Efficient Data Security Algorithm Using Combined Aes and Railfence Technique Abstract 1. Introduction

Total Page:16

File Type:pdf, Size:1020Kb

Efficient Data Security Algorithm Using Combined Aes and Railfence Technique Abstract 1. Introduction International Journal of Pure and Applied Mathematics Volume 118 No. 20 2018, 3219-3227 ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu Special Issue ijpam.eu EFFICIENT DATA SECURITY ALGORITHM USING COMBINED AES AND RAILFENCE TECHNIQUE M.Lavanya, E.Nixson jesuraj, R.Vidhya prakash, R.Vijay Sai, K.Chakrapani School of Computing, SASTRA Deemed University, India ABSTRACT Cryptography is a method by which information or messages can be sent beginning with one customer then onto the following customer which gives a couple of security organizations. Each datum that we send should be shield from others of seeing some mystery data. AES is a building hinder for encryption and unscrambling modes or notwithstanding hashing. AES is the overwhelming square figure from superior to low power. In existing paper, the quantity of rounds expanded for encoding content which in result in greater security for the framework. The underlying key has been created from the Polybius square. With the expansion in number of rounds it will require more computational investment and will wind up hard breaking the framework. We propose a thought of consolidating AES key and other calculations to create an encoded key. This key alongside encoded content is send to others. We additionally expand the quantity of rounds for encoding the content. We reason that it can build the many- sided quality of finding the first content. It gives high information security and high secrecy. KEYWORDS: Polybius, Encryption, Decryption, Security, AES, Rail Fence. 1. INTRODUCTION Cryptography ends up basic piece of the safe correspondence. There are two kinds of Cryptographic calculation to achieve these objectives: Symmetric Cryptography and Asymmetric Cryptography. The essential message is known as plain content, while mixed message is known as figure content. The transformation of plain content to figure content is known as enciphering or encryption. Recouping the plain content from the mixed message is known as disentangling or decoding. In the event that both encryption what's more, decoding are performed utilizing the indistinguishable key, at that point the framework is alluded to as symmetric or single key. 3219 International Journal of Pure and Applied Mathematics Special Issue On the off chance that both encryption and unscrambling utilizes particular keys, at that point the framework is alluded to as lopsided or two key. Cryptography provides many techniques to provide security to the information transferred over the network. This protection ensures the objectives of preserving the integrity, availability and confidentiality of the plain text. 2. DATA SECURITY Data security is a form of data protection against unauthorized users and actions.The use of internet in the present era is increasing at higher rate and demand of security is also increasing rapidly. This gives rise to the need of security as the data, and the information is very sensitive as its transmission is needed all the time. Cryptographic algorithms are designed by mathematical theory and computational knowledge there by making the data more secure. 2.1 AES ENCRYPTION The Advanced Encryption Standard, or AES, is a symmetric block cipher chosen by the U.S. government to protect classified information and is implemented in software and hardware throughout the world to encrypt sensitive data. The design and strength of all key lengths of the AES algorithm (i.e., 128, 192 and 256) are sufficient to protect classified information up to the SECRET level. TOP SECRET information will require use of either the 192 or 256 key lengths. The implementation of AES in products intended to protect national security systems and/or information must be reviewed and certified by NSA prior to their acquisition and use.AES has 10 rounds for 128-bit keys, 12 rounds for 192-bit keys, and 14 rounds for 256-bit keys. 2.2 KEY GENERATION Key generation is the way toward creating keys for cryptography. The key is utilized to scramble and unscramble information whatever the information is being encoded or decoded. Modern cryptographic systems include symmetric-key algorithms (such as DES and AES) and public-key algorithms (such as RSA). Symmetric-key algorithms use a single shared key; keeping data secret requires keeping this key secret. Public-key algorithms use a public key and a private key. The public key is made available to anyone (often by means of a digital certificate). A sender encrypts data with the public key; only the holder of the private key can decrypt this data. 3220 International Journal of Pure and Applied Mathematics Special Issue 3. RELATED WORKS This paper [1] the security for web keeping money, account passwords, messages accounts secret word and so forth requires content insurance in computerized media. It displays the security furthermore, pressure for the information with the propel encryption standard.The generation of key has been done with the help of the Polybius square. the expansion in number of rounds it will require more computational investment and will wind up troublesome for the programmer to break the framework. This paper [2] a crossover Polybius and Playfair figure which encodes the message into arrangement of melodic notes. The Playfair key network is created utilizing the Blum-Blum Shub generator. The bigrams of plain instant message is first encoded utilizing Playfair figure then individual character of the scrambled message is re-encoded utilizing Polybius figure. This paper [3] an augmentation of an open key cryptosystem to help a private key cryptosystem which is a blend of Advanced Encryption Standard and ECC. The past outcomes have been registered based on AES key length as 128 piece and no. of cycles as 10. The key length for this work has been expanded to 192 piece and the no. of emphasess taken will be 12. This paper [4] we thought about the most well-known square figure methods of activity on AES The correlation is done regarding encryption time, decoding time, and throughput with variable information parcel sizes.ECB takes less time to encrypt and decrypt than the other modes. This paper [5] two most generally utilized symmetric encryption strategies i.e. information encryption standard (DES) and propelled encryption standard (AES) have been executed utilizing MATLAB programming. After the usage, these strategies are thought about on some points.These indicates are torrential slide impact due one piece variety in plaintext keeping the key steady.These algorithms takes significant amount of computing resources such as simulation time, memory usage and level of encryption are of major concern. In AES, avalanche effect is high as compared with the DES which is used in the financial applications. This paper [6] another stage named as DeterminantRotation (DR) in adjusting and creates diverse S-box for each round by actualizing determinant grid count in turning the situation of AES S-box to be utilized as a part of the SubBytes change. This paper [7] gives more grounded security to correspondence organize over the Internet by upgrading the general quality of the AES calculation So, to enhance the quality of the AES the quantity of rounds is expanded. The figure is indicated regarding redundancies of handling steps that are connected to make up rounds of keyed changes between the info plaintext. This paper [8] an approach that requires a direct change to the execution of the AES computation, without altering its basic characteristics, which gives an in a general sense improved quality against side channel strikes with an irrelevant additional gear overhead.This paper [9] we propose a FPGA-based AES execution with fractional and dynamic reconfiguration, and a pipelined and parallel 3221 International Journal of Pure and Applied Mathematics Special Issue usage. A similar plan approach could be reached out to other cryptographic calculations. The speed makes a high throughput in order to avoid bottlenecks. The following figure (Fig 1) shows the key generation Fig.1.Key Generation 3.1 WORK FLOW 1. The plain text is accessed for polybius square. 2. Key generation process 3. Shift the row and mix column value is proposed. 4. Add round key process 5. Now the plain text is encrypted by AES encryption. 6. The encrypted result is generated to RAIL FENCE algorithm process. 7. Now the values are produced in the form of odd and even format. 3.2 PROPOPSED MODEL Key generation is carried out by using hybrid ciphers. Hybrid encryption is a combination of public key and symmetric key cryptosystem. Since there are more number of rounds in this encryption process, it is harder to decode the cipher text. 3222 International Journal of Pure and Applied Mathematics Special Issue The encryption phase of rail fence cipher is shown in figure (Fig 2) Fig.2. Encryption 3.2.1 RAIL FENCE ENCRYPTION The rail fence cipher (also called a zigzag cipher) is a form of transposition cipher. It derives its name from the way in which it is encoded. Encryption Input : "GeeksforGeeks " Key = 3 Output : GsGsekfrek eoe Decryption Input : GsGsekfrek eoe Key = 3 Output : "GeeksforGeeks " Encryption Input : "attack at once" Key = 2 Output : atc toctaka ne 3223 International Journal of Pure and Applied Mathematics Special Issue Decryption Input : "atc toctaka ne" Key = 2 Output : attack at once The following figure (Fig 3 ) shows the flow diagram Fig 3. Flow Diagram 3224 International Journal of Pure and Applied Mathematics Special Issue The succeeding figure (Fig 4) shows the flow of work Fig 4. Flow of work 4. CONCLUSION In this paper, we proposed a new step in single round encryption in AES. The key of the AES is generated from Polybius square. The encrypted output will be carried out from Rail Fence. Thus, the security of the system has been improved. Compared with normal AES algorithm, the updated AES with the new key generation technique and the Rail fence model provides more security in terms of complexity in finding the data using confusion and diffusion technique.
Recommended publications
  • COS433/Math 473: Cryptography Mark Zhandry Princeton University Spring 2017 Cryptography Is Everywhere a Long & Rich History
    COS433/Math 473: Cryptography Mark Zhandry Princeton University Spring 2017 Cryptography Is Everywhere A Long & Rich History Examples: • ~50 B.C. – Caesar Cipher • 1587 – Babington Plot • WWI – Zimmermann Telegram • WWII – Enigma • 1976/77 – Public Key Cryptography • 1990’s – Widespread adoption on the Internet Increasingly Important COS 433 Practice Theory Inherent to the study of crypto • Working knowledge of fundamentals is crucial • Cannot discern security by experimentation • Proofs, reductions, probability are necessary COS 433 What you should expect to learn: • Foundations and principles of modern cryptography • Core building blocks • Applications Bonus: • Debunking some Hollywood crypto • Better understanding of crypto news COS 433 What you will not learn: • Hacking • Crypto implementations • How to design secure systems • Viruses, worms, buffer overflows, etc Administrivia Course Information Instructor: Mark Zhandry (mzhandry@p) TA: Fermi Ma (fermima1@g) Lectures: MW 1:30-2:50pm Webpage: cs.princeton.edu/~mzhandry/2017-Spring-COS433/ Office Hours: please fill out Doodle poll Piazza piaZZa.com/princeton/spring2017/cos433mat473_s2017 Main channel of communication • Course announcements • Discuss homework problems with other students • Find study groups • Ask content questions to instructors, other students Prerequisites • Ability to read and write mathematical proofs • Familiarity with algorithms, analyZing running time, proving correctness, O notation • Basic probability (random variables, expectation) Helpful: • Familiarity with NP-Completeness, reductions • Basic number theory (modular arithmetic, etc) Reading No required text Computer Science/Mathematics Chapman & Hall/CRC If you want a text to follow along with: Second CRYPTOGRAPHY AND NETWORK SECURITY Cryptography is ubiquitous and plays a key role in ensuring data secrecy and Edition integrity as well as in securing computer systems more broadly.
    [Show full text]
  • Battle Management Language: History, Employment and NATO Technical Activities
    Battle Management Language: History, Employment and NATO Technical Activities Mr. Kevin Galvin Quintec Mountbatten House, Basing View, Basingstoke Hampshire, RG21 4HJ UNITED KINGDOM [email protected] ABSTRACT This paper is one of a coordinated set prepared for a NATO Modelling and Simulation Group Lecture Series in Command and Control – Simulation Interoperability (C2SIM). This paper provides an introduction to the concept and historical use and employment of Battle Management Language as they have developed, and the technical activities that were started to achieve interoperability between digitised command and control and simulation systems. 1.0 INTRODUCTION This paper provides a background to the historical employment and implementation of Battle Management Languages (BML) and the challenges that face the military forces today as they deploy digitised C2 systems and have increasingly used simulation tools to both stimulate the training of commanders and their staffs at all echelons of command. The specific areas covered within this section include the following: • The current problem space. • Historical background to the development and employment of Battle Management Languages (BML) as technology evolved to communicate within military organisations. • The challenges that NATO and nations face in C2SIM interoperation. • Strategy and Policy Statements on interoperability between C2 and simulation systems. • NATO technical activities that have been instigated to examine C2Sim interoperation. 2.0 CURRENT PROBLEM SPACE “Linking sensors, decision makers and weapon systems so that information can be translated into synchronised and overwhelming military effect at optimum tempo” (Lt Gen Sir Robert Fulton, Deputy Chief of Defence Staff, 29th May 2002) Although General Fulton made that statement in 2002 at a time when the concept of network enabled operations was being formulated by the UK and within other nations, the requirement remains extant.
    [Show full text]
  • Elements of Cryptography
    Elements Of Cryptography The discussion of computer security issues and threats in the previous chap- ters makes it clear that cryptography provides a solution to many security problems. Without cryptography, the main task of a hacker would be to break into a computer, locate sensitive data, and copy it. Alternatively, the hacker may intercept data sent between computers, analyze it, and help himself to any important or useful “nuggets.” Encrypting sensitive data com- plicates these tasks, because in addition to obtaining the data, the wrongdoer also has to decrypt it. Cryptography is therefore a very useful tool in the hands of security workers, but is not a panacea. Even the strongest cryp- tographic methods cannot prevent a virus from damaging data or deleting files. Similarly, DoS attacks are possible even in environments where all data is encrypted. Because of the importance of cryptography, this chapter provides an introduction to the principles and concepts behind the many encryption al- gorithms used by modern cryptography. More historical and background ma- terial, descriptions of algorithms, and examples, can be found in [Salomon 03] and in the many other texts on cryptography, code breaking, and data hiding that are currently available in libraries, bookstores, and the Internet. Cryptography is the art and science of making data impossible to read. The task of the various encryption methods is to start with plain, readable data (the plaintext) and scramble it so it becomes an unreadable ciphertext. Each encryption method must also specify how the ciphertext can be de- crypted back into the plaintext it came from, and Figure 1 illustrates the relation between plaintext, ciphertext, encryption, and decryption.
    [Show full text]
  • The Mathemathics of Secrets.Pdf
    THE MATHEMATICS OF SECRETS THE MATHEMATICS OF SECRETS CRYPTOGRAPHY FROM CAESAR CIPHERS TO DIGITAL ENCRYPTION JOSHUA HOLDEN PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD Copyright c 2017 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TR press.princeton.edu Jacket image courtesy of Shutterstock; design by Lorraine Betz Doneker All Rights Reserved Library of Congress Cataloging-in-Publication Data Names: Holden, Joshua, 1970– author. Title: The mathematics of secrets : cryptography from Caesar ciphers to digital encryption / Joshua Holden. Description: Princeton : Princeton University Press, [2017] | Includes bibliographical references and index. Identifiers: LCCN 2016014840 | ISBN 9780691141756 (hardcover : alk. paper) Subjects: LCSH: Cryptography—Mathematics. | Ciphers. | Computer security. Classification: LCC Z103 .H664 2017 | DDC 005.8/2—dc23 LC record available at https://lccn.loc.gov/2016014840 British Library Cataloging-in-Publication Data is available This book has been composed in Linux Libertine Printed on acid-free paper. ∞ Printed in the United States of America 13579108642 To Lana and Richard for their love and support CONTENTS Preface xi Acknowledgments xiii Introduction to Ciphers and Substitution 1 1.1 Alice and Bob and Carl and Julius: Terminology and Caesar Cipher 1 1.2 The Key to the Matter: Generalizing the Caesar Cipher 4 1.3 Multiplicative Ciphers 6
    [Show full text]
  • Short History Polybius's Square History – Ancient Greece
    CRYPTOLOGY : CRYPTOGRAPHY + CRYPTANALYSIS Polybius’s square Polybius, Ancient Greece : communication with torches Cryptology = science of secrecy. How : 12345 encipher a plaintext into a ciphertext to protect its secrecy. 1 abcde The recipient deciphers the ciphertext to recover the plaintext. 2 f g h ij k A cryptanalyst shouldn’t complete a successful cryptanalysis. 3 lmnop 4 qrstu Attacks [6] : 5 vwxyz known ciphertext : access only to the ciphertext • known plaintexts/ciphertexts : known pairs TEXT changed in 44,15,53,44. Characteristics • (plaintext,ciphertext) ; search for the key encoding letters by numbers chosen plaintext : known cipher, chosen cleartexts ; • shorten the alphabet’s size • search for the key encode• a character x over alphabet A in y finite word over B. Polybius square : a,...,z 1,...,5 2. { } ! { } Short history History – ancient Greece J. Stern [8] : 3 ages : 500 BC : scytale of Sparta’s generals craft age : hieroglyph, bible, ..., renaissance, WW2 ! • technical age : complex cipher machines • paradoxical age : PKC • Evolves through maths’ history, computing and cryptanalysis : manual • electro-mechanical • by computer Secret key : diameter of the stick • History – Caesar Goals of cryptology Increasing number of goals : secrecy : an enemy shouldn’t gain access to information • authentication : provides evidence that the message • comes from its claimed sender signature : same as auth but for a third party • minimality : encipher only what is needed. • Change each char by a char 3 positions farther A becomes d, B becomes e... The plaintext TOUTE LA GAULE becomes wrxwh od jdxoh. Why enciphering ? The tools Yesterday : • I for strategic purposes (the enemy shouldn’t be able to read messages) Information Theory : perfect cipher I by the church • Complexity : most of the ciphers just ensure computational I diplomacy • security Computer science : all make use of algorithms • Mathematics : number theory, probability, statistics, Today, with our numerical environment • algebra, algebraic geometry,..
    [Show full text]
  • Tap Code 1 2 3 4 5 1 a B C D E 2 F G H I J 3 L M N O P 4 Q R S T U 5
    Solution to Kryptos 2: Challenge 1 The audio files indicate that the prisoners are communicating with each other by “tapping”. There are two distinct tapping sounds which indicate the two prisoners are exchanging some sort of information back and forth. Furthermore, unlike Morse Code, each audio file is made up of pairs of taps which leads one to believe that each pair of taps corresponds to a word or letter. The longest tapping sequence is five, so if one assumes that each tap-pair corresponds to a pair of integers between 1 and 5, then this code could encipher 25 items – most likely letters. At this point, one could try a frequency analysis to help identify which pairs of integers correspond to which letters. Alternatively, a little research might yield the “tap code” (see e.g. Wikipedia) which has been used by prisoners of war in various conflicts throughout history, most recently Vietnam. It is based on the Polybius square, some of which have slightly different arrangements of the 26 letters placed into 25 cells. Challenge 1 was based on the following key found on Wikipedia: Tap code 1 2 3 4 5 1 A B C D E 2 F G H I J 3 L M N O P 4 Q R S T U 5 V W X Y Z The tap code table This has all letters except “K”, so “C” is used instead. The letter “X” is used to separate sentences. The first audio file begins with the following tap-pairs: (2,4), (4,3), (1,3), (3,4), (5,1), (1,5), (4,2),… which yields the following plaintext: i, s, c, o, v, e, r, … By adding in the likely punctuation, the complete conversation can be decoded: PLAINTEXT Prisoner 1: Is cover intact? Prisoner 2: Yes.
    [Show full text]
  • Grade 7 and 8 Math Circles Cryptography Introduction
    Faculty of Mathematics Centre for Education in Waterloo, Ontario N2L 3G1 Mathematics and Computing Grade 7 and 8 Math Circles March 19th/20th/21st Cryptography Introduction Before we begin, it's important to look at some terminology that is important to what we will be learning about. Plaintext: The message or information a sender wishes to share with a specific person. It is very easy to read and must be somehow hidden from those that are not intended to see it. Encryption: The process of the plaintext in such a way that only authorized parties can clearly read it. Ciphertext: The text created by plaintext. It looks like gibberish and is very hard to read. Cipher: A of transforming a message to conceal its meaning. Decryption: The opposite of . It is the process of turning ciphertext back into the readable plaintext. Substitution Cipher The earliest evidence of cryptography have been found in Mesopotamian, Egyptian, Chinese, and Indian writings, but it was the Hebrew scholars of 600 to 500 BCE that began to use simple substitution ciphers. In a substitution cipher the alphabet is rewritten in some other order to represent the the substitution. Caesar Ciphers The Caesar cipher is the simplest and most famous substitution cipher. It was first used by the famous Roman general Julius Caesar, who developed it to protect important military messages. 1 To produce a Caesar cipher simply shift the alphabet some units to the right. Julius Caesar's original cipher was created by shifting the alphabet three units to the right, as shown below. plaintext A B C D E F G H I J K L M ciphertext X Y Z A B C D E F G H I J plaintext N O P Q R S T U V W X Y Z ciphertext K L M N O P Q R S T U V W When encrypting a message, match every letter in the plaintext with the corresponding ciphertext letter beneath it.
    [Show full text]
  • A Comparative Study of Classical Substitution Ciphers
    International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 Vol. 3 Issue 9, September- 2014 A Comparative Study of Classical Substitution Ciphers Anjlee Verma Navjot Kaur School of Computer Engineering Department of CSE/IT Lovely Professional University CGC Jhanjeri Phagwara, Punjab Mohali, Punjab Abstract— with the rapid development in the technology, the Cryptography (also known as cryptology) is a study and call for security has also raised its pitch and Information practice of hiding information. It is the technique in which a Security has become an important issue during last decades. piece of raw data is taken, scrambled into gibberish Cryptography; emerged as a solution; has reserved its mathematically, yet allowing for decrypting back into the unvanquishable place in the field of security. The principle original plain data. In other words, we can say that it is an art objective guiding the design of any cryptographic algorithm of manipulating messages so that they become more secure. It must be the security it provides against unauthorized attack. consists of processes of encoding and decoding. But, the performance and cost implementation of the algorithms Cryptography includes the techniques for creating various are also those factors which we cannot ignore. So, there is systems, procedures or algorithms for secret writing. Whereas always a deemed necessity to analyze, standardize and represent cryptanalysis consists of the techniques of breaking them.[2] these algorithms to the future researchers and struggling
    [Show full text]
  • Crypyto Documentation Release 0.2.0
    crypyto Documentation Release 0.2.0 Yan Orestes Aug 22, 2018 API Documentation 1 Getting Started 3 1.1 Dependencies...............................................3 1.2 Installing.................................................3 2 Ciphers 5 2.1 Polybius Square.............................................5 2.2 Atbash..................................................6 2.3 Caesar Cipher..............................................7 2.4 ROT13..................................................8 2.5 Affine Cipher...............................................9 2.6 Rail Fence Cipher............................................9 2.7 Keyword Cipher............................................. 10 2.8 Vigenère Cipher............................................. 11 2.9 Beaufort Cipher............................................. 12 2.10 Gronsfeld Cipher............................................. 13 3 Substitution Alphabets 15 3.1 Morse Code............................................... 15 3.2 Binary Translation............................................ 16 3.3 Pigpen Cipher.............................................. 16 3.4 Templar Cipher.............................................. 18 3.5 Betamaze Alphabet............................................ 19 Python Module Index 21 i ii crypyto Documentation, Release 0.2.0 crypyto is a Python package that provides a set of cryptographic tools with simple use to your applications. API Documentation 1 crypyto Documentation, Release 0.2.0 2 API Documentation CHAPTER 1 Getting Started These instructions
    [Show full text]
  • Transposition Cipher in Cryptography, a Transposition Cipher Is a Method of Encryption by Which the Positions Held by Units of P
    Transposition cipher In cryptography, a transposition cipher is a method of encryption by which the positions held by units of plaintext (which are commonly characters or groups of characters) are shifted according to a regular system, so that the ciphertext constitutes a permutation of the plaintext. That is, the order of the units is changed. Mathematically a bijective function is used on the characters' positions to encrypt and an inverse function to decrypt. Following are some implementations. Contents • 1 Rail Fence cipher • 2 Route cipher • 3 Columnar transposition • 4 Double transposition • 5 Myszkowski transposition • 6 Disrupted transposition • 7 Grilles • 8 Detection and cryptanalysis • 9 Combinations • 10 Fractionation Rail Fence cipher The Rail Fence cipher is a form of transposition cipher that gets its name from the way in which it is encoded. In the rail fence cipher, the plaintext is written downwards on successive "rails" of an imaginary fence, then moving up when we get to the bottom. The message is then read off in rows. For example, using three "rails" and a message of 'WE ARE DISCOVERED. FLEE AT ONCE', the cipherer writes out: W . E . C . R . L . T . E . E . R . D . S . O . E . E . F . E . A . O . C . A . I . V . D . E . N . Then reads off: WECRL TEERD SOEEF EAOCA IVDEN (The cipherer has broken this ciphertext up into blocks of five to help avoid errors.) Route cipher In a route cipher, the plaintext is first written out in a grid of given dimensions, then read off in a pattern given in the key.
    [Show full text]
  • Chapter 17: Transposition Ciphers Encode and Decode the Following Messages Using the Methods Presented in Class
    Math for Liberal Studies – Fall 2007 Dr. Hamblin Chapter 17: Transposition Ciphers Encode and decode the following messages using the methods presented in class. 1. Encode the message “WARNING AMBUSH AHEAD” using the Rail Fence cipher and four rails. 2. Decode the message “YAOEP LWGOH VCMLT DRBET OPWUE PEOMX” using the Rail Fence cipher and three rails. 3. Encode the message “MEET ME FOR LUNCH AT NOON” using a Route cipher. Write the plaintext in four columns of five letters, start at the lower right hand corner and spiral inwards, counter-clockwise. 4. The message “TSO EAA BYD ITX DUT DHW LRI HPB MSR UOI” was encoded using a Route cipher. The plaintext was written in columns of three letters, and the route started in the upper left and proceeded clockwise. Decode the message. Math for Liberal Studies – Fall 2007 Dr. Hamblin The next two problems use a Bifid cipher with the following Polybius square. 1 2 3 4 5 1 A B C D E 2 F G H I K 3 L M N O P 4 Q R S T U 5 V W X Y Z 5. Encode the message “THE BROWN FOX JUMPS OVER THE DOG” using the Bifid cipher. 6. Decode the message “BGAHF TDADW QTOXW LKVO” using the Bifid cipher. 7. The message “TLSTR SPHXR ROAEM ROSKP ILDOY IK” was encoded using a Bifid cipher and then a Rail cipher with 3 rails. Decode the message. Solutions 1. WGHAN ASADR IMUHA NBE 2. YOU HAVE COMPLETED PROBLEM TWO (XPGW) 3. NOONT UEMEE TMLAH CNFOR 4.
    [Show full text]
  • Cryptography
    Bastian | Planning & Pacing Guide UNIT 5: CRYPTOGRAPHY Estimated Time in Hours: 16-17 Big Idea(s) Enduring Understandings Projects & Major Assignments 2 Establishing Trust 2.1, 4.3, 7.2, 8.1 - Scytale & Caesar Cipher 4 Data Security - Caesar Cipher Program 7 Risk - Anagrams 8 Implications - Symmetric Ciphers - Steganography - Public Key Encryption & Digital Signatures - History & Politics of Public Key Encryption - Breakout Box Guiding Questions: • What are the ways in which data can be encrypted? • What actions can be taken to validate that data has been unaltered by an unauthorized source? Learning Objectives & Materials Instructional Activities and Classroom Assessments Respective Essential Knowledge Statements 2.1.1 LO: Students will evaluate • KWL Chart (find example Introduction to Cryptology: (1-day lesson) methods of keeping information KWL chart at This lesson introduces students to cryptography and the secret from those whom the https://www.timvandevall history of cryptography. information should be kept .com/templates/kwl- • Students begin with a pre-assessment using a KWL chart secret chart-template/ ) to identify what they know about cryptography. Students EK: 2.1.1c,d • “Cryptography: Crash then watch the Cryptography Video. Students take Course Computer Science Cornell notes on the video. Once the video is over, 4.3.1 LO: Students will define #33.” YouTube, uploaded students return to the KWL chart and add to it based on cryptography and explain how it by CrashCourse, 25 Oct what they have learned and what questions they still is used in data security. 2017, have. The class discusses the purpose of encryption, and EK: 4.3.1a,b,c,d,e,f,g,h,i https://www.youtube.c how it is necessary to ensure confidentiality and integrity.
    [Show full text]