Solid Earth, 9, 859–878, 2018 https://doi.org/10.5194/se-9-859-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Inverted distribution of ductile deformation in the relatively “dry” middle crust across the Woodroffe Thrust, central Australia Sebastian Wex1, Neil S. Mancktelow1, Friedrich Hawemann1, Alfredo Camacho2, and Giorgio Pennacchioni3 1Department of Earth Sciences, ETH Zurich, Sonneggstrasse 5, 8092 Zurich, Switzerland 2Department of Geological Sciences, University of Manitoba, 125 Dysart Rd, Winnipeg, Manitoba, R3T 2N2, Canada 3Department of Geosciences, University of Padova, Via Gradenigo 6, 35131 Padua, Italy Correspondence: Neil S. Mancktelow (
[email protected]) Received: 31 January 2018 – Discussion started: 7 February 2018 Revised: 29 May 2018 – Accepted: 18 June 2018 – Published: 11 July 2018 Abstract. Thrust fault systems typically distribute shear 1 Introduction strain preferentially into the hanging wall rather than the footwall. The Woodroffe Thrust in the Musgrave Block of Continental fault and shear zone systems (e.g. Ramsay, 1980) central Australia is a regional-scale example that does not fit with displacements on the order of several tens to hundreds this model. It developed due to intracontinental shortening of kilometres generally show an asymmetric mylonite distri- during the Petermann Orogeny (ca. 560–520 Ma) and is inter- bution across the main fault horizon that is opposite for re- preted to be at least 600 km long in its E–W strike direction, verse faults or thrusts and normal faults or detachments. Fault with an approximate top-to-north minimum displacement of zones are predicted to become more viscous and broaden 60–100 km.