicity and phase of these rhythms, demonstrating Boston, Massachusetts 02115 that both proteins regulate their own transcription (Har- din et al., 1990; Sehgal et al., 1995; Marrus et al., 1996). Although there is no evidence indicating that the effects Summary on transcription are direct, PER contains a PAS domain, which has been shown to mediate interactions between We report the identification, characterization, and transcription factors (Huang et al., 1993; Lindebro et cloning of a novel Drosophila circadian rhythm gene, al., 1995). Most of these PAS-containing transcription dClock. The mutant, initially called Jrk, manifests dom- factors also contain the well-characterized basic helix- inant effects: heterozygous flies have a period alter- loop-helix (bHLH) DNA-binding domains (Crews, 1998). -
Circadian Rhythmicity and the Influence of 'Clock
2311 Z Kiss and P M Ghosh Prostate cancer and the 23:11 T123–T134 Thematic Review ‘clock’ genes WOMEN IN CANCER THEMATIC REVIEW Circadian rhythmicity and the influence of ‘clock’ genes on prostate cancer Zsofia Kiss1,2 and Paramita M Ghosh1,2,3 1VA Northern California Health Care System, Mather, California, USA Correspondence 2Department of Urology, University of California at Davis, Sacramento, California, USA should be addressed 3Department of Biochemistry and Molecular Medicine, University of California at Davis, Sacramento, to P M Ghosh California, USA Email [email protected] Abstract Key Words The androgen receptor (AR) plays a key role in the development and progression f circadian clock of prostate cancer (CaP). Since the mid-1990s, reports in the literature pointed out f androgen receptor higher incidences of CaP in some select groups, such as airline pilots and night shift f melatonin workers in comparison with those working regular hours. The common finding in these f per1 ‘high-risk’ groups was that they all experienced a deregulation of the body’s internal f bmal1 circadian rhythm. Here, we discuss how the circadian rhythm affects androgen levels and modulates CaP development and progression. Circadian rhythmicity of androgen Endocrine-Related Cancer Endocrine-Related production is lost in CaP patients, with the clock genes Per1 and Per2 decreasing, and Bmal1 increasing, in these individuals. Periodic expression of the clock genes was restored upon administration of the neurohormone melatonin, thereby suppressing CaP progression. Activation of the melatonin receptors and the AR antagonized each other, and therefore the tumour-suppressive effects of melatonin and the clock genes were most clearly observed in the absence of androgens, that is, in conjunction with androgen deprivation therapy (ADT). -
Enhancement of Transgene Expression by NF-Y and CTCF Devon Zimmerman , Krupa Patel , Matthew Hall , & Jacob Elmer
bioRxiv preprint doi: https://doi.org/10.1101/336156; this version posted May 31, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Enhancement of Transgene Expression by NF-Y and CTCF Devon Zimmermana, Krupa Patela, Matthew Halla, & Jacob Elmera a Department of Chemical Engineering Villanova University 800 East Lancaster Avenue Villanova, PA, USA 19085 *Corresponding Author: Dr. Jacob Elmer 119 White Hall Department of Chemical Engineering 800 East Lancaster Avenue Villanova, PA 19085 [email protected] (610) 519-3093 (P) (610) 519-5859 (F) bioRxiv preprint doi: https://doi.org/10.1101/336156; this version posted May 31, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract If a transgene is effectively delivered to a cell, its expression may still be limited by epigenetic mechanisms that silence the transgene. Indeed, once the transgene reaches the nucleus, it may be bound by histone proteins and condensed into heterochromatin or associated with repressor proteins that block transcription. In this study, we sought to enhance transgene expression by adding binding motifs for several different epigenetic enzymes either upstream or downstream of two promoters (CMV and EF1α). Screening these plasmids revealed that luciferase expression was enhanced 10-fold by the addition of a CCAAT box just upstream of the EF1α promoter to recruit nuclear transcription factor Y (NF-Y), while inserting a CCCTC- binding factor (CTCF) motif downstream of the EF1α promoter enhanced expression 14-fold (14.03 ± 6.54). -
BMAL1 and Modulates Tissue-Specific Circadian Networks
Nuclear receptor HNF4A transrepresses CLOCK: BMAL1 and modulates tissue-specific circadian networks Meng Qua, Tomas Duffyb, Tsuyoshi Hirotac, and Steve A. Kaya,1 aKeck School of Medicine, University of Southern California, Los Angeles, CA 90089; bDepartment of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037; and cInstitute of Transformative Bio-Molecules, Nagoya University, 464-8602 Nagoya, Japan Contributed by Steve A. Kay, November 6, 2018 (sent for review September 24, 2018; reviewed by Carla B. Green and John B. Hogenesch) Either expression level or transcriptional activity of various nuclear NRs canonically function as ligand-activated transcription receptors (NRs) have been demonstrated to be under circadian factors that regulate the expression of their target genes to control. With a few exceptions, little is known about the roles of affect physiological pathways (19). The importance of NRs in NRs as direct regulators of the circadian circuitry. Here we show maintaining optimal physiological homeostasis is illustrated in that the nuclear receptor HNF4A strongly transrepresses the their identification as potential targets for therapeutic drug transcriptional activity of the CLOCK:BMAL1 heterodimer. We development to combat a diverse array of diseases, including define a central role for HNF4A in maintaining cell-autonomous reproductive disorders, inflammation, cancer, diabetes, car- circadian oscillations in a tissue-specific manner in liver and colon diovascular disease, and obesity (20). Various NRs have been cells. Not only transcript level but also genome-wide chromosome implicated as targets of the circadian clock, which may con- binding of HNF4A is rhythmically regulated in the mouse liver. tribute to the circadian regulation of nutrient and energy me- ChIP-seq analyses revealed cooccupancy of HNF4A and CLOCK: tabolism. -
The Role of CTCF in Cell Differentiation Rodrigo G
© 2018. Published by The Company of Biologists Ltd | Development (2018) 145, dev137729. doi:10.1242/dev.137729 REVIEW Developing in 3D: the role of CTCF in cell differentiation Rodrigo G. Arzate-Mejıá1,Félix Recillas-Targa1 and Victor G. Corces2,* ABSTRACT precise role played by CTCF during organismal development has CTCF is a highly conserved zinc-finger DNA-binding protein that remained poorly explored. Here, we review evidence linking CTCF mediates interactions between distant sequences in the genome. As to the control of developmental processes (summarized in Table 1). a consequence, CTCF regulates enhancer-promoter interactions and We first provide an overview of how CTCF functions to regulate contributes to the three-dimensional organization of the genome. genome 3D organization and how this role affects gene expression. Recent studies indicate that CTCF is developmentally regulated, We then discuss the roles of CTCF in the development and suggesting that it plays a role in cell type-specific genome differentiation of various cell and tissue types, ranging from organization. Here, we review these studies and discuss how CTCF embryonic stem cells (ESCs) to neural, cardiac and muscle cells. We functions during the development of various cell and tissue types, conclude with an integrative view of CTCF as an important ranging from embryonic stem cells and gametes, to neural, muscle determinant of cell lineage specification during vertebrate and cardiac cells. We propose that the lineage-specific control of development. CTCF levels, and its partnership with lineage-specific transcription factors, allows for the control of cell type-specific gene expression via Mechanisms of CTCF function chromatin looping.