Evaluation of Antioxidant Potential of Monodora Myristica (African Nutmeg)

Total Page:16

File Type:pdf, Size:1020Kb

Evaluation of Antioxidant Potential of Monodora Myristica (African Nutmeg) Int.J.Curr.Microbiol.App.Sci (2013) 2(11): 373-383 ISSN: 2319-7706 Volume 2 Number 11 (2013) pp. 373-383 http://www.ijcmas.com Original Research Article Evaluation of antioxidant potential of Monodora myristica (African Nutmeg) P.E.Eze-Steven1*, C. N.Ishiwu2, S. C. Udedi3, and B.O.Ogeneh4 1Department of Applied Biochemistry, Faculty of Applied Naturel Sciences, Enugu State University of Science and Technology, Enugu State, Nigeria 2Department of Food Science and Technology, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria 3Department of Applied Biochemistry, Faculty of Biological Sciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria 4Department of Medical Microbiology, College of Medicine, University of Nigeria Teaching Hospital, Enugu Enugu State, Nigeria. *Corresponding author A B S T R A C T This work evaluated the antioxidant potential of Monodora myristica (African nutmeg). Monodora myristica extract was obtained through solvent extraction K e y w o r d s using n-hexane and used as treatment on freshly prepared crude palm kernel oil and Monodora palm oil. Equal volume of oil samples were subjected to different concentrations of myristica, oil; extract treatment (0.2ml, 0.4ml, 0.6ml, 0.8ml, 1.0ml). These oil samples were free fatty acid; equally divided into two groups SS (stored under sun) and SR (stored under room thiobarbituric temperature). Group SS was stored under the sun and group SR was stored under acid; reactive room temperature for three weeks. These treated oil samples were analyzed on oxygen specie; weekly basis at two different parameters: Acid value (AV) of free fatty acid and acid value; thiobarbituric acid (TBA) value, using standard methods. The main effect of extract palm oil; palm was determined using ANOVA. For the two varieties of oil, the acid value of free kernel oil; fatty acid increased significantly (P<0.05) as the period extends for group SS peroxide without extract while those for group SR showed no significant increase. But AV value. of oil samples treated with higher extract concentration decreased significantly (P<0.05) for both groups SS and SR. TBA value also showed the same trend of AV. Hence, Monodora myristica extract yielded reducing effect in the oxidative level of the oil varieties Introduction Monodora myristica is a widespread and oblong and pale brown when fresh with a attractive small tree with very decorative thin seed coat and hard kernel (Okafor, flowers appearing just before the leaves. 2003). The seed production is seasonal The fruit is suspended on a long green occurring between April to June. The stalk with numerous seeds embedded in fruits are globular and ovoid; 3-4 inch long whitish sweet smelling pulp. The seed is and about 3-5 inch diameter. The wood is 373 Int.J.Curr.Microbiol.App.Sci (2013) 2(11): 373-383 hard. The seeds are contained in a hard nutmeg has a nutmeg-like flavour with a shell and have a very strong aroma. This pungent overtone. The whole seed coat plant is commonly called Orchid flower and seed is either ground and used as a tree in English, Ehuru Ofia' in lgbo seasoning for West African soups or stews (Okafor, 2003). Monodora myristica is a or is ground and used as a nutmeg-like specie of calabash nutmeg, the edible flavouring in cakes and desserts. seeds yield a nutmeg-flavoured oil which is used in West Africa for cooking Palm oil is a produce from the fruit and (Eggeling, 2002). Monodora myristica kernel of the palm tree. The fruits are first seed extract contains important collected and pressed, yielding a rich, pharmacological compounds like dark-red oil which is high in carotene alkaloids, flavonoids, and vitamins A and (Pantzaris and Ahmad, 2004). Palm kernel E as well as many important lipids. oil (PKO) is obtained from processing the Traditionally, the plant is widely used kernel from the fruit of the oil palm tree especially to relieve toothache as well as (Elaies guineensis). Palm kernel oil has in the treatment of dysentery. When similar uses to coconut oil owing to their roasted and ground, the seeds are rubbed similarity in composition (Pantzaris and on the skin for (unspecified) skin diseases Ahmad, 2004). PKO is gotten from the (Irvine, 2000). This suggests that the seeds kernel of the palm fruit and it is located of Monodora myristica plant could be inside the hard shell while the outer fleshy germicidal or antiseptic. The roasted mesocarp gives palm oil (Nyam et al., ground seeds are chewed, spat into the 2009). hand and then rubbed across the forehead to relieve headache. The seeds are also Lipid oxidation is one of the major reasons crushed and used as insecticide, while the that food deteriorate and is caused by the root relieves toothache when crushed reaction of fat and oil with molecular (Oguntimein et al., 1999). oxygen, leading to off-flavours that are generally called rancidity (Basturk et al., The seeds of Monodora myristica are also 2007). Rancidity is associated with off- used for the treatment of constipation and flavour and odour of the oil. There are two as a stimulant (Irvine, 2000). Essential causes to rancidity. One occurs when oil oil's from the seed is used in reacts with oxygen and is called oxidative pharmaceutical and dental preparation rancidity. The second cause is by the (Talalaji, 1999). Nutmegs are tropically combination of enzymes and moisture. distributed. It is called ehuru or ehiri in Enzymes such as lipase liberate fatty acids Igbo language in the south east part of from triglycerides to form di- and/or Nigeria. The Monodora species are also monoglycerides and free fatty acids and found in West Africa and are cultivated in such liberation of fatty acid is called the southern parts of Nigeria (Okafor, hydrolysis, hence hydrolytic rancidity. 2003). The trees are very common in the Oxidation is concerned mainly with south east and south-south regions of unsaturated fatty acids. Oxidative rancidity Nigeria. The seeds and seed coats of the is of special interest as it leads to the plant are used as a spice. Once dried these development of off-flavour that can be have an aroma reminiscent of nutmeg and detected early in the development of are sold whole to be grated as a nutmeg rancidity (Basturk et al., 2007). Oils in substitute (Talalaji, 1999). Calabash general are known to be susceptible to 374 Int.J.Curr.Microbiol.App.Sci (2013) 2(11): 373-383 oxidation and microbial attack. The Glycosides composition of the various oils determines the extent of oxidation and type of These are the products obtained after organisms likely to thrive in them (Chow condensation of sugar with different types et al., 2000). of organic hydroxyl compounds. These are referred to as the cardiac-active or cardio- This study is aimed at examining the tonic glycosides examples include oxidative and biodeteriogenic effects of amygdalin. In small doses, glycosides free radicals contaminating the oils from promote mild gastric irritation causing a the varieties of the oil palm (Elaeis reflux from the bronchioles. This can be guineensis) and palm kernel oil and the attributed to its wide usage but in larger chemical components of the oils and the dose, they lead to vomiting (Evans, 1989). effect of solvent extract of ehuru (African A larger number of glycosides and their nutmeg). Lipid oxidation and resultant aglycone have antimicrobial activities. flavour impairment has seriously limited the storage potential of most oil containing Saponins food (Ihekoronye and Ngoddy, 1985). Lipid oxidation generally occurs after a Saponins are useful in the production of long induction period. Once started it is soft drinks, beers, confectioneries, generally a very rapid reaction and shampoos, soaps, fibre extinguishers and proceeds by a free radical mechanism. beverages and this is attributed to its foaming ability. They are quite toxic when General review of phytochemistry of injected into the bloodstream and are Monodora myristica harmless when taken by mouth since the sarsaparilla is rich in saponins but is used Alkaloids in the preparation of non-alcoholic beverages (Evans, 1989). The highest They are a group of basic secondary plant sapogenin concentration occurs in the substance, which usually possesses an n- reproductive parts of the plants, the seeds containing heterocyte. Alkaloids exist in containing 18% trigonenin (Bonner and plants as salts, amine or n-oxides. Varner, 1965). Saponin have some Dicotyledonous plants are the real medicinal properties, since it has producers of alkaloids (Evans, 1989). beenreported to have anti-inflammatory, They appear in large members and in anti-fungal, antimycolic, bacteriostatic and many variation in these plants. They are other biological activities. bitter to taste, so when present in plants, insects and predators tend to move away Tannins from such plants. They also protect the plant from the effect of singlet oxygen The word "tannin" signifies substances (Bonner and Varner, 1965). Alkaloids at present in plant extracts, which are able to high concentration, produce a variety of combine with protein of animal hides, toxic effects on animals. Their prevent their Putrefaction and the pharmaceutical and medicinal importance conversion to leather (Evans, 1989). Those can be seen to act on the cardiovascular tannins are responsible for the taste system and some have been resorted to be qualities of wines, tea and coffee. They are antihypertensive. astrigent and styptic (i.e. the dry sensation 375 Int.J.Curr.Microbiol.App.Sci (2013) 2(11): 373-383 felt in the mouth). Tannins due to their for use in detergents, cosmetics and many antiseptic properties prevent fungal attacks other cosmetic products but less (Bonner and Varner, 1965; Evans, 1989). consideration is given it for other purpose. Monodora myristica seed are used as Applications of vegetable oils condiment in West Africa, a decoction of the seed is used to treat guinea worm Many forest trees produce seeds that infection.
Recommended publications
  • Effect of N-Hexane Oil Extract of Two Spices on Serum Lipid Profile and Blood Glucose Concentration of Albino Rats by Ogunka-Nnoka C
    Global Journal of Science Frontier Research Biological Science Volume 13 Issue 6 Version 1.0 Year 2013 Type : Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 2249-4626 & Print ISSN: 0975-5896 Effect of N-Hexane Oil Extract of Two Spices on Serum Lipid Profile and Blood Glucose Concentration of Albino Rats By Ogunka-Nnoka C. U. & Igwe F. U. Rivers State University of Science and Technology, Nigeria Abstract - Consumers are concerned with their health and physical fitness and are seeking for alternative plant products with potential for providing nutrients with enhanced health benefits. Hence, this study investigates the effect of mixture of Ehuru (Monodora myristica) and Njasang (Ricinodendron heudelotii) oil extract on serum lipid profile and blood glucose concentration of albino rats. The spices were processed into fine flour and the oil was extracted with n-hexane as the solvent. A total of twenty five rats weighing 125-160g were separated into five groups of five each to represent control, olive oil and varying concentrations of the spices. After acclimiatization for one week, experimental administration of the extract was carried out daily for 28 days. Blood samples were collected by cardiac puncture into tubes. A portion of the blood was used for fasting blood glucose determination. Serum was separated from the other portion and used for assay of lipid profile using standard kit methods. The results obtained showed percentage fatty acid yield for Ehuru and Njasang as 79.54 and 81.0 (polyunsaturated) and 13.40 and 15.0 (monounsaturated) respectively. Fasting blood glucose assay showed that only rats in group 1 (6.46mmol/L) became significantly (p<0.05) hyperglycaemic while groups 2-4(6.03, 5.98 and 5.53mmol/L) showed a hypoglycaemic effect with respect to control (6.13mmol/L).
    [Show full text]
  • Monodora Myristica) As a Flavourant in Cookie Production
    International Journal of Food Studies IJFS October 2019 Volume 8 pages 1{12 Potentials of African Nutmeg (Monodora myristica) as a Flavourant in Cookie Production Kazeem K. Olatoyea*, Omololu O. Fapojuwoa, Joshu A. Olorunsholaa, and Julianah O. Ayorindea a Department of Food Science and Technology, College of Agriculture, Kwara State University, Malete, P.M.B 1530, Ilorin, Kwara State, Nigeria *Corresponding author [email protected] Received: 13 November 2017; Published online: 18 October 2019 Abstract African nutmeg, a possible local substitute for a commercial food flavourant, remains largely un- derutilized in Nigeria. Its application potential in cookie production was investigated in this study. African nutmeg (Monodora myristica) seed flour (ANM) was produced using a standard method. The flour was substituted for vanilla flavour (VFL) in ratio of 0, 1, 2, 3, and 3.5 g and functional proper- ties of the flour blends (water absorption capacity (WAC), oil absorption capacity (OAC), and bulk density) were determined, using standard methods. Cookies were developed and characterized chem- ically, physically (colour) and organoleptically using the AOAC method, a colourimeter and sensory panellists respectively. Data were analysed using ANOVA at p<0.05. Replacement of vanilla with African nutmeg had no significant effect on bulk density (0.62 g cm−3-0.68 g cm−3), but significantly affected WAC (133-142 %) and OAC (147-156 %) of flour blends. Crude protein (9.44-15.49 %), crude fat (3.17-6.50 %), total ash (2-2.73 %) and crude fibre (0.12-0.23 %) contents of the cookie increased, whilst metabolizable energy (385.33-367 kcal) decreased.
    [Show full text]
  • Oxidative Stress Modulation by Cameroonian Spice Extracts in Hepg2 Cells: Involvement of Nrf2 and Improvement of Glucose Uptake
    H OH metabolites OH Article Oxidative Stress Modulation by Cameroonian Spice Extracts in HepG2 Cells: Involvement of Nrf2 and Improvement of Glucose Uptake Achille Parfait Atchan Nwakiban 1 , Stefania Cicolari 2 , Stefano Piazza 2, Fabrizio Gelmini 3, Enrico Sangiovanni 2 , Giulia Martinelli 2 , Lorenzo Bossi 2, Eugénie Carpentier-Maguire 4, Armelle Deutou Tchamgoue 5, Gabriel A. Agbor 5 , Jules-Roger Kuiaté 1 , Giangiacomo Beretta 3 , Mario Dell’Agli 2,* and Paolo Magni 2,6,* 1 Department of Biochemistry, Faculty of Science, University of Dschang, P.O. Box 96 Dschang, Cameroon; [email protected] (A.P.A.N.); [email protected] (J.-R.K.) 2 Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via G. Balzaretti 9, 20133 Milano, Italy; [email protected] (S.C.); [email protected] (S.P.); [email protected] (E.S.); [email protected] (G.M.); [email protected] (L.B.) 3 Department of Environmental Science and Policy, Università degli Studi di Milano, via G. Celoria 2, 20133 Milano, Italy; [email protected] (F.G.); [email protected] (G.B.) 4 Department of Science and Technology, University of Lille, Rue de Lille, 59160 Lille, France; [email protected] 5 Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé 4124, Cameroon; [email protected] (A.D.T.); [email protected] (G.A.A.) 6 IRCCS MultiMedica, Sesto San Giovanni, Via Milanese, 300, 20099 Sesto San Giovanni Milan, Italy * Correspondence: [email protected] (M.D.); [email protected] (P.M.); Tel.: +39-0250318398 (M.D.); +39-0250318229 (P.M.) Received: 26 March 2020; Accepted: 29 April 2020; Published: 1 May 2020 Abstract: Oxidative stress plays a relevant role in the progression of chronic conditions, including cardiometabolic diseases.
    [Show full text]
  • Seeds and Plants Imported
    V? * •';' {."i'V i U. S. DEPARTMENT OF AGRICULTURE BOREAD OF PLANT INDUSTRY-BULLETIN NO. 132. B. T. GALLOWAY, Chief,of Bureau. SEEDS AND PLANTS IMPORTED DURING THE PERIOD FROM JULY, 1906, TO DECEMBER 31,1907: INVENTORY No. 13; Nos. 19058 TO 21730. ISSUED DECEMBER 4, 1908. WASHINGTON: GOVERNMENT PRINTING OFFICE. 190 8. BULLETINS OF THE BUREAU OF PLANT IJTOUSTRY. The scientific and technical publications of the Bureau of P.lant Industry, which was organized July 1, 1901, are issued in a single series of bulletins, a list of which follows. Attention is directed to the fact that the publications in this series are not for general distribution. The Superintendent ox Documents, Government Printing Office, Washington, D. cr, is authorised by law to sell them at cost, and to him all applications for these bulletins should be made, accompanied by a postal money order for the required amount or by cash. Numbers omitted from this list can not be furnished. No. 1. The Relation of Lime and Magnesia to Plant Growth. 1901. Price? 10 cents. 2. Spermatogenesis and Fecundation of Zamia. 1901, Price, 20 cents. 3. Macaroni Wheats. 1901. Price, 20 cents. 4.'Range Improvement in Arizona. 1901. Price, 10 cents. 6. A List of American Varieties of Peppers. 1902. Price, 10 cents. 7. The Algerian Durum Wheats. 1902. Price, 15 cents. 9. The North American Specie's'of Spartina. 1902. Price, 10 cents. 10. Records of Seed Distribution, etc. 1902. Price, 10 cents. 11. Johnson Grass. 1902. Price, 10 cents. , • 12. Stock Ranges of Northwestern California. 1902. Price, 15 cents.
    [Show full text]
  • Report and Opinion 2018;10(8) 11
    Report and Opinion 2018;10(8) http://www.sciencepub.net/report An Inventory Of Edible Wild Fruits Consumed In Edo And Delta States Of Nigeria B.O. Obadoni1, N.M. Ebinum2, J.A. Alanana3, H.A. Erhrenhi4 and A. Ogochukwu5 1, 2, 5: Department of Botany, Ambrose Alli University, Ekpoma, Edo State. 3 Department of Plant Science and Biotechnology, Nasrawa State University Keffi, Nasarawa State 4 Department of Botany, Delta State University, Abraka, Delta State. [email protected] Abstract: In Edo and Delta States of Nigeria, many edible wild fruits are available in the bushes. Many of them are threatened due to urbanisation hence, this documentation for unborn generations. Trips were made to Ekpoma, Iruekpen, Otuo, Ewu, Uromi, Ubiaja, Auchi and Benin City markets in Edo State to obtain first-hand information on the wild edible fruits sold and consumed by the natives in those communities. Also, markets in Ogume, Utagba Ogbe, Utagba Uno, Obiaruku, Abbi, Orerokpe, Warri, Sapele, Asaba and Agbor in Delta State were sampled to know the wild edible fruits sold in those markets. In both states, the trips were made in dry and wet seasons as the fruits were not available throughout the year. Besides sampling the markets in towns and cities, the assistance of three male farmers in the villages, towns and outskirts of the cities were solicited in identifying edible wild fruits in their localities. We paid them for their services. The fruits were consumed in our presence by the natives and the authors equally ate the fruits to confirm they were edible and harmless.
    [Show full text]
  • Ethiopian Pepper to Be Added to National List Section 205.606
    Petition to the National Organic Program and National Organic Standards Board For Ethiopian Pepper to be added To National List Section 205.606 Item A We ask that you amend the National List, Section 205.606, to include non-organic Ethiopian pepper, and allow its substitution when an organic alternative is unavailable. Item B 1. Common Name: Ethiopian pepper Botanical/Latin Name: Xylopia Aethiopica Other Names: Negro Pepper Grains of Selim Moor Pepper Kani Pepper Senegal Pepper Uda 2. Manufacturers’ Name, Address and Telephone We are unable to find a supplier of certified organic Ethiopian pepper. However, our current non-organic manufacturer that we use for our Ethiopian peppers is Afrikan General Store. Their address is 1502 ½ N. La Brea Avenue, Los Angeles, California 90302. Their telephone number is (310)672-8684. 3. Intended Use We use Ethiopian pepper in all three of our hot sauces: African Hot Pepper Sauce; Chipotle Pepper Sauce; and Chili Pepper Sauce. Ethiopian pepper is quite pungent and slightly bitter, comparable to a mixture of cubeb pepper and nutmeg. This fruit is often smoked during the drying process, resulting in an attractive smoky-spicy flavor. No other spices give the same bitter, yet aromatic, flavor. 4. A list of crop, livestock or handling activities for which the substance will be used. If used for handling (including processing), the substance’s mode of action must be described. The sole use of this pepper is as an ingredient in Brother Bru Bru’s Hot Sauces. The production method is as follows: The dried seed pods are milled by Threshold Enterprises.
    [Show full text]
  • Chemical Composition and Bioactivity of Essential Oil from Monodora Myristica Against Grain Storage Insects
    International Journal of Research and Scientific Innovation (IJRSI) | Volume VI, Issue VI, June 2019 | ISSN 2321–2705 Chemical Composition and Bioactivity of Essential Oil from Monodora Myristica against Grain Storage Insects Awojide S. H1*, Anifowose A.J1, Aderogba A. A2, Tayo A. S1 1Department of Chemical Sciences, Osun State University, Osogbo, Nigeria 2Department of Science, Technology and Mathematics Education , Osun State University, Osogbo, Nigeria *Corresponding author Abstract: The essential oil of African Nutmeg the environment or in fatty tissues of warm blooded animals, (Monodoramyristica) was extracted by steam distillation method, ((Mugisha et al., 2008)). They act in many ways on various the essential oil was graded into concentrations of (1, 2, 2.5, 3, 4, types of pests and can be applied to plants or stored products 5, 7.5, 10 mL/L). Experiments were conducted to study the bio- in the same way as other conventional insecticides Many activity of the essential oil against Callosbruchusmaculatus and essential oils are Known to possess ovicidal, repellent and Sitophilus oryzae at different exposure time. The chemical components of the oil were analysed by GC-MS. The GC-MS insecticidal activities against insects(Won-il et-al., 2003). analysis showed a total of Thirty-one (31) components, the major However,it is important tonote that botanical pesticides, components are trans-13-octadecenoic acid (25.18%), sabinol much as they are derived from plants, do not guaranteesafety (20.95%), linalool (9.11%) and n-hexadecanoic acid (7.66%). The to humans and the environment. Some may be quite toxic results of the contact, repellence and fumigative test showed that the toxicity of the essential oil against the two insects was dose such as the rotenoids.
    [Show full text]
  • Germination Investigations of Monodora Myristica (Gaertn.) Dunal Progenies
    Journal of Ecology and Natural Resources ISSN: 2578-4994 MEDWIN PUBLISHERS Committed to Create Value for Researchers Germination Investigations of Monodora myristica (Gaertn.) Dunal Progenies Olayode OO* and Adebeshin AM Department of Forest Resources and Wildlife Management, Ekiti State University, Nigeria Research Article Volume 4 Issue 4 June 10, 2020 *Corresponding author: Olayode OO, Department of Forest Resources and Wildlife Received Date: Management, Ekiti State University, Ado-Ekiti, Nigeria; Email: [email protected] Published Date: July 06, 2020 DOI: 10.23880/jenr-16000206 Abstract Monodora myristica is an important indigenous tree species with seeds that do not readily germinate. This study therefore examined seed germination of Monodora myristica progenies in Ekiti State at the nursery and laboratory. Matured pods of M. myristica were obtained from Otun-Ekiti (7.9903oN and longitude 5.1249oE), Ayegbaju-Ekiti (latitude 7.7930oN and longitude 5.2920oE) and Ise-Ekiti (7.4563oN and longitude 5.4332oE). Seeds were extracted from the pods after they were allowed to ferment for about a week. Weight of 30 seeds in three replicates was determined from each location. One hundred and twenty subjected to germination in the laboratory using four treatments thus: control (T1), hot water (T2), water at room temperature seeds from each location were sown in germination trays filled with topsoil in four replicates at the nursery. Seeds were (T3) and scarification (T4) under both light and dark conditions. Data were subjected to Analysis of Variance (ANOVA) which revealed significant difference (p≤0.05) for mean seed weight among the locations and pretreatments. Duncan’s Multiple Otun-Ekiti having highest value of 44.06g followed by Ise-Ekiti (36.98g) and Ayegbaju-Ekiti with a value of 31.12g.
    [Show full text]
  • The Essential Oil and Hydrolats from Myristica Fragrans Seeds
    foods Article The Essential Oil and Hydrolats from Myristica fragrans Seeds with Magnesium Aluminometasilicate as Excipient: Antioxidant, Antibacterial, and Anti-inflammatory Activity Inga Matulyte 1,2, Aiste Jekabsone 2 , Lina Jankauskaite 2,3 , Paulina Zavistanaviciute 4, Vytaute Sakiene 4, Elena Bartkiene 4 , Modestas Ruzauskas 5 , Dalia M. Kopustinskiene 2, Antonello Santini 6,* and Jurga Bernatoniene 1,2 1 Department of Drug Technology and Social Pharmacy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; [email protected] (I.M.); [email protected] (J.B.) 2 Institute of Pharmaceutical Technologies, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; [email protected] (A.J.); [email protected] (L.J.); [email protected] (D.M.K.) 3 Department of Pediatrics, Lithuanian University of Health Sciences Hospital Kauno Klinikos, LT-50161 Kaunas, Lithuania 4 Department of Food Safety and Quality, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania; [email protected] (P.Z.); [email protected] (V.S.); [email protected] (E.B.) 5 Institute of Microbiology and Virology, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania; [email protected] 6 Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy * Correspondence: [email protected] Received: 10 December 2019; Accepted: 30 December 2019; Published: 2 January 2020 Abstract: Nutmeg (Myristica fragrans) essential oil has antimicrobial, antiseptic, antiparasitic, anti-inflammatory, and antioxidant properties. We have recently demonstrated that hydrodistillation of nutmeg essential oil by applying magnesium aluminometasilicate as an excipient significantly increases both the content and amount of bioactive substances in the oil and hydrolats.
    [Show full text]
  • QUALITY EVALUATION of OILS EXTRACTED from SOME SELECTED INDIGENOUS SPICES Nwachukwu, C
    Nwachukwu, C. N. 79 Journal of Agriculture and Food Sciences Volume 17 Number 1, April 2019 pp 79 - 88. QUALITY EVALUATION OF OILS EXTRACTED FROM SOME SELECTED INDIGENOUS SPICES Nwachukwu, C. N. Department of Food Science and Technology, Imo State University, Owerri *Corresponding Author: [email protected] +2348038747878. ABSTRACT A food grade solvent (n-hexane) was used in the extraction of oil from some selected indigenous spices which were ehuru (Monodora myristica), njangsa (Ricinodendron heudelotii), uziza seeds (Piper guineense) and cloves (Syzygium aromaticum). The extracted oil samples were evaluated for chemical composition and physical properties. Results obtained from the chemical composition of the extracted oil samples showed that acid value, iodine value, peroxide value, saponification value and thiobarbituric acid value ranged from 0.64mgKOH/g to1.82mgKOH/g, 63.17gmI/100gm to 83.33gmI/100gm, 5.78Meq/kgto9.66Meq/kg, 142.07mgKOH/g to 203.66mgKOH and 0.19mg malo./kg to 0.39mg malo./kg respectively. The results of the physical properties of the extracted oil samples also showed that the smoke point, flash point, firepoint, density, melting point and viscosityranged from 166°C to 214°C, 206°C to 254°C, 219.50°C to 275°C, 0.89g/cm³ to 0.94g/cm³, 12°C to 17°C and 58.40cp to104.10cp respectively. From the study carried out, it was concluded that the oils extracted from the selected indigenous spices are acceptable for efficient use in food production and other industrial uses. Key words: Indigenous spices, chemical properties, physical properties, oil extract https://dx.doi.org/10.4314/jafs.v17i1.6 INTRODUCTION A spice is a seed, fruit, root, bark, or other plant substance primarily used for flavouring, colouring, or preserving food.
    [Show full text]
  • NIGERIAN AGRICULTURAL JOURNAL ISSN: 0300-368X Volume 49 Number 2, October 2018
    NIGERIAN AGRICULTURAL JOURNAL ISSN: 0300-368X Volume 49 Number 2, October 2018. Pp. 22-25 Available online at: http://www.ajol.info/index.php/naj A COMPARATIVE STUDY OF THE PHYTOCHEMICAL CONSTITUENTS, PROXIMATE AND MINERAL COMPOSITIONS OF Zingiber officinale, Curcuma longa, Aframomum sceptrum and Monodora myristica Nwankwo, P.O. National Root Crops Research Institute, Umudike. Abia State, Nigeria Corresponding Authors’ email: [email protected] ABSTRACT The phytochemical, proximate and mineral compositions of Zingiber officinale (Ginger), Curcuma longa (Turmeric), Aframomum sceptrum (Bear berry) and Monodora myristica (African nutmeg) were investigated. Standard qualitative phytochemical screening, proximate and mineral analyses of the samples were carried out using in vitro methods. The results showed that both the Zingiber officinale and Curcuma longa had similar phytochemical constituents while Aframomum sceptrum and Monodora myristica showing slight variation. Alkaloids, flavonoids, phenols were highly positive (+++) in all samples studied but Z. officinale and C. longa showed higher contents of glycosides, tannins, saponins and anthraquinones than A. sceptrum and M. myristica. Crude protein, crude fat, crude fibre, ash, moisture and carbohydrate contents of A. sceptrum and M. myristica were similar (10.23 -10.58%, 3.17 – 3.19%, 20.40 – 20.45%, 48.76 – 49.56%, 8.72 – 8.81% and 8.72 – 7.41%) respectively and much higher than the values obtained from Z. officinale and C. longa (5.47 -5.55%, 2.05 – 2.03%, 10.39 – 10.36%, 5.99 – 5.87%, 55.62 – 55.84% and 20.48 – 20.35%). Values of mineral compositions observed in all samples were relatively high with those of A.
    [Show full text]
  • Monodora Myristica
    International Journal of Pharmaceutical Science Invention ISSN (Online): 2319 – 6718, ISSN (Print): 2319 – 670X www.ijpsi.org Volume 2 Issue 5 ‖ May 2013 ‖ PP.25-32 Phytochemical, Antimicrobial and Gc-Ms of African Nutmeg (Monodora Myristica). Adewole E 1*. , Ajiboye, B . O1., Idris O.O.2, Ojo O. A1, Onikan A1,Ogunmodede O.T1 and Adewumi D.F1 1*Department of Chemical Sciences, Afe- Babalola University, Ado- Ekiti, Ekiti- State, Nigeria. 2Department of Biological Sciences, Afe- Babalola University, Ado- Ekiti, Ekiti- State, Nigeria. ABSTRACT: The quest to continue searching for new antibiotic, anti-parasites necitate this project as African nutmeg is a very useful plants medically and all its parts are useful. The major aim of this research work was to examine the monodora myristica for its secondary metabolites, antimicrobial analysis and to characterize the oil using gas chromatography mass spectrophotometer. The antimicrobial screening was done using agar method and the isolates used were obtained from the microbiology laboratory, Federal University of Technology, Akure, saponin, alkaloid, tannin and flavonoids were determined using standard methods. The results of the characterization of oil showed that organic compounds and fatty acids were present, the fatty acids present included, Palmitic acid, Eicosanoic acid, stearic acid, oleic acid, the results showed that the plants contained essential fatty acids useful for both adult and infant. The result of antimicrobial screening showed that the oil was very sensitive against the tested isolates. After 24hours incubation, the zone of inhibitions against Escherichia coli was (11millimetre), Bacillus substilis (8millimetre) and Staphylococcus aureus (11millimeter). The result compares favorably with standard streptomycin, the result of zone of inhibition against Escherichia coli of the sample (11millimetre) was better than that recorded for standard streptomycin (7millimetre).These may be as a result of presence various secondary metabolites which were discovered in the sample during analyses.
    [Show full text]