325 American-Eurasian Journal of Sustainable Agriculture, 6(4): 325-332, 2012 ISSN 1995-0748

ORIGINAL ARTICLE

Medicinal Used In Some Rural Districts in (West Africa)

1,2Aba Toumnou Lucie., 2Seck Dogo, 3Kindomihou Valentin, 1,4Agbangba C. Emile, 5Sembene Mbacké

1Regional Centre for Studies on the Improvement of Adaptation to Drought Thies, Senegal, 2Regional Centre for Ecotoxicology Studies and Environment Security (CERES-Locustox), Dakar, Senegal, 3Laboratory of Applied Ecology, Faculty of Agronomic Sciences, University of Abomey-Calavi, 03 BP1974 Cotonou, 4Department of Plant Biology,University Cheikh Anta Diop, Faculty of Sciences and Technology,Laboratory of Ecology and Ecohydrology, Dakar, Senegal, 5Department of Animal Biology,University Cheikh Anta Diop, Faculty of Sciences and Technology

Aba Toumnou Lucie., Seck Dogo, Kindomihou Valentin, Agbangba C. Emile, Sembene Mbacké: Medicinal Plants Used In Some Rural Districts in Senegal (West Africa)

ABSTRACT

In Senegal, people often used local plants for healing. Ethno botanical surveys conducted in several rural communities on a sample of 184 farmers were allowed to collect thirty three (33) native plants used to treat intestinal worms, malaria, hypertension, sexually transmitted infections, toothaches, menstrual cramps, hepatitis, cough and scar. The data were analysis by a factor analysis of correspondence. The plants were divided into 18 families (Combretaceae, , Fabaceae, Pedaliaceae, Caesalpiniaceae, Capparaceae, Anacardiaceae, Euphorbiaceae, Poaceae, Labiatae, Meliaceae, Apocynaceae, Acanthaceae, Asteraceae, Celastraceae, Vitaceae, Piperaceae and Mimosaceae). The families of Meliaceae, Combretaceae and Piperaceae were mostly used. The plant parts most commonly used were leaves and bark. The infusion, decoction and maceration methods were the most used preparations process of the drugs. This collection of plants indicated in the treatment of these diseases could be a database for advanced studies (bioassay and phytochemical analysis).

Key wrods:

Introduction

In developing countries especially in Africa, predominantly rural populations face to a lack of coverage in health needs and the unavailability of essential drugs often at high cost. They are exposed to many diseases including malaria, AIDS, cardiovascular diseases, respiratory infections, therefore 60% of the population make use herbs for healing (WHO, 2002). Many communities use, for medical and cultural in addition to food, natural products from the ecosystem. Quinine, the first effective drug against malaria, a disease responsible for nearly one million deaths annually, is an alkaloid extracted from Cinchona officinalis (Delaude, 2005). Another molecule known for its diverse biological properties is quercetin in the family of flavonoids. The plants which are rich in quercetin are Capparis spinosa (caper), Levisticum officinanale (lovage), Vitis vinifera (wine red), Malus domestica (apple), Camellia sinensis (black tea and green), Allium cepa (onion) (USDA, 2003). Quercetin has antioxidant properties, anti-cancer, anti-inflammatory ... (Shoskes and neck., 1999, Loke and neck., 2008; Kampkötter and neck., 2008). 350, 000 species of the 250, 000 to 300, 000 recorded have medicinal properties, gold so far only 5,000 have been studied (Bruneton, 2009). Following these observations, an enhancement of the pharmacopoeia and traditional medicine is necessary to preserve the health of populations. This development begins with the ethno botanical survey of medicinal plants of different directions at the population level. The purpose of this work was to execute ethno botanical surveys with people in some rural districts of Senegal in order to have a database on medicinal plants used in the treatment of various diseases. This could lead to biological and chemical investigations which can confirm or deny the use of these plants by local people.

Material And Methods

Study areas:

Corresponding Author: Aba Toumnou Lucie., Regional Centre for Studies on the Improvement of Plant Adaptation to Drought Thies, Senegal, E-mail: [email protected] 326 Am.-Eurasian J. Sustain. Agric. 6(4): 325-332, 2012

The ethno botanical survey sites are shown on the map below. The survey was carried out in 12 districts (figure 1).

Fig. 1: Study areas

Data collection and statistical analyses:

A questionnaire focusing on the use of plants in the treatment of various diseases has been used. The questionnaire had two parts: the description of diseases and the identification of the plants used to treat these diseases. Local authorities in each rural commune played a facilitating role during the discussions which helped to collect the necessary information. On the basis of local names; herbaria are fitted, photographed plants and samples collected. Illustrated Flora of Senegal (John Berhaut, 1967.1971, 1979) was used for confirmation of the names of species in the laboratory. A factorial analysis of correspondence with the software Minitab 14 was used to identify the species used for treating various diseases and their modes of preparation. Diagrams were also constructed to evaluate the specific abundance per family and the plant parts used.

Results:

Plants used in different diseases:

The eigenvalues of the principal axes extracted from the factorial analysis of correspondence indicated that the first two factors explained 43% of the information matrix-species diseases (Table 1). The factorial plane formed by these two axes (F1 and F2) defined two groups of uses of plants / disease (Figure 1). The Group I included species: 16 (leiocarpus Anogeissus (DC.) and G Perr), 22 (Prosopis africana Linn.) 12 (Cissus quadrangularis (Linn.) Wall) and diseases: 5 (Hepatitis), 6 (Sore teeth), 7 (Hypertension) (Tables 2 and 3). The Group II consisted of the species: 1 (Terminalia avicennoides), 2 (Crotalaria arenaria), 3 (Rogeria adenophylla), 4 (Lepr Cordyla pinnata), 5 (Cymbopogon giganteus Hoscht), 6 (Hyparrhenia dissoluta), 7 (Ocimum basiculum Linn), 8 (Vernonia colorata (Willd), 9 (Guiera senegalensis), 10 (Combretum nigricans), 11 (Adenium obesum (Forsk), 29 (Hyptis spicigera Lam.), 33 (Piper sarmentosum), 11 (Combretum micranthum ( G, Don), 17 (Spondias lutea Linn), 18 (Khaya senegalensis), 19 (Parkia biglobosa (Benth)), 20 (Trichilia emetica Vahl), 21 (Combretum glutinosum Perr), 23 (Lepidagathis sericae), 24 ( monopetalus (A.Rich) Engl.et Diels), 25 (Azadirachta indica), 26 (Jatropha gossyfolia), 27 (Cassia occidentalis Linn), 28 (Adhatoda kotschyi Hochst), 29 (Boscia senegalensis (Pers.) Lam ex Poir.), 30 (Holarrhena A.DC Africana), 31 (Landolphia senegalensis (A.DC.) Kotsch. And Peyr), 32 (Maytenus senegalensis (Lam)), 33 (Cassia sieberiana DC.) and diseases: 1 (Towards intestinal), 2 (Malaria), 3 (sexually transmitted infections), 8 (Scar) and 9 (Painful menstruation) (Tables 2 and 3). Of the 33 species, most parts used in the treatment of diseases were respectively leaves (16 plants), bark (8 plants) and leaves combined with fruits (7 species). The parts least used were roots, bark combined with fruits and leaves combined with bark (Figure 3).

327 Am.-Eurasian J. Sustain. Agric. 6(4): 325-332, 2012

Table1: Eigenvalues and variance percentage F1 F2 F3 F4 F5 F6 F7 F8 Eigenvalues 0.97 0.92 0.67 0.64 0.56 0.25 0.20 0.16 % variance 0.22 0.21 0.15 0.15 0.13 0.06 0.05 0.04 % cumulated 0.22 0.43 0.59 0.73 0.86 0.92 0.96 1.00

169 4 6

3 Groupe I

2 22

1

127 5 3231301918171525242184213328102713 2026323 0 9 Component 2 (21%) Component Groupe II 118

-1 14 29

134765

-2 -2 -1 0 1 2 3 4 Component 1 (22%)

Fig. 2: Plant species/Diseases by a factorial analysis of correspondence (FAC)

Table 2: Codification of species _ diseases Species Codification Terminalia avicennoides 1 Crotalaria arenaria 2 Rogeria adenophylla 3 Cordyla pinnata Lepr 4 Cymbopogon giganteus Hoscht 5 Hyparrhenia dissoluta 6 Ocimum basiculum Linn 7 Vernonia colorata (willd) 8 Guiera senegalensis 9 Combretum nigricans 10 Adenium obesum (Forsk) 11 Cissus quadrangularis (Linn.) Wall 12 Hyptis spicigera Lam. 13 Piper sarmentosum 14 Combretum micranthum(G,Don) 15 Anogeissus leiocarpus (DC.) G et Perr 16 Spondias lutea Linn 17 Khaya senegalensis 18 Parkia biglobosa (Benth) 19 Trichilia emetica Vahl 20 Combretum glutinosum Perr 21 Prosopis africana Linn. 22 Lepidagathis sericae 23 Hexalobus monopetalus (A.Rich) Engl.et Diels 24 Azadirachta indica 25 Jatropha gossyfolia 26 Cassia occidentalis linn 27 Adhatoda kotschyi Hochst 28 Boscia senegalensis (Pers.) Lam ex Poir. 29 Holarrhena Africana A.DC 30 Landolphia senegalensis (A.DC.) Kotsch. Et Peyr 31 Maytenus senegalensis (Lam) 32 Cassia sieberiana DC 33

328 Am.-Eurasian J. Sustain. Agric. 6(4): 325-332, 2012

Table 3: Codification of diseases Diseases Codification Intestinal worms 1 Malaria 2 STI 3 Cough 4 Hepatitis 5 Toothache 6 Hypertension 7 Scar 8 Painful menstruation 9 Parts of plants used in diseases treatment:

Fig. 3: Parts of plants used in the treatment of diseases

Distribution of plants used per family:

The most commonly used plants respectively belonged to families of Combretaceae (71 citations), Capparaceae (45), and Poaceae (38) (Figure 4). The least cited plants in ascending order of families were Mimosaceae (4 citations), Annonaceae (6 citations), Acanthaceae (7 citations), Anacardiaceae (9 citations), Caesalpiniaceae (11), Piperaceae (11), Meliaceae (13), Celastraceae (18), Apocynaceae (19), Pedaliaceae (21), Asteraceae (23), Fabaceae (23), Euphorbiaceae (24), Vitaceae (29).

Fig. 4: Abundance of species per family

329 Am.-Eurasian J. Sustain. Agric. 6(4): 325-332, 2012

Method of plants preparation:

The eigenvalues of the principal axes extracted from the factorial analysis of correspondence indicated that the first two factors explained 75% of the information of the matrix species/ preparation methods (Table 1). The factorial plane formed by these two axes (F1 and F2) defined two groups of plants uses/methods of preparation (Figure 5). The species 33 (Cassia sieberiana DC.), 19 (Parkia biglobosa (Benth)), 16 (leiocarpus Anogeissus (DC.) and G Perr), 9 (Guiera senegalensis), 23 (Lepidagathis sericae) were preferentially used after calcination and / or naturally (Group I, Tables 5 and 6). The Group 2 consisted of species: 1 (Terminalia avicennoides), 2 (Crotalaria arenaria), 3 (Rogeria adenophylla), 4 (Lepr Cordyla pinnata), 5 (Cymbopogon giganteus Hoscht), 6 (Hyparrhenia dissoluta), 7 (Ocimum basiculum Linn), 8 (Vernonia colorata (Willd), 10 (Combretum nigricans), 11 (Adenium obesum (Forsk), 29 (Hyptis spicigera Lam.), 33 (Piper sarmentosum), 11 (Combretum micranthum (G Don), 17 (Spondias lutea Linn), 18 (Khaya senegalensis), 20 (Trichilia emetica Vahl), 21 (Combretum glutinosum Perr), 24 (Hexalobus monopetalus (A.Rich) Engl.et Diels), 25 (Azadirachta indica), 26 ( Jatropha gossyfolia), 27 (Cassia occidentalis Linn), 28 (Adhatoda kotschyi Hochst), 29 (Boscia senegalensis (Pers.) Lam ex Poir.), 31 (Landolphia senegalensis (A.DC.) Kotsch. And Peyr), 32 (Maytenus senegalensis (Lam), and preparation methods: infusion, decoction and maceration (Tables 5 and 6).

Table 4: Eigenvalues and variance percentage F1 F2 F3 F4 Eigenvalues 0.33 0.21 0.11 0.15 % variance 0.46 0.29 0.15 0.11 % cumulated 0.46 0.75 0.90 1.00

3

2

19 33 1 30 5 29282726252457 9 2 3 1411 Component 2 (29%) 1 32 18 0 1022126 21331 23 4 2015 21817 4 16 1 3

-1 -1 0 1 2 3 Component 1 (46%)

Fig. 3: Plant species/Methods of Use by a factorial analysis of correspondence (FAC)

Discussion:

According to the statistical analysis of data, three plants Anogeissus (A.) leiocarpus, Prosopis africana and Cissus quadrangularis were used for treating hepatitis, Toothache and hypertension. Ouedraogo et al. (2008) studied the antihypertensive properties of the aqueous extract of A. Leiocarpus plant used in traditional medicine in for the treatment of hypertension. The intravenous administration of aqueous extract of A. Leiocarpus (10-4 to 3.10-1 Cg / kg, iv) causes transiently and depending on the dose (p < 0.05 - 0.001) lower arterial pressure in normotensive in anesthetized rats. Moreover the aqueous extract alcoholized (3.10-1 Cg / kg) completely abolished hypertension induced by adrenaline or phenylephrine. These experimental laboratory results in animals suggest that the aqueous extract of bark from the trunk of A. leiocarpus has anti hypertensive; this would imply a vasodilator effect of the plant extract.

330 Am.-Eurasian J. Sustain. Agric. 6(4): 325-332, 2012

Table 5: Codification of species Species Codification Terminalia avicennoides 1 Crotalaria arenaria 2 Rogeria adenophylla 3 Cordyla pinnata Lepr 4 Cymbopogon giganteus Hoscht 5 Hyparrhenia dissoluta 6 Ocimum basiculum Linn 7 Vernonia colorata (willd) 8 Guiera senegalensis 9 Combretum nigricans 10 Adenium obesum (Forsk) 11 Cissus quadrangularis (Linn.) Wall 12 Hyptis spicigera Lam. 13 Piper sarmentosum 14 Combretum micranthum(G,Don) 15 Anogeissus leiocarpus (DC.) G et Perr 16 Spondias lutea Linn 17 Khaya senegalensis 18 Parkia biglobosa (Benth) 19 Trichilia emetica Vahl 20 Combretum glutinosum Perr 21 Prosopis africana Linn. 22 Lepidagathis sericae 23 Hexalobus monopetalus (A.Rich) Engl.et Diels 24 Azadirachta indica 25 Jatropha gossyfolia 26 Cassia occidentalis linn 27 Adhatoda kotschyi Hochst 28 Boscia senegalensis (Pers.) Lam ex Poir. 29 Holarrhena Africana A.DC 30 Landolphia senegalensis (A.DC.) Kotsch. Et Peyr 31 Maytenus senegalensis (Lam) 32 Cassia sieberiana DC 33

Table 6: Codification of preparation methods Preparation methods Codification Infusion 1 Decoction 2 Maceration 3 Calcination 4 Naturally 5

One of the plants also cited for the treatment of intestinal worms, malaria, sexually transmitted infections, the scar and painful menstruation is Vernonia colorata. A species of Vernonia, Vernonia scorpioides was studied for its anti-tumor by Buskuhl et al. (2010). According to these authors, 2 and 4 respectively glaucolideand hirsutinolide are responsible for anti-tumor properties observed on cells in vitro. The glaucolides and hirsutinolides are sesquiterpenes lactones. Hirsutinolide is known for its cytotoxic properties (Chen et al., 2005), antibacterial and anti-inflammatory by Kos et al., 2006 and anti-plasmodial (Pillay et al., 2007). The antimalarial activity of Vernonia cinerea was highlighted by Chea et al., 2006. The glaucolides D and E extracts of Vernonia liatroides have properties of uterus muscles relaxing based on the work of Campos et al. (2003). The results of the investigation on the species Vernonia colorata indicated that it could be a source of anti-tumor molecules, antibacterial, anti-inflammatory and anti-plasmodial and antimalarial. The genus Terminalia is rich in secondary metabolites such as triterpenes, glycosides derivatives (Mahato et al., 1992, Singh et al., 2002; Garcez et al., 2003, Cao et al., 2010), polyphenols (Pfundstein et al., 2010) and also flanonones and chalcones (Garcez et al., 2006). Triterpenes saponins and Terminalia ivorensis are known for their antioxidant and cytotoxic on human cancer cells (Ponou et al., 2010). Various biological activities of Terminalia chebula has been proven in which, antimicrobial activity of Helicobacter pylori (Malekzadeh et al., 2001), an antidiabetic activity Gao et al. (2008), antimalarial and antiviral and antifungal (el Mekkawy et al., 1995; Valsaraj et al., 1997), anaphylactic (Shin et al., 2001), antioxidant (Lee et al., 2005, 2007, Saleem et al., 2001). Terminalia bellerica, Terminalia chebula and Terminalia horrida exhibit antiviral activity on human immunodeficiency virus (el Mekkawy et al., 1995). In light of the biological activities of other species of the genus Terminalia mentioned above, Terminalia avicennoides is cited for the treatment of malaria, intestinal worms, painful menstruation, sexually transmitted infections, the scar and could also be a source of secondary metabolites likely to possess antiviral activity, antimicrobial, antioxidant, antimalarial, anticancer, antidiabetic, antifungal and anti-anaphylactic.

331 Am.-Eurasian J. Sustain. Agric. 6(4): 325-332, 2012

Maytenus senegalensis listed among the plants used to treat intestinal worms, malaria, sexually transmitted infections, the scar and painful menstruation is used in traditional medicine in for the treatment of herpes simplex, herpes oral, skin rashes and tuberculosis (Kisangau et al., 2011). Most of the plants listed have not yet been extensively studied. Their use should be based on reliable and sufficient knowledge provided by well done scientific research. It is therefore essential to study the effectiveness of these plants and to know the active ingredients capable in treating the diseases listed in ethno botanical surveys.

Acknowledgments

The authors thank Emile Codjo Agbangba for performing statistical analysis on data and for English proofreading. They also thank CERAAS (Regional Study Center for the Improvement and Adaptation to Drought) for its financial support which helped to carry out the surveys among farmers. Our sincere thank also to DAAD (Deutscher Akademischer Austausch Dienst) for its grant to support our doctoral studies.

References

Adjanohoun, E.J., MRA. Ahyi, LA. Assi, K. Akpagana, P. Chibon, AAl. Hadjï, J. Eyme, M. Garba, JN. Gassita, M. Gbeassor, E. Goudote, S. Guiko, KK. Hodouto, P. Houngnon, A. Keita, Y. Keoula, WP. Kluga-Ocloo, I. Lo, K.M. Siamevi, K.K. Taffame, 1986. Medecine traditionnelle et pharmacopee : Contribution aux etudes ethnobotaniques et floristiques au ., pp: 671. Agaie, B.M., P.A. Onyeyilli, B.Y. Muhammad, M.J. Ladan, 2007. Acute toxicity effects ot the leaf extract of Anogeissus leiocarpus in rats. African Journal of Biotechnology, 6(7): 886-889. Berhaut, J., 1967 ; 1971 ; 1979. Flore du Sénégal. 2 e édition Clairafrique Dakar. Bruneton, J., 2009. Pharmacognosie - Phytochimie, plantes médicinales, 4e éd., revue et augmentée, Paris, Tec & Doc - Éditions médicales internationales, pp: 1288. Buskuhl, H., F.L. De Oliveira, L.Z. Blind, R.A. De Freitas, A. Barison, F.R. Campos, Y.E. Corilo, M.N. Eberlin, G.F. Caramori and M.W. Biavatti, 2010. Sesquiterpene lactones from Vernonia scorpioides and their in vitro cytotoxicity. Phytochemistry, 71: 1539-1544. Campos, M., M. Oropeza, H. Ponce, J. Fernandez, M. Jimenez-Estrada, H. Torres, R. Reyes-Chilpa, 2003. Relaxation of uterine and aortic smooth muscle by glaucolides D and E from Vernonia liatroides. Biol. Pharm. Bull., 26: 112-115. Cao, S., P.J. Brodie, M. Callmander, R. Randrianaivo, E. Rakotobe, V.E. Rasamison, D.G.I. Kingston, 2010. Saponins and a lignan derivative of Terminalia tropophylla from Madagascar dry forest. Phytochemistry, 71: 95-99. Chea, A., S. Hout, C. Long, L. Marcourt, R. Faure, N. Azas, R. Elias, 2006. Antimalarial activity of sesquiterpene lactones from Vernonia cinerea. Chem. Pharm. Bull., 54: 1437-1439. Chen, X., Z.J. Zhan, X.W. Zhang, J. Ding, J.M. Yue, 2005. Sesquiterpene lactones with potent cytotoxic activities from Vernonia chinensis. Planta Med., 71: 949-954. Clément Delaude, 2005. Afrique : guérisseurs, plantes médicinales et plantes utiles. Maisonneuve et Larose, pp: 319. El Mekkawy, S., M.R. Meselhy, I.T. Kusumoto, S. Kadota, M. Hattori, T. Namba, 1995. Inhibitory effects of Egyptian folk medicines on human immunodeficiency virus (HIV) reverse transcriptase. Chem. Pharm. Bull., 43: 641-648. El-Tawil, S., T. Al Musa, H. Valli et al., 2010. Quinine for muscle cramps [archive], Cochrane Database of Systematic Reviews, Issue 12. Art. No.: CD005044. DOI: 10.1002/14651858.CD005044.pub2. Gao, H., Y.N. Huang, B. Gao, J. Kawabata, 2008. Chebulagic acid is a potent alphaglucosidase inhibitor. Biosci. Biotechnol. Biochem., 72: 601-603. Garcez, F.R., W.S. Garcez, D.L.S. Miguel, A.A.T. Serea, F.C. Prado, 2003. Chemical constituents from Terminalia glabrescens. Journal of Brazilian Chemical Society,14: 461-465. Garcez, R.F., S.W. Garcez, A.L.B.D. Santana, M.M. Alves, M.F.C.C. Matos, A.M. Scaliante, 2006. Bioactive flavonoids and triterpenes from Terminalia fagifolia (Combretaceae). Journal of Brazilian Chemical Society, 17: 1223-1228. Guimbo, I.D., J. Muller & M. Larwanou, 2011. Ethnobotanical Knowledge of Men, Women and Children in Rural : A mixedmethods approach. Ethnobotany Research & Applications, 9: 235-242. Kampkötter, A., C. Timpel, R.F. Zurawski, S. Ruhl, Y. Chovolou, P. Proksch and W. Wätjen, 2008. Increase of stress resistance and lifespan of Caenorhabditis elegans by quercetin. Comparative Biochemistry and Physiology, 149(2): 314-323.

332 Am.-Eurasian J. Sustain. Agric. 6(4): 325-332, 2012

Kisangau, D.P., T.M. Herrmann, H.V.M. Lyaruu, K.M. Hosea, C.J. Cosam, Z.H. Mbwambo and P.J. Masimba, 2011. Traditional Knowledge, Use Practices and Conservation of Medicinal Plants for HIV/AIDS Care in Rural Tanzania. Ethnobotany Research & Applications 9: 043-057. Lee, H.S., N.H. Won, K.H. Kim, H. Lee, W. Jun, K.W. Lee, 2005. Antioxidant effects of aqueous extract of Terminalia chebula in vivo and in vitro. Biol. Pharm. Bull., 28: 1639-1644. Lee, H.S., S.H. Jung, B.S. Yun, K.W. Lee, 2007. Isolation of chebulic acid from Terminalia chebula Retz. and its antioxidant effect in isolated rat hepatocytes. Arch. Toxicol., 81: 211-218. Loke, W.M., J.P. Proudfoot, S. Stewart, A.J. McKinley, P.W. Needs, P.A. Kroon, J.M. Hodgson and K.D. Croft, 2008. Metabolic transformation has a profound effect on anti-inflammatory activity of flavonoids such as quercetin: Lack of association between antioxidant and lipoxygenase inhibitory activity. Biochemical Pharmacology, 75: 1045-1053 Mahato, S.B., A.K. Nandy, A.H. Kundu, 1992. Pentacyclic triterpenoids sapogenols and their glycosides from Terminalia bellerica. Tetrahedron., 48: 2483-2484. Malekzadeh, F., H. Ehsanifar, M. Shahamat, M. Levin, R.R. Colwell, 2001. Antibacterial activity of black myrobalan (Terminalia chebula Retz) against Helicobacter pylori. Int. J. Antimicrob. Agents., 18: 85-88. Ouedraogo, S., L. belemnaba, A. Traore, M. Lompo, B. Bucher et I.P. Guissou, 2008. Etude de la toxicité et des propriétés pharmacologiques de l’extrait aqueux d’Anogeissus leiocarpus (dc) guill. et perr (combretaceae).Pharmacopée et Médecine traditionnelle Africaines, 15: 18-22. Pfundstein, B., K. Samy, S.K.El. El Desouky, W.E. Hull, R. Haubner, G. Erben and R.W. Owen, 2010. Polyphenolic compounds in the fruits of Egyptian medicinal plants (Terminalia bellerica, Terminalia chebula and Terminalia horrida): Characterization, quantitation and determination of antioxidant capacities. Phytochemistry, 71: 1132-1148. Pillay, P., R. Vleggaar, V.J. Maharaj, P.J. Smith, C.A. Lategan, F. Chouteau, K. Chibale, 2007. Antiplasmodial hirsutinolides from Vernonia staehelinoides and their utilization towards a simplified pharmacophore. Phytochemistry, 68 : 1200-1205. Ponou, B.K., R.B. Teponno, M. Ricciutelli, L. Quassinti, M. Bramucci, G. Lupidi, L. Luciano Barboni and L.A. Tapondjou, 2010. Dimeric antioxidant and cytotoxic triterpenoid saponins from Terminalia ivorensis A. Chev. Phytochemistry, 71: 2108-2115. Saleem, A., M. Husheem, P. Harkonen, K. Pihlaja, 2002. Inhibition of cancer cell growth by crude extract and the phenolics of Terminalia chebula Retz. fruit. J. Ethnopharmacol., 81: 327-336. Shin, T.Y., H.J. Jeong, D.K. Kim, S.H. Kim, J.K. Lee, D.K. Kim, B.S. Chae, J.H. Kim, H.W. Kang, C.M. Lee, K.C. Lee, S.T. Park, E.J. Lee, J.P. Lim, H.M. Kim, Y.M. Lee, 2001. Inhibitory action of water soluble fraction of Terminalia chebula on systemic and local anaphylaxis. J. Ethnopharmacol., 74: 133- 140. Shoskes D.A., S.I. Zeitlin, A. Shaded and J. Rajfer, 1999. Quercetin in men with category III chronic prostatis: a preliminary prospective, double-blind, placebo-controled trial.In Urology, 54: 960-963. Singh, D.V., R.K. Verma, C.S. Singh, M.M. Gupta, 2002. RP-LC determination of oleane derivatives in Terminalia arjuna. Journal of Pharmaceutical and Biomedical Analysis., 28: 183-452. USDA, 2003. Database for Flavonoid Content of Selected Foods. [cited 2008 Oct.31]. Available from http://www.nal.usda.gov Valsaraj, R., P. Pushpangadan, U.W. Smitt, A. Adsersen, S.B. Christensen, A. Sittie, U. Nyman, C. Nielsen, C.E. Olsen, 1997. New anti-HIV-1, antimalarial, and antifungal compounds from Terminalia bellerica. J. Nat. Prod., 60: 739-742. WHO., 2002. Traditional Medicine. Growing Needs and Potential. WHO Policy Perspectives on Medicines, No 2, May 2002. World Health Organization, Geneva, Switzerland. http://apps.who.int/medicinedocs/es/d/Js2293e/