OCFS2 Version 1.2 for Linux on IBM System Z About This Publication
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Oracle® Linux 7 Managing File Systems
Oracle® Linux 7 Managing File Systems F32760-07 August 2021 Oracle Legal Notices Copyright © 2020, 2021, Oracle and/or its affiliates. This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable: U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial computer software" or "commercial computer software documentation" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in the applicable contract. -
Parallel File Systems for HPC Introduction to Lustre
Parallel File Systems for HPC Introduction to Lustre Piero Calucci Scuola Internazionale Superiore di Studi Avanzati Trieste November 2008 Advanced School in High Performance and Grid Computing Outline 1 The Need for Shared Storage 2 The Lustre File System 3 Other Parallel File Systems Parallel File Systems for HPC Cluster & Storage Piero Calucci Shared Storage Lustre Other Parallel File Systems A typical cluster setup with a Master node, several computing nodes and shared storage. Nodes have little or no local storage. Parallel File Systems for HPC Cluster & Storage Piero Calucci The Old-Style Solution Shared Storage Lustre Other Parallel File Systems • a single storage server quickly becomes a bottleneck • if the cluster grows in time (quite typical for initially small installations) storage requirements also grow, sometimes at a higher rate • adding space (disk) is usually easy • adding speed (both bandwidth and IOpS) is hard and usually involves expensive upgrade of existing hardware • e.g. you start with an NFS box with a certain amount of disk space, memory and processor power, then add disks to the same box Parallel File Systems for HPC Cluster & Storage Piero Calucci The Old-Style Solution /2 Shared Storage Lustre • e.g. you start with an NFS box with a certain amount of Other Parallel disk space, memory and processor power File Systems • adding space is just a matter of plugging in some more disks, ot ar worst adding a new controller with an external port to connect external disks • but unless you planned for -
Ubuntu Server Guide Basic Installation Preparing to Install
Ubuntu Server Guide Welcome to the Ubuntu Server Guide! This site includes information on using Ubuntu Server for the latest LTS release, Ubuntu 20.04 LTS (Focal Fossa). For an offline version as well as versions for previous releases see below. Improving the Documentation If you find any errors or have suggestions for improvements to pages, please use the link at thebottomof each topic titled: “Help improve this document in the forum.” This link will take you to the Server Discourse forum for the specific page you are viewing. There you can share your comments or let us know aboutbugs with any page. PDFs and Previous Releases Below are links to the previous Ubuntu Server release server guides as well as an offline copy of the current version of this site: Ubuntu 20.04 LTS (Focal Fossa): PDF Ubuntu 18.04 LTS (Bionic Beaver): Web and PDF Ubuntu 16.04 LTS (Xenial Xerus): Web and PDF Support There are a couple of different ways that the Ubuntu Server edition is supported: commercial support and community support. The main commercial support (and development funding) is available from Canonical, Ltd. They supply reasonably- priced support contracts on a per desktop or per-server basis. For more information see the Ubuntu Advantage page. Community support is also provided by dedicated individuals and companies that wish to make Ubuntu the best distribution possible. Support is provided through multiple mailing lists, IRC channels, forums, blogs, wikis, etc. The large amount of information available can be overwhelming, but a good search engine query can usually provide an answer to your questions. -
Understanding Lustre Filesystem Internals
ORNL/TM-2009/117 Understanding Lustre Filesystem Internals April 2009 Prepared by Feiyi Wang Sarp Oral Galen Shipman National Center for Computational Sciences Oleg Drokin Tom Wang Isaac Huang Sun Microsystems Inc. DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source. National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone 703-605-6000 (1-800-553-6847) TDD 703-487-4639 Fax 703-605-6900 E-mail [email protected] Web site http://www.ntis.gov/support/ordernowabout.htm Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange (ETDE) representatives, and International Nuclear Information System (INIS) representatives from the following source. Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 Telephone 865-576-8401 Fax 865-576-5728 E-mail [email protected] Web site http://www.osti.gov/contact.html This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. -
High Availability for RHEL on System Z
High Availability for RHEL on System z David Boyes Sine Nomine Associates Agenda • Clustering • High Availability • Cluster Management • Failover • Fencing • Lock Management • GFS2 Clustering • Four types – Storage – High Availability – Load Balancing – High Performance High Availability • Eliminate Single Points of Failure • Failover • Simultaneous Read/Write • Node failures invisible outside the cluster • rgmanager is the core software High Availability • Major Components – Cluster infrastructure — Provides fundamental functions for nodes to work together as a cluster • Configuration-file management, membership management, lock management, and fencing – High availability Service Management — Provides failover of services from one cluster node to another in case a node becomes inoperative – Cluster administration tools — Configuration and management tools for setting up, configuring, and managing the High Availability Implementation High Availability • Other Components – Red Hat GFS2 (Global File System 2) — Provides a cluster file system for use with the High Availability Add-On. GFS2 allows multiple nodes to share storage at a block level as if the storage were connected locally to each cluster node – Cluster Logical Volume Manager (CLVM) — Provides volume management of cluster storage – Load Balancer — Routing software that provides IP-Load-balancing Cluster Infrastructure • Cluster management • Lock management • Fencing • Cluster configuration management Cluster Management • CMAN – Manages quorum and cluster membership – Distributed -
Comparative Analysis of Distributed and Parallel File Systems' Internal Techniques
Comparative Analysis of Distributed and Parallel File Systems’ Internal Techniques Viacheslav Dubeyko Content 1 TERMINOLOGY AND ABBREVIATIONS ................................................................................ 4 2 INTRODUCTION......................................................................................................................... 5 3 COMPARATIVE ANALYSIS METHODOLOGY ....................................................................... 5 4 FILE SYSTEM FEATURES CLASSIFICATION ........................................................................ 5 4.1 Distributed File Systems ............................................................................................................................ 6 4.1.1 HDFS ..................................................................................................................................................... 6 4.1.2 GFS (Google File System) ....................................................................................................................... 7 4.1.3 InterMezzo ............................................................................................................................................ 9 4.1.4 CodA .................................................................................................................................................... 10 4.1.5 Ceph.................................................................................................................................................... 12 4.1.6 DDFS .................................................................................................................................................. -
LSF ’07: 2007 Linux Storage & Filesystem Workshop Namically Adjusted According to the Current Popularity of Its Hot Zone
June07login1summaries_press.qxd:login summaries 5/27/07 10:27 AM Page 84 PRO: A Popularity-Based Multi-Threaded Reconstruction overhead of PRO is O(n), although if a priority queue is Optimization for RAID-Structured Storage Systems used in the PRO algorithm the computation overhead can Lei Tian and Dan Feng, Huazhong University of Science and be reduced to O(log n). The entire PRO implementation in Technology; Hong Jiang, University of Nebraska—Lincoln; Ke the RAIDFrame software only added 686 lines of code. Zhou, Lingfang Zeng, Jianxi Chen, and Zhikun Wang, Hua- Work on PRO is ongoing. Future work includes optimiz - zhong University of Science and Technology and Wuhan ing the time slice, scheduling strategies, and hot zone National Laboratory for Optoelectronics; Zhenlei Song, length. Currently, PRO is being ported into the Linux soft - Huazhong University of Science and Technology ware RAID. Finally, the authors plan on further investigat - ing use of access patterns to help predict user accesses and Hong Jiang began his talk by discussing the importance of of filesystem semantic knowledge to explore accurate re - data recovery. Disk failures have become more common in construction. RAID-structured storage systems. The improvement in disk capacity has far outpaced improvements in disk band - The first questioner asked about the average rate of recov - width, lengthening the overall RAID recovery time. Also, ery for PRO. Hong answered that the average reconstruc - disk drive reliability has improved slowly, resulting in a tion time is several hundred seconds in the experimental very high overall failure rate in a large-scale RAID storage setup. -
Oracle® Private Cloud Appliance Administrator's Guide for Release 2.4.3
Oracle® Private Cloud Appliance Administrator's Guide for Release 2.4.3 F23081-02 August 2020 Oracle Legal Notices Copyright © 2013, 2020, Oracle and/or its affiliates. This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable: U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial computer software" or "commercial computer software documentation" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in the applicable contract. -
Ceph – Software Defined Storage Für Die Cloud
Ceph – Software Defined Storage für die Cloud CeBIT 2016 15. März 2015 Michel Rode Linux/Unix Consultant & Trainer B1 Systems GmbH [email protected] B1 Systems GmbH - Linux/Open Source Consulting, Training, Support & Development Vorstellung B1 Systems gegründet 2004 primär Linux/Open Source-Themen national & international tätig über 70 Mitarbeiter unabhängig von Soft- und Hardware-Herstellern Leistungsangebot: Beratung & Consulting Support Entwicklung Training Betrieb Lösungen dezentrale Strukturen B1 Systems GmbH Ceph – Software Defined Storage für die Cloud 2 / 36 Schwerpunkte Virtualisierung (XEN, KVM & RHEV) Systemmanagement (Spacewalk, Red Hat Satellite, SUSE Manager) Konfigurationsmanagement (Puppet & Chef) Monitoring (Nagios & Icinga) IaaS Cloud (OpenStack & SUSE Cloud & RDO) Hochverfügbarkeit (Pacemaker) Shared Storage (GPFS, OCFS2, DRBD & CEPH) Dateiaustausch (ownCloud) Paketierung (Open Build Service) Administratoren oder Entwickler zur Unterstützung des Teams vor Ort B1 Systems GmbH Ceph – Software Defined Storage für die Cloud 3 / 36 Storage Cluster B1 Systems GmbH Ceph – Software Defined Storage für die Cloud 4 / 36 Was sind Storage Cluster? hochverfügbare Systeme verteilte Standorte skalierbar (mehr oder weniger) Problem: Häufig Vendor-Lock-In 80%+ basieren auf FC B1 Systems GmbH Ceph – Software Defined Storage für die Cloud 5 / 36 Beispiele 1/2 Dell PowerVault IBM SVC NetApp Metro Cluster NetApp Clustered Ontap ... B1 Systems GmbH Ceph – Software Defined Storage für die Cloud 6 / 36 Beispiele 2/2 AWS S3 Rackspace Files Google Cloud -
The Chubby Lock Service for Loosely-Coupled Distributed Systems
The Chubby lock service for loosely-coupled distributed systems Mike Burrows, Google Inc. Abstract example, the Google File System [7] uses a Chubby lock to appoint a GFS master server, and Bigtable [3] uses We describe our experiences with the Chubby lock ser- Chubby in several ways: to elect a master, to allow the vice, which is intended to provide coarse-grained lock- master to discover the servers it controls, and to permit ing as well as reliable (though low-volume) storage for clients to find the master. In addition, both GFS and a loosely-coupled distributed system. Chubby provides Bigtable use Chubby as a well-known and available loca- an interface much like a distributed file system with ad- tion to store a small amount of meta-data; in effect they visory locks, but the design emphasis is on availability use Chubby as the root of their distributed data struc- and reliability, as opposed to high performance. Many tures. Some services use locks to partition work (at a instances of the service have been used for over a year, coarse grain) between several servers. with several of them each handling a few tens of thou- Before Chubby was deployed, most distributed sys- sands of clients concurrently. The paper describes the tems at Google used ad hoc methods for primary elec- initial design and expected use, compares it with actual tion (when work could be duplicated without harm), or use, and explains how the design had to be modified to required operator intervention (when correctness was es- accommodate the differences. -
Comparing a Highly-Available Symmetrical Parallel Cluster File System with an Asymmetrical Parallel File System
pCFS vs. PVFS: Comparing a Highly-Available Symmetrical Parallel Cluster File System with an Asymmetrical Parallel File System Paulo A. Lopes and Pedro D. Medeiros CITI and Department of Informatics, Faculty of Science and Technology, Universidade Nova de Lisboa 2829-516 Monte de Caparica, Portugal {pal,pm}@di.fct.unl.pt Abstract. pCFS is a highly available parallel, symmetrical (where nodes per- form both compute and I/O work) cluster file system that we have designed to run in medium-sized clusters. In this paper, using exactly the same hardware and Linux version across all nodes we compare pCFS with two distinct configu- rations of PVFS: one using internal disks, and therefore not able to provide any tolerance against disk and/or I/O node failures, and another where PVFS I/O servers access LUNs in a disk array and thus provide high availability (in the following named HA-PVFS). We start by measuring I/O bandwidth and CPU consumption of PVFS and HA-PVFS setups; then, the same set of tests is performed with pCFS. We conclude that, when using the same hardware, pCFS compares very favourably with HA-PVFS, offering the same or higher I/O bandwidths at a much lower CPU consumption. Keywords: Shared-disk cluster file systems, performance, parallel file systems. 1 Introduction In asymmetrical file systems, some nodes must be set aside as I/O or metadata servers while others are used as compute nodes, while in symmetrical file systems all nodes run the same set of services and may simultaneously perform both I/O and computa- tional tasks. -
Introduction to Distributed File Systems. Orangefs Experience 0.05 [Width=0.4]Lvee-Logo-Winter
Introduction to distributed file systems. OrangeFS experience Andrew Savchenko NRNU MEPhI, Moscow, Russia 16 February 2013 . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. Outline 1. Introduction 2. Species of distributed file systems 3. Behind the curtain 4. OrangeFS 5. Summary . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. Introduction Why one needs a non-local file system? • a large data storage • a high performance data storage • redundant and highly available solutions There are dozens of them: 72 only on wiki[1], more IRL. Focus on free software solutions. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. Introduction Why one needs a non-local file system? • a large data storage • a high performance data storage • redundant and highly available solutions There are dozens of them: 72 only on wiki[1], more IRL. Focus on free software solutions. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. Species of distributed file systems Network Clustered Distributed Terminology is ambiguous!. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. Network file systems client1 client2 clientN server storage A single server (or at least an appearance) and multiple network clients. Examples: NFS, CIFS. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. Clustered file systems server1 server2 serverN storage Servers sharing the same local storage (usually SAN[2] at block level). shared storage architecture. Examples: GFS2[3], OCFS2[4]. .. .. .. .. .