J Hattori Bot. Lab. No. 83: 273- 308 (Nov. 1997)

THE OCCURRENCE OF FLAVONOIDS IN ARTHRODONTOUS 1 2 -AN ACCOUNT OF THE PRESENT KNOWLEDGE •

3 3 HANS GEIGER , TASSILO SEEGER , 3 4 HANS DIETMAR ZINSMEISTER AND JAN-PETER fRAHM

ABSTRACT. This paper gives an account of all fully characterized fiavonoids that have so far been isolated from arthrodontous mosses, and presents also the results of our extensive qualitative studies by 2 D-thin-layer chromatography on the occurrence of fiavonoids in these mosses. Altogether nearly 300 from 59 different families have been studied so far. It is shown that bifiavonoids are by far the most common fiavonoids in mosses and have been detected in more than two thirds of all species. Flavonoid glycosides, which are very common in hepatics, are, on the contrary, much rarer in mosses; they could be detected in only one fourth of all species tested.

INTRODUCTION The first flavonoid that was detected in a moss was saponarin in cuspi­ datum (Kozlowski, 1921). This flavone glycoside (for the structure see Tables 2 & 3 compd. G2b) was isolated for the first time from Saponaria officinalis L., hence its name (Barger, 1906). Its structure was elucidated only 59 years later (Horhammer et al. 1965). A remarkable property of saponarin is that it gives, like starch, a dark blue colour with iodine. A subsequent study of this reaction (Barger & Field, 1912 and Barger & Starling, 1915) re­ vealed: 1. This reaction requires a supersaturated solution of saponarin; it is negative with the crystalline compound and with unsaturated solutions. 2. Saponarin is not the only low molecular weight substance that yields a deep coloured inclusion compound with iodine. All earlier reports on the occurrence of saponarin that rely on this reaction need therefore to be confirmed by other methods, even ifthe reaction had been performed microchemical­ ly according to Molisch (1923). The first flavonoids that were isolated from a moss and the structures of which were elucidated are two anthocyanidin glycosides from Bryum cryophilum (Bendz & Martens­ son, 1961; Bendz et al., 1962). Since that time reports of preparative work on mosses have been appearing at an increasing rate (compare e.g. Huneck, 1983; Asakawa, 1995 and the present report). This, as compared with vascular , rather late beginning of the prepar­ ative flavonoid work on mosses is explained by the forbiddingly large amounts of ma­ terial that would have been necessary with the old methods of separation by fractional crys­ tallisation and elucidation of the structures by means of chemical degradation and transfor­ mation. The mosses therefore had to wait for the development of the various chromato-

1 Dedicated to Prof. Dr. Th. Eicher on the occasion of his 65th birthday. 2 Publication No. 104 of the Arbeitskreis Chemie und Biologie der Moose. 3 Fachrichtung Botanik, Universitiit des Saarlandes, Postfach 15 11 50, D-66041 Saarbriicken, Germany. 4 Botanisches Institut der Universitiit, Meckenheimer Allee 170, D-53115 Bonn, Germany. 274 J. Hattori Bot. Lab. No. 83 I 9 9 7 graphic methods for the separation of their constituents, and for the spectroscopic methods (UV, 1H- and 13C-NMR and mass spectroscopy), which enable nowadays elucidation of a complete structure with less material than required before to establish only the elemental composition by the traditional micromethod. Nevertheless, paucity of material is still a problem if it comes to rare or small species or herbarium specimens. In these cases one has to make compromises. If the samples are very small it will only be possible to run 2D-fingerprint chromatograms. If these are strict­ ly standardized, and ideally run at the same time they may serve their purpose (see Kopo­ nen & Nilsson, 1977; and Frahm, 1983). Screening of large numbers of samples for the presence or absence of certain classes of ftavonoids is another objective that can be met by 2D-chromatograms (McClure & Miller, 1967). If the samples are somewhat larger, but still too small for real preparative work, one may go one step further and identify individual compounds tentatively. This can be done by eluting them from chromatograms, running their UV-spectra, and, in the case of glycosides, by hydrolysing them and studying the sug­ ars and aglyca (Melchert & Alston, 1965; Alston, 1968; Vandekerkhove, 1977 b, 1978 a & b, 1980; Wyatt, 1991 a & b). Thereby it must be kept in mind that the information gained from the UV-spectra of glycosides concerns only the aglycone and its substitution-pattern, and that the UV-spectra of biftavonoids approximate to the superposition of the two monomers' spectra and are therefore difficult to interpret (Stein, 1988; Anhut, 1992; Geiger & Markham, 1992). With Sphagnales, Andreaeales, Polytrichales and Tetraphidales no ftavonoids have so far been certainly identified. Recent studies of members of the latter two taxa (Polytrichales and Tetraphidales) revealed that they are characterized by tri- and tetraoxygenated coumarins (Jung, 1993; Jung et al., 1994 & 1995). Some of these coumarins may have been taken for ftavonoids by earlier workers (McClure & Miller, 1967 and Vandekerkhove, 1977 a). The present survey is therefore restricted to the arthrodontous mosses. It brings together all published reports on the distribution of ftavonoids with known structure that have so far been isolated from these mosses, as well as the data from the screening of numerous species, that accompanied our preparative work.

MATERIAL AND METHODS Plant material - The vouchers of the mosses analysed in the course of the present study are listed in the appendix. For the analysis, that portion of the sample was used which was presumably living at the time of collection. This means that the studies are restricted in most cases to the gametophytes, because sporophytes in good condition can be rarely ob­ tained in sufficient quantity. At the beginning of the present work the plant material was ground prior to extraction. However, after a microscopic inspection of the ground material had revealed that almost no cells were actually ruptured by the grinding process, we aban­ doned this practice. We are now leaving the plantlets intact or, if they are too bulky, cutting them into just a few large pieces. Thereby all characters, except colour and some inclu­ sions, such as lipid droplets, remain almost unchanged. The extracted material itself thus remains available for future morphological studies (Markham & Geiger, 1992). H. GEIGER et al.: The occurrence offlavonoids in arthrodontous mosses 275

Extraction - The choice of solvents for the extraction of substances from plant mate­ rial depends on two factors: first the solubility of the substances in the solvent; and second­ ly the matrix from which the substances have to be desorbed. For the extraction of flavonoids from mosses we found acetone/water (4 : l) to be the best choice. First because it is an excellent solvent for phenolics in general (K. Freudenberg, in private discussions); secondly because, as judged by chromatographic experiments, it elutes flavonoids readily from cellulose as well as polyamide (These two materials may serve as models for the two main constituents of the plant tissue, the matrix: polysaccharides and proteins); and thirdly because in this solvent mixture the mosses get almost fully hydrated (this facilitates very much the diffusion through the cell walls). Pure acetone is on the contrary usually a much poorer solvent; it desorbs flavonoids from the two matrices much more slowly, if at all, and it leaves the mosses unhydrated. We extract therefore mosses routinely by maceration with acetone/water for one or two days (this time is necessary because diffusion through the cell wall is a slow process!). Only in preparative work with species containing flavonoid glyco­ sides do we use an additional maceration with methanol/water (4 : l ). It must be noted, however, that even after prolonged extraction the residue still reacts positively to flavonoid­ reagents (Geiger, 1990). It is not yet known whether these non-extractable flavonoids are polymers or are mono-, di-, or trimers, which are just tenaciously adsorbed to some very active sites of the matrix. The latter seems to be the case with anthocyanins. Although red­ dish colours attributable to anthocyanins seem to be not rare with mosses, isolation of an­ thocyanins from mosses was achieved only in a few instances (Bendz & Martensson 1961, 1963; Bendz et al. 1962). It is well known that anthocyanins bind so firmly to some cell constituents that they have even been recommended as cytological stains (Molisch, 1923). Thus anthocyanins are not suitable chemical characters, if one has to rely on herbarium specimens; they are therefore not included in our screening program. The red pigments, which have been isolated from Sphagnales (Vowinkel, 1975) and a Hepatic (Kunz et al., 1994) are in the strict sense, not anthocyanidins. They are only chemically, but not bio­ genetically, related to them. Detailed extraction procedures for preparative purposes are given in the references quoted in Table 1, 3 & 4. The extraction of small samples for the thinlayer chromatography is described along with this technique in the next paragraph. Chromatography - Representative chromatographic procedures for the preparative isolation of bi- and triflavonoids as well as of flavonoid glycosides from mosses are to be found in the literature quoted in Tables 1 & 3. Methods using apparative equipment, such as HPLC and MPLC have not yet been standardized for routine-work; some results ob­ tained by these methods are, however, included in Table 4 (e.g. Sievers, 1992; Zapp, 1992; Hahn, 1993). Our standard procedure to produce the 2D-Thinlayer chromatograms is as follows: 200 mg of the plant material are macerated with 30 ml acetone/water (4 : 1) . The mixture is swirled from time to time, and after two days the extract is filtered off, and evaporated i. vac. The residue is dissolved in 1 ml acetone/methanol/water (2: 1 : 1). 30 µl of this solu­ tion (corresponding 6mg moss) are spotted on a cellulose plate (20X20cm) with intermit- 276 J. Hattori Bot. Lab. No. 83 I 9 9 7 tent drying so that the spot does not exceed 7- 8 mm in diameter. This plate is then devel­ oped with TBA [=tert.-butanol/acetic acid/water (3: l: I by volume)] in the first and 15% acetic acid in the second direction. To the remaining solution ethyl acetate and water ( 15 ml each) are added; the mixture is shaken thoroughly and transferred to a separatory funnel. The aqueous phase, which contains salts, sugars, glycosides and other hydrophilic sub­ stances is discarded, and the ethyl acetate phase is evaporated. The residue is then dis­ solved in 0.5 ml acetone/water (4 : I), 10 µl of this solution (corresponding to 4 mg moss) are applied to a l 0 X I 0 cm micropolyamide sheet (Schleicher & Schuell) taking care that the spot does not exceed 3-4 mm in diameter. This chromatogram is developed with EBAW [=ethyl acetate/butanone/acetic acid/water (5: 3: 1: I by volume)] in the first, and AAW [=acetone/acetic acid/water (6: 2: 2 by volume)] in the second dimension. · These two 2D-TLC systems that we use routinely for screening mosses have quite dif­ ferent separating abilities. The virtues of the cellulose I TBA I l 5% acetic acid system have been described in detail by Markham (1982 & 1989) who presents also diagrams that show the location of the various types of tlavonoids on these chromatograms and discusses also the visualization of all types of flavonoids on the chromatograms. For screening purposes we use these chromatograms only to detect flavonoid aglyca (A) and glycosides (G) in gen­ eral. The micropolyamide/EBAW I AAW system that resolves flavonoid aglyca very well was developed by Seeger (1992), because the most abundant flavonoids of mosses, bi- and triflavonoids, are poorly resolved by the first system. Fig. 1 shows how, on the microp­ olyamide chromatograms, the flavonoid aglyca which occur in mosses are separated into five groups (Al- 5) that differ in the position and appearence of their spots. To locate the individual compounds (the codes used in the following text refer to Table 1) on the micropolyamide chromatograms, these are at first viewed under a UV lamp (=360nm). Thereby aurones and biflavonoids containing an aurone-moiety (Ala-<:) ap­ pear as brightly greenish blue fluorescing spots in the appropriate range of the chro­ matogram (blue fluorescing spots in other ranges are common, they represent, as far as they have been identified, usually cinnamic acid derivatives, compounds, which are not considered in this paper). All other flavonoid aglyca found so far in mosses (A2a-A5i), ap­ pear under UV as dark spots contrasting with the weak bluish autofluorescence of the chro­ matographic support. These dark spots are also described as purple (e.g. Markham, 1982 & 1989) or violet (e.g. Seeger, 1992), depending on the colour of the residual visible light of the UV-lamp that is reflected by the spot. After spraying with diphenylboric acid /3- aminoethylester (usually abbreviated NA for Naturstoffreagenz A) some flavonoids remain dark A4a & b, whereas most exhibit a fluorescence ranging from green to olive (A5a- i) or yellow to orange (A2a- n). A special case is that of dihydrobiflavonoids that possess an eri­ odictyol moiety (Alb and A3a- g). With these compounds, as with eriodictyol itself the original colour under UV changes within a few hours to shades of red (Wollenweber, 1981; Anhut et al., 1989). Identification and elucidation of structures - The chromatographic data (position on the chromatograms and spot appearance) give just hints about the type of a flavonoid (see H. G EIGER et al.: The occurrence offlavonoids in arthrodontous mosses 277

Markham, 1982 & 1989). The positive identification with known compounds, as well as the elucidation of the structures of hitherto unknown compounds, require more detailed chemi­ cal and especially NMR-spectroscopic studies. For details of these methods see Markham (1982 & 1989), and refs quoted therein, Markham & Geiger (1994), Geiger et al. (1993a), and the refs quoted in Tables 1 & 3. Cluster Analysis - An essential question is, whether the flavonoid pattern of mosses has any systematic significance. Since it is practically impossible to survey the data of the flavonoid contents of the nearly 300 species listed in Table 4 and to compare them with the systematic position of these species, a cluster anlaysis was performed. The cluster analysis is based upon 36 species from 15 different families (Table 5), which have been completely analysed and are thus comparable. The flavonoid contents of these species were expressed in a presence/absence matrix using 24 variables. The cluster analysis was performed with the statistical Package MVSP (Kovach 1995). The similarity between the flavonoid con­ tents of the species was calculated using the Sorensen Index.

RESULTS The results are presented in tabular form. In order to save space all references that ap­ pear in the tables are given numbers in the list of references; unnumbered references are quoted only in the text. Tables I and 3 are complete lists of all flavonoids that have been isolated so far from mosses and whose structures have been fully elucidated. Table 2 shows the structures of the monoflavonoids that have been observed so far as constituents of bi­ and triflavonoids. Monomeric aglyca, which may accompany in minor amounts corre­ sponding glycosides or di- and triflavonoids are, however, not considered, because they have no extra taxonomic value since the ability to synthesize them is a prerequisite for the formation of the more complex flavonoids. Thus, bracteatin (Al c) is the only monomeric flavonoid in Table 1, because it is not accompanied by a more complex derivative. Codes consisting of a capital letter, a number, and a small letter have been given to all individual compounds in that Table. These codes are constructed in such a way that they can be used in an abbreviated form to designate groups of related compounds, e.g., A means aglyca in general; A2 designates all aglyca that appear under UV untreated dark and fluoresce after spraying with NA in various nuances of yellow; and A2fstands for dicranolomin. The capi­ tal letter thus represents a large group, the number a subgroup and the small letter the indi­ vidual compound within the subgroup. The division in groups and subgroups has been made rather pragmatically to allow a comparison of the results from the preparative work with those of the TLC-screening. Table 4 shows the results of our chromatographic studies of arthrodontous mosses (which does not include anthocyanins!) as well as the distribution of all fully characterised flavonoids that have been isolated from these mosses. [Two reports on the isolation of bi­ flavonoids from ithyphy//a and B. mossmaniana by L6pez-Saez et al. (l 995a & b) have been excluded because the evidence presented by the authors did not convince us.] The families have been arranged according to Vitt (1984). This arrangement has been cho­ sen because it is the most recent treatment that places all genera in one system, and not be- 278 J. Hattori Bot. Lab. No. 83 I 9 9 7

Table 1. List of mono-, bi- and triflavonoids. which have been isolated from mosses only as aglyca, but not as glycosides. (References to first isolation from mosses and spec­ troscopic data are presented in bold face).

Code Name Formula-No R References

Ala Aulacomniumbiaureusidin 1 17 Alb Campylopusaurone 2 11,S0,52 Ale Bracteatin 3 49 A2a 5'-Hydroxyrobustaflavone 4 H 34 A2b 5'~1"'-Dihydroxyrobustaflavone 4 OH 2,3,S,IO,l l,13,14,15,J7, 20,32,38,48,50,52 A2c 5'-Hydroxyamentoflavone 5 H 2,13,34 A2d 5'~1 "'-Dihydroxyame ntoflavone 5 OH IO,l l,13, 14,15,17,18,20, 29,32,34,36,38,46,48,50,52 A2e 5"'-Desoxydicranolomin 6 H 31 A'lf Dicranolomin 6 OH 10,15,17,20,36,38,52 A2g Philonotisflavone 7 10, I 5, 17,32,36,38,52 A2h Bryoflavone 8 12 A2i Heterobryoflavone 9 12,46 A2j Aulacomniumtriluteolin 10 17,50,52 A2k Bartramiatriluteolin * 11 15,36,40 A21 Epibartramiatriluteolin * 11 40 A2m Strictatri Iuteoli n 1 2 40 A2n Cyclobartramiatriluteolin 13 IS A3a 2,3-Dihydro-5'-hydroxyrobustaflavone 14 H 3,31 A3b 2,3-Dih ydro-5' ,3 "'-di h ydrox yrobustafla v one 14 OH 31 A3b' 2" ,3 "-Di hydro-5' ,3 "'-di hydroityrobustafla vone 15 OH 20 A3c 2,3-Dihydro-5'-hydroxyamentoflavone 16 H 2,3,31,34 A3d 2,3-Dihydro-5' ,3"' -di hydroxyamentoflavone 16 OH 2,3, I0, 17,50 A3e 2,3-Dihydro-5"'-desoxydicranolomin 1 7 H 31 A3f 2,3-Dihydro-dicranolomin 17 OH 17,20,52 A3g 2,3-Dihydro-philonotisflavone 18 - I0, 17,32,36,38 *these two compounds are stereoisomers represented by the same planar formula, for stereo formulae see l.c. f40].

HO OH HO OH

OH OH

H HO R

OH OH 0 5 H. GEIGER et al. : The occurrence offlavonoids in arthrodontous mosses 279

Table I. (Continued)

HO HO OH

OH

HO

OH

HO

HO

OH 280 J. Hattori Bot. Lab. No. 83 I 9 9 7

Table I. (Continued)

Code Name Formula-No References

A4a Anhydrobartrarniaflavone 19 32,3.S A4b Bartramiaflavone 20 32,35 A5a 2,3-Di h ydro-3' ,3 "'-biapigenin 21 39 A5b 3',3'"-Binaringenin 22 37,39,52 A5c Hypnogenol B 23 42 A5d Hypnogenol A 24 42 A5e Hypnogenol BI 25 43 A5f 3 ,5,7,4' ,3 ",5", 7" -Heptahydroxy- 26 42 3 '-0-4"'-bitlavanone A5g 3 ,5,7,4' ,3" ,5" ,3'" ,4"'-Nonahydroxy- 27 42 3'-6"-bitlavanone A5h Hypnobiflavonoid A 28 43 A5i Hypnobiflavonoid B 29 42

HO

OH OH

OH 0 OH 0 0

HO OH HO OH

OH 0 OH 0 0 HO 0 HO

HO HO OH OH

0 HO OH HO HO 0 H OH OH 0 26

0 HO

0 0 HO OH HO

OH OH H. GEIGER et al.: The occurrence offlavonoids in arthrodontous mosses 281 cause it is deemed to be the last word; in fact Vitt himself has drastically modified it in the meantime in parts (Buck & Vitt, 1986). Deviations from Vitt (1984) will be considered in the "discussion".

DISCUSSION In Table 4 the occurrence of flavonoids is mapped on the arrangement of suborders and families within the as presented by Vitt (1984). As most specimens have been studied only by TLC, a comparison of all species listed in Table 4 can be made only at the level of this method, which yields, however, only six character states, namely the six "chro­ matographic groups" Al-5 and G. In about four fifths of all species, flavonoids of at least one of these groups could be detected with confidence; in a further tenth the concentration was so close to the threshold of detectability that the groups A2- 5 could not be distin­ guished from one another; and only about one tenth of all specimens gave no hint of the occurrence of flavonoids. It has been found, however, that the concentration of flavonoids is subject to seasonal and environmental changes (Brinkmeier et al., 1998). Thus, species in which no flavonoids could be detected cannot be considered with confidence to be flavonoid-free; their content might be just below the threshold of detection. The following discussion is therefore restricted mainly to those species that accumulate identifiable amounts of flavonoids. The bi- and triflavonoids of the groups A 1, A2 and A3 (cf. Table l) must be consid­ ered together because they frequently occur together; in only one third of all species that contain a compound of one of these groups is this not accompanied by compounds of one or two of the other groups. The reason for this frequent co-occurrence may be that all structurally known compounds of these three groups (see Table l) have one structural fea­ ture in common: the constituent monoflavonoids are always linked head-to-tail i.e. the in­ terflavonyl linkage is between the B-ring of one unit and the A-ring of the next one (see Table 2). These compounds are rather unequally distributed between the various suborders. In the predominantly acrocarpous suborders they have been detected in about 90% of all flavonoid containing species. In the pleurocarpous suborders (Hypnineae, Leucodontineae, and Hookeriineae ), however, they have been detected only in less than one half of all flavonoid-containing species. Moreover the Racopilaceae, Hypopterigiaceae, and Hed­ wigiaceae, which have been recently removed from these suborders (Buck & Vitt, 1986; Frahm et al. 1997) all contain flavonoids belonging to Al-3; these changes bring the frac­ tion ofpleurocarps containing Al-3 down to less than one third. The chromatographic group A4 comprises only two interconvertible doubly linked compounds: A4a & b. These two compounds have been so far detected only in Bartramia pomiformis, B. halleriana, B. mossmaniana, Anaco/ia /aevisphaera and Plagiopus oederi (Seeger, 1992). This distribution of these unique compounds should be considered with fu­ ture treatments of the . Most of the known compounds that come into the group A5 are head-to-head-linked biflavonoids, i.e. the interflavonyl linkages are between two B-rings. If one considers the new familial classification of the pleurocarpous mosses by Buck & Vitt (1986), which transfers the Hypnodendraceae to the , the compounds of the group A5 seem to 282 J. Hattori Bot. Lab. No. 83 I 9 9 7

Table 2. List of the monomeric ftavonoids, which are constituents of the bi- and tri­ ftavonoids compiled on Table 1, and general structures of the glycosides listed on Table 3.

R' Apigenin (R=R'=H) OH G la-2f R70 Luteolin (R=H; R'=OH) HO R& Kaempferol (R=OH; R'=H) OH 0 I OR'' G3a-4i R70 R3' . Naringenin (R=R'=H) Rs Eriodictyol (R=H; R'=OH) OH 0 R5' Aromadendrin (R=OH; R'=H) OR4' Taxifolin (R=R'=OH) GSa-c glurO OR3'

OH 0 2,4,6,3',4'-Pentahydroxy­ HO~OHv OH diben.zoylmethan ~I ~BI G6a-f H OH 0 0 OH OH

Aureusidin HO G7a-e HO

OH 0

7 Orobol G8a-d R0Y{a0 HO~O~~I I ....,, OH ~I I OR3' I B ""I OH 0 A -..,_ OH OHO~ OH

Cla-b HO

OR

be restricted to the true pleurocarps. There they have been detected in nearly one half of all flavonoid containing species. More flavonoid glycosides (marked G on Table 4) than bi- and triflavonoids have been isolated so far from mosses and structurally elucidated (see Table 3). Their structures and chromatographic behaviours are, however, so diverse, that it is not possible to subdivide them into several "chromatographic groups". As a group they are, apart from a frequent oc­ currence within the Bryaceae, Leptostomataceae, and , of a rather erratic distrib­ ution, and they have been detected in only about one fourth of all specimens. So far 90 different flavonoids-36 aglyca (Table 1) and 54 glycosides (Table 3}--have Table 3. Structures of the flavonoid glycosides, that have until now been isolated from mosses (references to first isolation from mosses or spectroscopic data are presented in bold face). For the general structures see Table 2.

R R3 R6 R7 R8 R3 ' R4 ' R5 ' Refs

Gia Apigenin-7-glucoside H glc H H [19,47] Glb Apigenin-7-glucoside malonylester H mal~6glc H H [19, 47] Glc Apigenin-7-neohesperidoside H rha1~2glc H H (27, 45,46] ;:i: rha1~2 Gld Apigenin-7-neohesperidoside malonylester H glc H H (45] ~ mal~6 "' rha1~2 "'~ Gle Apigenin-7-(2,4-di-0-rhamnosyl]-glucoside H glc H H [5, 16, 23, 51] ~ rhal~ ;l <> Glf Apigenin-7-neohesperidoside-4' -glucoside H rhal~2glc H glc (27] g Gig Apigenin-7-neohesperidoside-4' -sophoroside H rhal~2glc H glcl~2glc (27] n G2a Isovitexin glc H H H [28] ::s~ G2b Saponarin glc glc H H (4, 28] 0 <> G2c Vitexin-2' '-rhamnoside H H rha1~2glc H (46] ...0 G2d Vicenin-2 glc H glc H [25, 28, 45, 46] ::t> G2e Schaftoside glc H ara H (28, 46] ~ ::s0 G2f Isoschaftoside ara H glc H (28, 46] 0 G3a Luteolin-7-glucoside H glc H H H (19, 46, 47] ~ G3b Luteolin-7-glucoside malonylester H mal~6glc H H H (19, 46, 47] 5·

G3c Diosmetin-7-glucoside H glc H H CH 3 [47] G3d Diosmetin-7-glucoside malonylester H mal~6glc H H CH 3 (47] ~ G3e Luteolin-7-neohesperidoside H rhal~2glc H H H (27, 45, 46] g. rha1~2 a c0 G3f Luteolin-7-neohesperidoside malonylester H glc H H H (45, 46] "' mal~6 s ~ rha1~2 "'<> G3g Diosmetin-7-(2,4-di-O-rhamnosyl]-glucoside H glc H H CH3 (26, 51] "' rhal~ G3h Luteolin-7-neohesperidoside-4' -glucoside H rhal~2glc H H glc (27] G3i Luteolin-7-neohesperidoside-4' -sophoroside H rhal~2glc H H glcl~2glc [30] G3j Luteolin-7-glucoside-4' -neohesperidoside H glc H H rhal~2glc (27] G3k Luteolin-7,4' -dineohesperidoside H rhal ~2glc H H rha1~2glc (24]

00w"'

H. GEIGER et al. : The occurrence offlavonoids in arthrodontous mosses 285

*Naringenin

A5 *Eriodictyol

Apigenin */. ·-·-·-·-·-·7 • I / ,.' '------!-... CJ AJ /

Luteolin - ...... */,. ; ,.' ,.' /

-<"-·-·-·-·1B· -./ A4

' -·-·-·-·-·-·-·-·- -·-·-\-' ·-; '----., _ __ __* i ______'A2(dimeric) i Al i ..,._ ----- A2(1rimeric) !

Origin

Fig. l. The ranges of the bi- and trifiavonoid groups Al- 5 relative to the position of some monofiavonoid markers on a two-dimensional micropolyamide thin layer chro­ 1 matogram [18 dimension: ethyl-acetate/butanone/acetic acid/water (5: 3 : l : l); znd dimension: acetone/acetic acid/water (6 : 2 : 2)]. been isolated and fully characterised from the gametophytes of 39 moss species belonging to 15 different families. It seemed to us that these results provided sufficient data to try a cluster analysis on them. However, the preparative work has been done by different re­ searchers using different methods and different amounts of plant material, ranging from a few kilograms to a few grams, and, last but not least, at different times (the progress in in­ strumentation allows nowadays the elucidation of a complete structure with amounts of material, so small that they were only two decades ago not even worth isolating!). This means that sometimes minor compounds may have escaped isolation. To overcome this problem, at least in the case of closely related compounds usually occurring together, we used as chemical characters instead of the compounds themselves their main structural fea~ tures (a to v). These gave together with the 36 species, that have been studied with respect to all types of flavonoids, the data matrix shown in Table 5. From this matrix the dendro­ gram presented in Fig. 2 is derived. It shows the similarity of the different speCies, ex~ 286 J. Hattori Bot. Lab. No. 83 I 9 9 7

~------l!Jyum menteum ------l!Jyum ~udotriquetum ~------~omnium BU:ine BJ!iwmnium m!ilrifolium '------tBhizomnjum mudopuoctatum l!Jyum £millare . ~~eicheri ~omnium £!,§J>idatum fllgiomnium !

Table 4. Distribution of flavonoid aglyca and glycosides within the Bryales sensu Vitt (1984). Species from which fully characterizedd compounds have been isolated are marked by asterisk and the codes of these compounds are printed in bold types. Codes printed in light types refer to chromatographically detected compounds. Abbreviated codes (Al, A2, A3, A4, A5 of just A or G) refer to the results of our 2D-TLC studies, where the evidence points just to a group of flavonoids, rather than an individual compound. A question mark means that no information about this group is available in the references quoted. If a chro­ matogram exhibits mor than one spot, that is attributable to the same group, the code for that group is doubled. Codes in brackets indicate spots, that are close to the threshold of detection. This threshold is, however, not the same for all compounds,. In general the com­ pounds of group Al are detected with higher sensitivity than those of the groups A2-4, which hold a middle position, whereas those of group A5 are detected with the lowest sen­ sitivity. Therefore in this table Al may be overrepresented and A5 underrepresented.

Aglyca Name Glycosides Refs Al A2 A3 A4/5 A

FUNARIINEAE fUNARIACEAE *Funaria hygrometrica (sporophyte) Ale ? (49) F. hygrometrica (gametophyte) (Al) A2A2 - (33) SPLACHNINEAE SPLACHNACEAE Splachnum ampullaceum A2A2 A3 G (33) S. sphaericum Al A2A2 A3A3 - - Tay/aria tenuis ( sporophyte) (A2) AS - - T. tenuis (gametophyte) (A2A2) - - ORTHOTRICHINEAE 0RTHOTRICHACEAE Macromitrium guatemaliense AIAI A2A2 (A3) - (33] M. longipes AIAI (A2) - (33] Orthotrichum affine (A2A2) - - 0. lye/Iii Al A2A2 (A) GG - 0 . obtusifolium - - (33] Ulota crispa AJA! A2A2 - - U phyllantha Al A2 - (33] HELICOPHYLLACEAE Helicophyllum torquatum A2A2 A3 AA G - BRYINEAE 8RYACEAE Anomobryum filiforme (A) (GG) - •Bryum argenteum - Gia, Glb, G3a, (19] G6e,G6f B. billardieri A2A2 GG - •B. cap ilia re ( sporophyte) - Gia, Glb, G3a, (44,47] G3b, G3c, G3d, G6c, G6d H. GEIGER et al.: The occurrence offlavonoids in arthrodontous mosses 289

Table 4. (continued).

Aglyca Name Glycosides Refs Al A2 A3 A4/5 A

•Bryum capil/are (gametophyte) A2b, A2h, G3a, G3b, G3c [I, 12, 44, 47) A2i G3d, G6c, G6d, G8a, G8b, G8c, G8d •B. cryophilum ? Cla, Clb,? [8) B. fiaccidum - G3, G8 [44) •B. pallescens A2A2 G2d, G4g, G4h, [44, 46) G7a, G7d,GG •B. pseudotriquetrum - Glc, Gld, G2d, (45) G3e, G3f, G4g, G4h, G6b, G7a, G7b, G7c, G7d, G7e,GG B. rutilans ? Cla,Clb,? (7) •B. sch/eicheri A2d, A2i Glc, G2c, G2d, (46) G2e, G2f, G3a, G3b, G3e, G3f, G4g, G6c, G6d, G8a, G8b, GG B. truncorum (AA) GG - •B. weigelii ? G6a, Cla, Clb (7, 22) Poh/ia wah/enbergii (A) - - Rhodobryum grandifolium (AA) GG [33] R. roseum - G3, G5 [46] LEPTOSTOMATACEAE Leptostomum inclinans Al A2A2 GG [33 l. macrocarpon Al A2A2 (A3) GG [33 MNIACEAE Mnium hornum A2 - (33) • P/agiomnium affine G4a, G4d, G4e, [9] G4 *P cuspidatum A2b A3a, Glc, G2b, G4b, (2, 3, 4] A3c, A3d G4c, (GG) •p elatum A2c Glc, G4a, G4f, (2, 4, 13] G4g, G4i, (GG) P rostratum A3 (G) (33] *P undulatum A2e A3a, A3b, G2b, G2d, G2e, (28, 31] A3c, A3e G2f, G2G2, G4 • Rhizomnium magnifolium - G31, G3m, G3n, (21) GSa, GSb, GSc • R. pseudopunctatum - G31, G3m, G3n, (21) GSa, GSb, GSc SPIRIDENTACEAE Spiridens vieillardii AIAI A3A3 A - - RHtZOGONIACEAE Cryptopodium bartramioides - - (33) Leptotheca boliviana Al A2A2 A3 GG (16) l. gaudichaudii AIAI A2A2 A3 (G) [16) 290 J. Hattori Bot. Lab. No. 83 I 9 9 7

Table 4. (continued).

Aglyca Name Glycosides Refs Al A2 A3 A4/5 A

*Pyrrhobryum bifarium A2f,A2g A3fA3 - [33, 52) P. latifolium Al A2 (AA) - - P. mnioides Al A2A2 A3 - - P. paramattense Al A2 A3 - - Rhizogonium distichum A2A2 - [33) R. dozyanum - - [16) R. spiniforme AJA! (A) - [16) SCHISTOSTEGACEAE Schistostega pennata - - [33) HYPNODENDRACEAE comatum AIAI A3 A5 - [33) H. kerrii (A2) (A5) - - TIMMIACEAE Timmia austriaca (A2) G [33) BARTRAMIACEAE Anaco/ia intertexta A2A2 A3A3 G [33) A. /aevisphaera A2A2 A3 A4A4 - [33) A. menziesii A2A2 A3A3 - [33 *A . webbii A2b, A2d, A3g - [38) A2f,A2g Bartramia angustifolia (Al) A2 A3 - [33) *B. ha/leriana A2b, A2d, A3g A4a, A4b - [32) A2g B. ithyphyl/a A2A2 A3 - [33] B. mathewsii A2 (A) - [33) B. mossmaniana A2A2 A3 A4A4 - [33) B. papi/lata A2A2 A3 - [33) B. patens A2A2 A3 - [33) *B. pomiformis A2d,A2f A3g A4a, A4b - [35, 36, 40) A2g, A2k, A21, A2m B. rufescens A2A2 A3 - [33) *B. stricta A2b,A2d, - [15, 40) A2f,A2g, A2k, A21, A2m, A2n Breutelia a/finis A2 A3 (G) [33) B. al/ionii (A2A2) (A3) - [33) B. azorica A2A2 A3 (G) [33) B. boliviensis (A) - [33) B. chrysea Al A2A2 A3 - [33) B. chrysocoma Al A2A2 A3 [33) B. defiexifolia Al A2A2 A3 - [33) B. di.ffracta AIAI A2A2 A3 - [33) B. e/ongata (A) - [33) B. eugeniae - (G) [33) B. integrifolia (A2A2) (G) [33) B.pendula AIAI (A2A2) - [33) H. GEIGER et al.: The occurrence offlavonoids in arthrodontous mosses 291

Table 4. (continued).

Aglyca Name Glycosides Refs A l A2 A3 A4/5 A

B. stuh/mannii AIAI A2A2 A3 - [33] B. tomentosa Al (A2A2) - [33] Conostomum macrotheca AIAI A2A2 A3A3 - [33] C. pentastichum AIAI A2A2 A3 - [33) C. pusi//um AIAI (A) - [33) C. tetragonum AIAI A3 - [33) Leiome/a bartramioides Al A2A2 A3A3 - [33) L. deciduifolia Al A2A2 A3A3 - [33) L. /opezii Al A2A2 A3 - [33) L. piligera A2A2 A3 (G) [33) Phi/onotis australis A2A2 A3A3 - [33) P calcarea (Al) A2A2 A3A3 G [33) *Pfontana Al A2b, A2d, A3d, - [10, 33) A2f, A2g A3g P revo/uta A2A2 A3A3 - [33] P scabrifo/ia A2A2 A3A3 - [33] P seriata A2A2 A3 - [33] P sphaerocarpa Al A2A2 A3A3 - [33] P uncinata A2 A3 - [33] P/agiopus oederi A2A2 A3 A4A4 - [33] AULACOMNIACEAE Aulacomnium acuminatum Al A2A2 (A3) (G) [16] •A. androgynum Ala A2b, A2d, A3d, - [16, 17] Alf, A2g A3f, A3g A. heterostichum Al A2A2 A3A3 (G) [16] •A. palustre Ala Alb, A2d, A3d - [16, 17] Alf, A2j A. turgidum Al A2A2 A3A3 (G) [16] MEESIACEAE Meesia triquetra A2A2 (A3) - [33] Pa/ude//a squarrosa (Al) A2A2 A3A3 - [33] CATOSCOPIACEAE Catoscopium nigritum A2 (A) - [33] HYPNINEAE Myure//a julacea (A) (G) [33] Thuidiopsis furfurosa (A2) (A3) (A5) - [33] Thuidium phi/iberti A5b ? [41] T tamariscinum A5b ? [41] EcHINODIACEAE Echinodium hispidum - - [33] RACOPILACEAE Racopi/um capense A2A2 A3 (GG) [33] R. strumiferum A2A2 A3 - [33] LEMBOPHYLLACEAE Camptochaete arbuscu/a (Al) A5A5 - [33] 292 J. Hattori Bot. Lab. No. 83 1 9 9 7

Table 4. (continued).

Aglyca Name Glycosides Refs Al A2 A3 A4/5 A

AMBLYSTEGIACEAE Acrocladium auriculatum A5 - [33] Amblystegium serpens - - - Calliergon giganteum (A3) A5 - - C. sarmentosum A2 (A) - [33] Calliergonella cuspidata - - [33] Crotoneuron commutatum - - - Crotoneuropsis relaxa - - [33] Drepanocladus aduncus A5b ? [41 ] D. unicinatus (A5) (AA) - - Hygrohypnum luridum (A5) - - BRACHYTHECIACEAE Brachythecium rutabulum (AA) - [41],- Cirriphyllum piliferum - - [33] Eurhynchium angustirete - - - E. proelongum - - - E. schleicheri - ? [41] • Homalothecium lutescens ASa, ASb (A) - [39, 41] H. nitens A3 (A5A5) (A) - - H. philippeanum A5a, A5b ? [41] H. sericeum A5a,A5b - [41, 33] /sothecium myosuroides (Al) A2A2 (A) - [33] Scleropodium purum Al A2 (A) - [33} PLAGIOTHECIACEAE Plagiothecium cavifolium - - - P. denticulatum A5 - [33] P. laetum - ? [41] P. nemorole - - - P. succulentum (A) - - P. undulatum - - [33, 41] Herzogiella seligeri AA - - HYPNACEAE Ctenidium molluscum A5a,A5b - [33, 41 ] Hyocomium armoricum - - [33] Hypnum andoi A5c,A5d ? [41] •H. cupressiforme var. cupressiforme ASc,ASd, - [41, 42, 43] ASe, ASf, ASg,ASh, ASi H. cupressiforme var.filiforme A5c, A5d ? [41] H. cupressiforme ssp. lacunosum A5c, A5d ? [41] H. jutlandicum A5c,A5d ? (41] H. lindbergii A5c, A5d ? (41] H. subimponens - ? (41] Mittenothamnium deminutivum - - (33] • Ptilium crista-castrensis A5a, ASb - (41, 52] HYLOCOMJACEAE • Hylocomium splendens A2b, A2d A3 Gle,G (5, 13] H. GEIGER et al.: The occurrence offtavonoids in arthrodontous mosses 293

Table 4. (continued).

Ag) yea Name Glycosides Refs Al A2 A3 A4/5 A

*Pleurozium schreberi (Al) A2A2 (A) Gle, G3g, GG [51 , 33] Rhytidiadelphus /oreus (A) (GG) [33] • R. squarrosus (Al) A2a, A2c, A3c - (34] A2d • R. triquetrus A2a, A2c Gle,G [16, 33] Rhytidiopsis robusta Al A2 A5a, A5b - [41, 33] RHYTIDIACEAE Rhytidium rugosum (A) - [33] Entodon concinnus (Al) A5b (A) - [41, 33] E. schleicheri (AA) - - SEMATOPHYLLACEAE Sematophyl/um amoenum A5A5 (A) G [33) Wijkia extenuata A5 (A) - [33) LEUCODONTINEAE fONTINALACEAE Fontina/is antipyretica - - [33) CLIMACIACEAE C/imacium dendroides (A) - [33) LESKEACEAE Hap/ohymenium /onginerve - - [33) Hylocomiopsis cy/indricarpa (A) - [33) Lescuraea incurvata A5 (A) - - Leskea po/ycarpa - GG - Pterigynandrum filiforme - - [33) CRYPHAEACEAE Cryphaea dilatata - - - C. tene//a (A) (G) - LEUCODONTACEAE •A ntitrichia curtipendu/a A2b, A2d - [13) Leucodon sciuroides (A) - [33) Pterogonium gracile (A) - [33) HEDWIGIACEAE Braunia a/opecura AIAI A2A2 G - B. squarru/osa AIAI A2A2 (A3) - - *Hedwigia ci/iata A2d Glc, Glf, Glg, [24, 25, 27, G2d, G3e, G3h, 30, 52] G3i, G3j, G3k, G4g Hedwigidium integrifolium (Al) A2 (A) - - Pseudobraunia califomica (AI) A2A2 GG - Rhacocarpus humboldtii Al A2A2 (A3) GG [33] CYRTOPODACEAE Cyrtopus setosus A5 (A) - [33] PRIONODONTACEAE Prionodon densus (AI) - [33] LEPYRODONTACEAE Lepyrodon tomentosus var. tunariensis AA - [33] 294 J. Hattori Bot. Lab. No. 83 I 9 9 7

Table 4. (continued).

Aglyca Name Glycosides Refs Al A2 A3 A4/S A

PTEROBRYACEAE Myurium hochstetteri - - [33] Pterobryon densum A2 A3 AS - - Renau/dia hoenelii A2 A3 AS (A) - - Trachy/oma p/anifolium - (GG) (33) METEORIACEAE Floribundaria aurea Al Al (G) (33) Papillaria imponderosa - - [33) • Pilotrichella cuspidata ASb - (33, 37) Squamidium nigricans - (GG) [33) Weymouthia cochlearifolia (A3) AS (AA) - [33) W. mollis AS (AA) - [33) J>rYCHOMNIACEAE Cladomnion ericoides (A) (G) (33) Ptychomnion aciculare A2 (A) - [33] NECKERACEAE Homalia falcifolia - - [33] H. pulchella (A) - (33) Neckera complanata (A) - (33) Porotrichum longirostre - - (33) PHYLLOGONIACEAE Catagonium po/itum - (G) [33] HOOKERJINEAE HOOKERIACEAE Achrophyllum dentatum (A) - (33) Distichophyllum pulchel/um - - [33) Hookeria lucens - - - Tetrastichium fontanum (A) - - ffYPOPTERYGIACEAE Catharomnion ci/iatum A2A2 G [33) Cyathophorum bulbosum Al GG [33] Hypopterygium fi/iculaeforme (A) - [33] H. novae-seelandiae AA - (33) H. setigerum (A) - [33] lopidium concinnum - - [33) BUXBAUMIINEAE 8UXBAUMIACEAE Diphyscium fo/iosum - - (33) ENCALYPTINEAE ENCALYPTACEAE Encalypta spathulata Al A2A2 (A3) - - E. streptocarpa A3 (A) G [33) POTTIINEAE POTIIACEAE Anoectangium aestivum A2 (A) - - A. compactum A2A2 A3A3 - (33) Barbu/a convoluta A2A2 A3 (G) - H. GEIGER et al.: The occurrence of ftavonoids in arthrodontous mosses 295

Table 4. (continued).

Aglyca Name Glycosides Refs Al A2 A3 A4/5 A

Bryoerythrophyllum recurvirostrum (A) (G) - Didymodon vinealis - - - Eucladium verticil/atum (A) (G) - Leptodontium interruptum Al A2A2 A3 - (33] l. styriacum (Al) A2A2 (A) - - Pleurochaete squarrosa A2A2 (A) - - Pottia intermedia (A) GG - Pseudocrossidium revo/utum A2A2 A3 - - Scope/ophila cataractae A2A2 (G) - Torte/la inclinata A2A2 A - - T. tortuosa Al A2A2 A - - Tortu/a /atifo/ia (A) - - T. muralis A2A2 (A3) - - T. norvegica (A) (GG) - T. ruralis - - - Tridontium tasmanicum - - [33] Triquetrel/a papi/lata Al A2A2 (A3) (AA) - [33] Weissia condensa A2A2 (A) - - CALYMPERACEAE Octoblepharum pulvinatum - - - DICRANINEAE DICRANACEAE Atracty/ocarpus a/ticaulis AIAI A2A2 (A) (GG) [50] A. longisetus Al A2 (AA) (G) [50] Bryohumbertia f/avicoma AIAI A2 (AA) - [50] Campy/opus aemulans AJA! A2A2 (AA) - [50] Campy/opus atrovirens var. atrovirens Al AA - - C. atrovirens var.falcatus Al AA (G) - C. capitulatus Al (AA) - - C. cavifo/ius AIAI AA - - *C. clavatus Alb A2b, A2d - [II] C. f/exuosus AIAI (A2A2) - [50] C.fragi/is (Al) (A) - - *C. holomitrium Alb A2b,A2d - [II] •c. introf/exus Alb, A2b, A2d, (A) - [52] AIAI A2j C. jamesonii AIAI A2 (A) (G) [50] C. leukochlorus AIAI A2 (AA) - [50] C. nivalis AJA! A2 (A3) (AA) - (50] C. pilifer Al A2A2 (AA) - [50] C. pittieri AIAI AA - - C. reflexisetus AJA! AA - - C. richardii Al AA - - C. shawii Al AA - - C. umbellatus - - [50] Chorisodontium mittenii Al A2A2 (AA) - [33] Dicranella heteromalla A2A2 (AA) - [50] 296 J. Hattori Bot. Lab. No. 83 I 9 9 7

Table 4. (continued).

Aglyca Name Glycosides Refs Al A2 A3 A415 A

Dicranodontium denudatum (A2A2) - (50] *Dicranoloma billardieri Alb, Ald, A3b, - (20] Alf A3f *D. robustum Alb,Ald, A3b, - (20] Alf A3f Dicranum falvum A2A2 (AA) - (50] *D. scoparium Alb, Ald (A) Gle, G3g [ 18, 23, 26, 48) D. tauricum (Al) A2A2 (AA) - (33] Microcampy/opus /aevigatus AIAJ A2 (A3) (G) [50) Pilopogon africanus AJA! A2A2 (A3A3) - (50] P. guadeloupensis Al A2 G (50) P. /ongirostratus Al A2 AA - [33] P. subjulaceus AIAI A2A2 (A) - (50) Trematodon suberectus A2A2 A3A3 (AA) - - LEUCOBRYACEAE Leucobryum g/aucum - (G) (33] RHABDOWEISIACEAE Amphidium mougeotii (A l) A2A2 A3A3 - (33] Rhabdoweisia fugax (A) - [33] 0 ITRICHACEAE Ceratodon purpureus (gametophyte) (Al) A2A2 A3 AA - - C. purpureus (sporophyte) A2A2 A3 AA - - Ditrichum flexicaule A2A2 - [33) D. punctulatum Al A2 (AA) - - BRYOXIPHIACEAE *Bryoxiphium norvegicum Alb,Ald - [52) EUST ICHIACEAE Eustichia spruceana A2A2 (A3) GG [33] i>HYLLORDREPANIACEAE Phyllodrepanium falcifolium Al A2 (A) - - 0 JCNEMONACEAE *Dicnemon calycinum Al Alb, Ald - [33, 52) Eucamptodon in.flatus A2A2 (AA) - - Mesotus celatus A2A2 (A) (G) [33] FlSSIDENTINEAE FISSIDENTACEAE Fissidens adianthoides - - (33] F. asplenioides A2A2 A3 AA - - F. polyphyllus (Al) AA - [33) F. taxifolius A3A3 A - - SELIGERIINEAE SELIGERIACEAE Blindia acuta A2A2 (A) - (33] GRIMMIINEAE i'TYCHOMITRIACEAE Ptychomitrium polyphyllum Al A2A2 (AA) - (33] GRIMMIACEAE Grimmia affnis Al A2A2 - - G. montana A2 (A) - - G. ova/is Al A2A2 (AA) - (33] *Ra comitrium lanuginosum Alb, Ald (A) - [13, 33] R. ptychophyl/um Al A2A2 - (33] Schistidium maritimum A2 (A) - (33] S. rivulare - (GG) (33) H. GEIGER et al. : The occurrence offlavonoids in arthrodontous mosses 297

Table 5. Data matrix showing the presence/absence of 24 chemical characters (a- x) in 36 mosses.

Bry.arg Bry. cap Bry. pse Bry.sch Pla.aff Pla . cus Pla.ela Pla.und Rhi.mag Rhi .pse Pyr.bif Ana.web Bar.hal Bar . porn Bar.str Phi.fon Aul.and Aul . pal Hom. lut Hyp.cup Pti.cri Hyl. spl Rhy. squ Rhy.tri Ant.cur Hed.cil Pil.cus Cam . cla Cam.hol Cam. int Dic.bil Die.rob Dic.sco Bry . nor Dic.cal Rac . lan

a 101101110000000000000101010000001000 b 111111101100000000000000010000001000 c 000000001100000000000000000000000000 d 001000000000000000000000000000000000 e 010100000000000000000000000000000000 f 001100000000000000000000000000000000 g 110000000000000000000000000000000000 h 111111111100000000000101010000001000 i 001111110000000000000000010000000000 j 000001110000000000101011000000000000 k 000000000000000000111000001000000000 l 000000000000000000010000000000000000 m 010101010011111111000111110111111111 n 000001110011110111000010000111110000 0 000000000000110000000000000000000000 p 000000000000000011000000000111000000 q 010100000000000000000000000000000000 r 010101110001111111010111110111111111 s 000000010011111111000000000000110000 t 000000000000000000111000001000000000 u 010101110011111111101111111111111111 v 000000000000011001000000000001000000 w 010101110011111111111111111111111111 x 000000000000111000000000000000000000

The chemical characters a-i refer to glycosides (c.f. Table 3); a, b, c, d and e means the glycosides are derivatives of apigenin, luteolin, tricetin, kaempferol or orobol, respectively; f and g indicate an additional OH-group at the aglycon positions 6 or 8 respectely, h stands for 0-glycosides and i for C­ glycosides. Characters j- x refer to the bi- and triftavonoids (c.f. Tables I and 2); j, k, I, m, n, o, p, and q indi­ cate the constituent monomers apigenin, naringenin, aromadendrin, luteolin, eriodictyol, 2,4,6,3 ',4' - pentahydroxy-dibenzoylmethane, aureusidin and orobol, respectively; the types of interflavonyl link­ ages are r=B5' to A6 or 8, s=B2' to A6 or 8 and t=B3' to B'", whereby for aureusidin and penta­ hydroxydibenzoylmethane the same numbering as for luteolin is used; u means bifiavonoid and v tri­ fiavonoid; w denotes linear and x cyclic di- or triflavonoids. The full names of the moss species are given on Fig. 2. 298 J. Hattori Bot. Lab. No. 83 I 9 9 7 tions predicted by the mechanism have been shown to take place (Freudenberg & Neish, 1968; Nimz, 1974). The phenoloxidases, that are responsible for the production of bi- and triflavonoids, however, seem to have some specificity, since there is no plant in which all types of bi- and triflavonoids occur together; in fact some of them seem to be restricted to certain taxa. But this specificity is perhaps not complete, because in most cases several, in a chemical sense, closely related compounds, are found in the same plant. The frequent occurrence of biflavonoids in mosses raises of course the question, whether this should be considered as an old or a relatively recent development (biosyntheti­ cally they are, of course, one step more advanced or less reduced than the mono­ flavonoids!). Because of the mosses' poor fossil record, a possible answer to this question can be given only if one looks at the vascular plants, which have a much better fossil record. There, biflavonoids are a constant character with Psilotales, Selaginellales, and Gymnosperms, except Gnetales and Pinaceae, whereas in all other taxa the occurrence is rather erratic (Geiger & Quinn, 1975, 1982, 1988; Geiger, 1994). The erratic distribution of biflavonoids in modern taxa hints at the possibility that they may have evolved several times independently, but their constant occurrence with the surviving descendants of an­ cient taxa (sometimes incorrectly called "living fossils") suggests that they present a fea­ ture that contributes in some way to their fitness in the Darwinian sense. This is pro­ nounced by the fact, that with Psilotales, Selaginales and Cycadales, almost the entire monoflavonoid production is shunted into the biflavone synthesis. But why should bi­ flavonoids perform better than monoflavonoids with the possible activities discussed at the beginning of this paragraph? The answer is at present only speculative: It is their larger size; they bind much more strongly to their targets-the cellwalls in the case of UV-protec­ tion or the enzymes of attacking organisms in the case of protection from noxious organ­ isms (see also Geiger, 1990). A high content of phenolic compounds in the cellwalls of bryophytes has already been observed by Czapek ( 1899). He found, that most bryophytes contain in their cellwalls phe­ nolic compounds that cannot be extracted with alcohol and that react positively with ferric chloride and/or Millon's reagent. He also performed some preliminary experiments on the biological activity of these compounds and concluded " ... , daB die biologische Bedeutung der in den Mooszellmembranen aufgefundenen aromatischen Korper wohl in ihrer Rolle als Antiseptica und Schutzstoffe zu suchen ist." Facts which favour the assumption that flavonoids constitute a major part of these cellwall phenolics have been discussed by Geiger (1990). Two other papers that have appeared in the meantime provide further evi­ dence for this assumption. Wilson et al. (1989) studied several mosses by solid state 13C­ NMR and found that they must contain 1,3,5-trihydroxybenzene structures like those of flavonoid A-rings. Zinsmeister et al. (1996) have isolated from Ptilium crista-castrensis 3 ', 3' "-binaringenin (A5b) which would yield by the degradation procedure of Erickson & Miksche (1974a) the 3,3'-dianisic acid, which Erickson & Miksche (1974b) had, in fact, obtained from this moss. Thus flavonoids seem to be part of the phenolics that incrust moss cellwalls to such an extent that they give in most cases no positive reaction to cellulose (Czapek, 1899). Because attempts to remove these phenolics intact from the cellwalls have been so far unsuccessful, the question remains open whether they are only strongly ab- H. GEIGER et al. : The occurrence of flavonoids in arthrodontous mosses 299 sorbed or in some way chemically bound to the cellwalls.

ACKNOWLEDGEMENTS We are very much indebted to Professor M. Ashworth for correcting the manuscript. For their skilful assistance at preparing the manuscript we thank Mrs. U. Minnich and U. Zeitz. Financial support from BASF, Experimental Station Limburger Hof is gratefully ac­ knowledged.

LITERATURE CITED On the tables space limitations require that references are identified by numbers only. Therefore all references, which are quoted in the tables are numbered. Unnumbered references appear only in the text where all references are quoted in the usual manner. Alston, R. E. 1968. C-Glycosyl flavonoids. Recent Advances in Phytochemistry 1: 305- 327. Anhut, S. 1992. Die Verbreitung phenolischer Inhaltsstroffe in der Laubmoosgattung P/agiomni­ um und in Sterilkulturen von Bryum capillare. Dissertation. Saarbriicken. Anhut, S., H. D. Zinsmeister, R. Mues, W. Barz, K. Mackenbrock, J. Koster & K. R. Markham. 1984. The first identification of isoflavones from a bryophyte. Phytochemistry 23 : 1073- 1075. 2 Anhut, S., T. Seeger, J. Biehl, H. D. Zinsmeister & H. Geiger. l 989a. Phytochemical studies of the moss species Plagiomnium e/atum and Plagiomnium cuspidatum. J. Hattori Bot. Lab. 67: 377- 382. 3 Anhut, S., T. Seeger, H. D. Zinsmeister & H. Geiger. 1989b. New dihydrobiflavones from the moss P/agiomnium cuspidatum. Z. Naturforsch. 44c: 189-192. 4 Anhut, S., J. Biehl, T. Seeger, R. Mues & H. D. Zinsmeister. 1992. Flavon-C-glycosides from the mosses P/agiomnium elatum and Plagiomnium cuspidatum. Z. Naturforsch. 47c: 654-660. Asakawa, Y. (1995). Chemical Constituents of Bryophytes in: Progress in the Chemistry of Or­ ganic Natural Products Vol. 65, p. 1-618. Springer Verlag, Wien. Barger, G. 1906. Saponarin, a new glycoside coloured blue with iodine. J. Chem. Soc. 89: 1210- 1224. Barger, G. & E. Field. 19 12. Blue adsorption compounds of iodine. Part I. Starch, saponarin, and cholalic acid. J. Chem. Soc. 101 : 1394-1408. Barger, G. & W.W. Starling. 1915. Blue adsorption compounds of iodine. Parts II and III. Deriva­ tives of a- and of}'-pyrone. J. Chem. Soc. 107: 411-424. 5 Becker, R., R. Mues, H. D. Zinsmeister, F. Herzog & H. Geiger. 1986. A new biflavone and fur­ ther flavonoids from the moss Hylocomium splendens. Z. Naturforsch. 4 lc: 507- 510. Beggs, C. J., U. Scheider-Ziebert & E. Wellmann. 1986. UV-B radiation and adaptive mechanisms in plants. In: Stratospheric Ozone Reduction, Solar Ultraviolet Radiation and Plant Life, Worrest, R. G. & Caldwell, M. M., eds. pp. 235- 250, Springer Verlag, New York. 6 Bendz, G. & 0 . Martensson. 1961. Moss anthocyanins. Acta Chem. Scand. 15: 1185. 7 Bendz, G. & 0 . MArtensson. 1963. Moss pigments II. The Anthocyanins of Bryum rutilans Brid. and Bryum weigelii Spreng. Acta Chem. Scand. 17: 266. 8 Bendz, G., 0 . Martensson & L. Terenius. 1962. Moss pigments I. The anthocyanins of Bryum cryophilum 0 . Mart. Acta Chem. Scand. 16: 1183-1190. Brinkmeier, E., H. Hahn, T. Seeger, H. Geiger, H. D. Zinsmeister. 1998. Jahreszeitliche Schwankungen von Flavonoiden in Laubmoosen. Biochem. Syst. Ecol., submitted. 300 J. Hattori Bot. Lab. No. 83 I 9 9 7

Buck, W. R. & D. H. Vitt. 1986. Suggestions for a new familial classification of pleurocarpous mosses. Taxon 35: 21--60. Caldwell, M. M., R. Robberecht & S. D. Flint. 1983. Internal filters: prospects for UV-acclimati­ sation in higher plants. Physiol. Plant. 58: 76-78. Czapek, F. 1899. Zur Chemie der Zellmembranen bei den Laub- und Lebermoosen. Flora 86: 361 - 381. De Luna, E. 1990. Developmental evidence of acrocarpy in Hedwigia ciliata (Musci, Hed­ wigiaceae ). Tropical Bryology 2: 53--60. Erickson, M. & G. E. Miksche. 1974a. Two dibenzofurans on oxidative degradation of the moss Polytrichum commune Hedw.. Acta Chem. Scand. B28: 109- 113. Erickson, M. & G. E. Miksche. 1974b. On the occurrence oflignin or polyphenols in some moss­ es and liverworts. Phytochemistry 13: 2295- 2299. Frahm, J.-P. 1983. A new infrageneric classification in the genus Campy/opus Brid. J. Hattori Bot. Lab. 54: 207- 225. Frahm, J.-P., I. Capesius & H. Geiger. 1997. Zur systematischen Position von Rhacocarpus Lindb. (Musci, Rhacocarpaceae ). Nova Hedwigia 64: 231- 241 . 9 Freitag, P., R. Mues, C. Brill-Fess, M. Stoll, H. D. Zinsmeister & K. R. Markham. 1986. Isoori­ entin-3 '-0-sophoroside and 3 '-0-neohesperidoside from the moss Plagiomnium affine. Phy­ tochemistry 25 : 669--671. Freudenberg, K. & A. C. Neish. 1968. Constitution and Biosynthesis of Lignin. Springer Verlag, Berlin. Geiger, H. 1990. Biflavonoids in Bryophytes. In : Bryophytes: Their Chemistry and Chemical , Zinsmeister, H. D. & R. Mues, eds. Proceedings of the Phytochemical Society of Europe, 29: 162- 170. Clarendon Press, Oxford. Geiger, H. 1994. Biflavonoids and Triflavonoids. In : The Flavonoids: Advances in Research since 1986, Harborne, J.B., ed. pp. 95- 115, Chapman and Hall, London. 10 Geiger, H. & M. Bokel. 1989. Die Biflavonoidausstattung von Philonotis fontana (Hedw.) Brid. (Bartramiaceae). Z. Naturforsch. 44c: 559- 562. 11 Geiger, H. & K. R. Markham. 1992. Campylopusaurone, an aurono-flavanone biflavonoid from the mosses Campy/opus clavatus and Campy/opus holomitrium. Phytochemistry 31 : 4325- 4328. Geiger, H. & C. Quinn. 1975. Bitlavonoids. In : The Flavonoids, Harborne, J. B., T. J. Mabry & H. Mabry, eds. pp. 692- 742, Chapman and Hall, London. Geiger, H. & C. Quinn. 1982. Biflavonoids. In : The Flavonoids: Advances in Research, Harborne, J. B. & T. J. Mabry, eds. pp. 505-534, Chapman and Hall, London. Geiger, H. & C. Quinn. 1988. Bifiavonoids. In : Th.e Flavonoids: Advances in Research since 1980, Harborne, J.B., ed. pp. 99- 124, Chapman and Hall, London. 12 Geiger, H., W. Stein, R. Mues & H. D. Zinsmeister, 1987. Bryoflavone and heterobryoflavone, two new isofiavone-flavone-dimers from Bryum capi/lare. Z. Naturforsch. 42c: 863- 867. 13 Geiger, H., S. Anhut & H. D. Zinsmeister. 1988. Bifiavones from some mosses. Z. Naturforsch. 43c: 1--4. Geiger, H., T. Seeger, H. Hahn, H. D. Zinsmeister, K. R. Markham & H. Wong. 1993a. 1H NMR assignments in bifiavonoid spectra by proton-detected C-H correlation. Z. Naturforsch. 48c: 821-826. 14 Geiger, H., A. Voigt, H. D. Zinsmeister, J. -A. Lopez-Saez, M.-J. Perez-Alonso & A. Velasco­ Negueruela. 1993b. The bifiavones of Dicranum scoparium (Dicranaceae). Z. Naturforsch. H. GEIGER et al. : The occurrence offlavonoids in arthrodontous mosses 301

48c: 952. I 5 Geiger, H., A. Voigt, T. Seeger, H. D. Zinsmeister, J.-A. Lopez-Saez, M.-J. Perez-Alonso & A. Velasco-Negeruela. 1995. Cyclobartramiatriluteolin, a unique triftavonoid from Bartramia stricta. Phytochemistry 39: 465-467. 16 Hahn, H. 1993. Biftavonoide und strukturverwandte Verbindungen aus der Laubmoosgattung Au/acomnium. Dissertation. Saarbriicken. 17 Hahn, H., T. Seeger, H. Geiger, H. D. Zinsmeister, K. R. Markham & H. Wong. 1995. The first bi­ aurone, a triftavone and biftavonoids from two Aulacomnium species. Phytochemistry 40: 573- 576. Heller, W. & G. Forkrnann. 1994. Biosynthesis of Flavonoids. Jn: The Flavonoids: Advances in Research since 1986, Harborne, J.B., ed. pp. 499- 535, Chapman and Hall, London. Horhammer, L., H. Wagner, L. Rospriem, T. J. Mabry & H. Rosier. 1965. Ober die Struktur neuer und bekannter Flavon-C-glykoside I. Tetrahedron Lett.: 1707- 11 Huneck, S. 1983. Chemistry and Biochemistry of Bryophytes. ln Schuster, R. M. (ed.), ew Manual of Bryology, Vol. I: 1- 116. The Hattori Botanical Laboratory. Nichinan, Miyazaki, Japan. Jung, M. 1993. Neue Tri- und Tetrahydroxycumarinderivate aus den Laubmoosen Atrichum undu­ latum (Hedw.) P. Beauv., Polytrichumformosum Hedw. und Tetraphis pellucida Hedw. Dis­ sertation, Saarbriicken. Jung, M., H. D. Zinsmeister & H. Geiger. 1994. New three- and tetraoxygenated coumarin gluco­ sides from the mosses A trichum undulatum and Polytrichum formosum. Z. Naturforsch. 49c: 697- 702. Jung, M., H. Geiger & H. D. Zinsmeister. 1995. Tri- and tetrahydroxycoumarin derivatives from Tetraphispellucida. Phytochemistry 39: 379- 381. Koponen, T. 1988. The phylogeny and classification of Mniaceae and Rhizogoniaceae (Musci). J. Hattori Bot. Lab. 64: 37-46. Koponen, T. & E. Nielsson. 1977. Flavonoid patterns and species pairs in Plagiomnium and Rhi­ zomnium (Mniaceae). Bryophytorum Bibliotheca 13 : 411-425. Kovach, W. L. I 995. MVSP-A Multivariate Statistical Package for IBM-PC's ver. 2.2. Kovach Computing Services, Pentraeth, Wales. Kozlowski, M.A., 1921. Sur la saponarine chez le Mnium cuspidatum. Compt. Rend. Acad. Sci. Paris I 73 : 429-431. Kunz, S., G. Burkhardt & H. Becker. 1994. Riccionidins A and B, anthocyanidins from the cell walls of the liverwort Ricciocarpos natans. Phytochemistry 35: 233- 235. 18 Lindberg, G., B.-G. Osterdahl & E. Nielsson. 1974. Chemical studies on bryophytes 16. 5',8" ­ biluteolin, a new biflavone from Dicranum scoparium. Chemica Scripta 5: 140-144. Lopez-Saez, J. A., M. J. Perez-Alonso, A. Velasco-Negueruela. l 995a. The Biftavonoid pattern of the moss Bartramia ithyphylla (Bartramiaceae, Musci). Z. Naturforsch. 50c: 311 - 312. Lopez-Saez, J. A., M. J. Perez-Alonso, A. Velasco-Negueruela. I 995b. The biftavonoid pattern of the moss Bartramia mossmanniana (Bartramiaceae, Musci). Z. Naturforsch. 50c: 895- 897. Markham, K. R. 1982. Techniques of ftavonoid identification. Academic Press, London. Markham, K. R. 1989. Flavones, ftavonols and their glycosides, in: Methods in plant biochem­ istry Vol. I plant phenolics (ed. J. B. Harborne): 197- 235. Markham, K. R. & H. Geiger. 1994. 1H Nuclear Magnetic Resonance Spectroscopy ofFlavonoids and their Glycosides in Hexadeuterodimethylsulfoxide. In : The Flavonoids: Advances in Re­ search since I 986, Harborne, J. B., ed. pp. 441-497, Chapman and Hall, London. 302 J. Hattori Bot. Lab. No. 83 l 9 9 7

19 Markham, K. R. & D. R. Given. 1988. The major flavonoids of an antarctic Bryum. Phytochem­ istry 27: 2843- 2845. 20 Markham, K. R. , 0. M. Andersen & E. S. Viotto. 1988. Unique biflavonoid types from the moss Dicrano/oma robustum. Phytochemistry 27: 1745-1749. Markham, K. R., A. Franke, D. R. Given & P. Brownsey. 1990. Historical antarctic ozone level trends from herbarium specimen flavonoids. Proc. l 5th Symp. Group Polyphenols, Strass­ bourg, France: 230-235. McClure, J. W., 1975. Physiology and Functions of Flavonoids, In: The Flavonoids, Harborne, J. B., T. J. Mabry & H. Mabry, eds. pp. 970-1055, Chapman and Hall, London. McClure, J. W. & H. A. Miller. 1967. Moss chemotaxonomy. A survey for flavonoids and the tax­ onomic implications. Nova Hedwigia 14: 111 - 125. Melchert, Th. E. & R. E. Alston. 1965. Flavonoids from the moss Mnium affine Bland. Science 150: 1170- 1171. Molisch, H. 1923. Mikrochemie der Pflanze, 3. Aufl. Verlag G. Fischer, Jena: pp 198- 200. 21 Mues, R., G. Leidinger, V. Lauck, H. D. Zinsmeister, T. Koponen & K. R. Markham. 1986. Rhi­ zomnium magnifolium and R. pseudopunctatum, the first mosses to yield flavone glu­ curonides. Z. Naturforsch. 4lc: 97 1- 975. 22 Nielsson, E. 1969. Moss pigments 9. Scutellarein glucoside in Bryum weigelii. Arkiv for Kemi 31: 475-480. Nielsson, E. & G. Bendz. 1973. Flavonoids in bryophytes. In Bendz, G., J. Santesson & V. Runnstrom-Reio, Nobelsymposium 25, Chemistry in botanical classification pp. 117- 20, Nobel Foundation, Stockholm. Academic Press, New York, London. 23 Nielsson, E., G. Lindberg and B.-G. Osterdahl. 1973. Chemical studies on bryophytes 15. A new branched apigenin-7-triglycoside from Dicranum scoparium. Chemica Scripta 4: 66--68. Nimz, H., 1974. Beech lignin- Proposal of a constitutional scheme. Angw. Chem. Intemat. Edit. 13: 313- 321. 24 Osterdahl, B.-G. 1976. Chemical sudies on bryophytes 17. A new luteolintetraglycoside from Hedwigia ciliata. Acta Chem. Scand. B30: 867- 870. 25 Osterdahl, B.-G. l 978a. Chemical studies on bryophytes. 19. Application of 13C NMR in structur­ al elucidation of flavonoid C-glucosides from Hedwigia ciliata. Acta Chem. Scand. B32: 93- 97. 26 Osterdahl, B.-G. I 978b. Chemical studies on bryophytes. 20. A new branched flavonoid 0- trigly­ coside from Dicranum scoparium. Acta Chem. Scand. B32: 714- 716. 27 Osterdahl, B.G. 1979a. Chemical studies on bryophytes. 21. Flavonoid glycosides of Hedwigia ciliata. Acta Chem. Scand. B33: 119- 124. 28 Osterdahl, B.-G. 1979b. Chemical studies on bryophytes. 22. Flavonoid C-glycosides of Mnium undulatum. Acta Chem. Scand. B33: 400-404. 29 Osterdahl, B.-G. 1983. Chemical studies on bryophytes. 23. 13C-NMR Analysis of a biflavone from Dicranum scoparium. Acta Chem. Scand. B37: 69- 78. 30 Osterdahl, B.-G. & G. Lindberg. 1977. Chemical studies on bryophytes. 18. Luteolin 7-0- neo­ hesperidoside-4-0-sophoroside, another new tetraglycoside from Hedwigia ciliata. Acta Chem. Scand. B3 l: 293-296. 31 Rampendahl, Ch., T. Seeger, H. Geiger & H. D. Zinsmeister. 1996. The biflavonoids of Plagiom­ nium undulatum. Phytochemistry 41 : 1621- 1624. 32 Salm, R., T. Seeger & H. D. Zinsmeister. 1993. Das Biflavonoidmuster des Laubmooses Bar­ tramia halleriana. Z. Naturforsch. 48c: 531- 532. H. GEIGER et al.: The occurrence of flavonoids in arthrodontous mosses 303

33 Seeger, T. 1992. Biftavonoide und strukturverwandte Verbindungen aus Laubmoosen unter beson­ derer Beriicksichtigung der Bartramiaceae. Dissertation. Saarbriicken. 34 Seeger, T., H. D. Zinsmeister & H. Geiger. 1990. The biflavonoid pattern of Rhythidiadelphus squarrosus (Hedw.) Wamst. Z. Naturforsch. 45c: 583- 586. 35 Seeger, T., H. Geiger & H. D. Zinsmeister. 1991. Bartramiaflavone, a macrocyclic biflavonoid from the moss Bartramia pomiformis. Phytochemistry 30: 1653- 1656. 36 Seeger, T., H. Geiger & H. D. Zinsmeister. 1992a. lsolierung und Strukturaufklarung von Bar­ tramia-Triluteolin, Bartramiasaure und einigen Biftavonoiden aus dem Laubmoos Bartramia pomiformis. Z. Naturforsch. 47c: 527- 530. 37 Seeger, T., H. Geiger, H. D. Zinsmeister, J. P. Frahm & L. Witte. 1992b. 3',3"'-Binaringenin, a new biflavonoid from Pilotrichella cuspidata (Meteroriaceae, Musci). Z. Naturforsch. 47c: 667-669. 38 Seeger, T., H. Geiger, R. Mues & H. D. Zinsmeister. 1993a. The biflavonoid pattern of Anacolia webbii. Z. Naturforsch. 48c: 529-530. 39 Seeger, T., H. Geiger, H. D. Zinsmeister & W. Rozdzinski. 1993b. Biflavonoids from the moss Homalothecium lutescens. Phytochemistry 34: 295-296. 40 Seeger, T., A. Voigt, H. Geiger, H. D. Zinsmeister, G. Schilling & J.-A. Lopez-Saez. 1995. Iso­ meric triluteolins from Bartramia stricta and Bartramia pomiformis. Phytochemistry 40: 1531- 1536. 41 Sievers, H. 1992. Inhaltsstoffe und in vitro-Kultur des Laubmooses Hypnum cupressiforme Hedw. Dissertation. Saarbriicken. 42 Sievers, H., G. Burkhardt, H. Becker & H. D. Zinsmeister. 1992. Hypnogenols and other dihy­ droflavonols from the moss Hypnum cupressiforme. Phytochemistry 31 : 3233-3237. 43 Sievers, H., G. Burkhardt, H. Becker & H. D. Zinsmeister. 1994. Further biflavonoids and 3'­ phenylflavonoids from Hypnum cupressiforme. Phytochemistry 35: 795- 798. 44 Stein, W. 1988. Ein Beitrag zur Flavonoidchemie der Laubmoosfamilie Bryaceae. Dissertation. Saarbriicken. 45 Stein, W. & H. D. Zinsmeister. 1990. New flavonoids from the moss Bryum pseudotriquetrum. Z. Naturforsch. 45c: 25-31 . 46 Stein, W. & H. D. Zinsmeister. 1991. The occurence offlavonoids in the moss family Bryaceae. J. Hattori Bot. Lab. 69: 195- 202. 47 Stein, W. , S. Anhut, H. D. Zinsmeister, R. Mues, W. Barz & J. Koster. 1985. New flavone gluco­ side malonylesters from Bryum capillare. Z. Naturforsch. 40c: 469--473. Tevini, M., J. Braun & G. Fieser. 1991. The protective function of the epidermal layer of rye seedlings against ultraviolet-B radiation. Photochem. Photobiol. 53: 329- 333. Vandekerkhove, 0 . l 977a. Isolierung und Charakterisierung eines Dihydroflavonols bei dem Laubmoos Georgia pellucida (L.) Rabh. Z. Pftanzenphysiol. 82: 455--457. Vandekerkhove, 0. l 977b. Ober die Verbreitung von Flavonoiden bei pleurocarpen Laubmoosen. I. Apigenin-7-rhamnoglucosid bei Hylocomium splendens (Hedw.) Br. eur. Z. Pflanzenphysi­ ol. 85 : 135- 138. Vandekerkhove, 0 . l 978a. Ober die Verbreitung von Flavonoiden bei akrocarpen Laubmoosen. I. Die Flavonoide vonMnium undulatum (L.) Hedw. Z. Pflanzenphysiol. 86: 135- 139. Vandekerkhove, 0 . l 978b. Uber die Verbreitung von Flavonoiden bei akrocarpen Laubmoosen. II. Luteolin aus dem Sporophyten von Ceratodon purpureus (L.) Brid. Z. Pflanzenphysiol. 86: 279- 281. Vandekerkhove, 0 . 1980. Ober die Verbreitung von Flavonoiden bei pleurocarpen Laubmoosen. 304 J. Hattori Bot. Lab. No. 83 1 9 9 7

II . Apigenin und Apigenin-7-0-rhamnoglucosid bei Pleurozium schreberi (Willend.) Mitt. Z. Pflanzenphysiol. 100: 369- 372. Vitt, D. H. 1984. Classification of the . /n Schuster, R. M. (ed.), New Manual ofBryol­ ogy, Vol. 2: 696-759. The Hattori Botanical Laboratory. Nichinan, Miyazaki, Japan. 48 Voigt, A. 1993. Biflavonoide und strukturverwandte Verbindungen aus Dicnemon calycinum, Di­ cranum scoparium und Bartramia stricta. Diplomarbeit, Saarbriicken Vowinkel, E. 1975. Torfmoosmembranochrome, 2. Die Struktur des Sphagnorubins. Chem. Ber. 108: 1166-118 1. 49 Weitz, S. & R. Ikan. 1977. Bracteatin from the moss Funaria hygrometrica. Phytochemistry 16: 1108- 1109. 50 Weyand, J. M. 1993. Biflavonoide verschiedener Arten der Laubmoosfamilie Dicranaceae unter besonderer Beriicksichtigung von Campylopus introflexus. Diplomarbeit, Saarbriicken. Wilson, M. A., J. Sawer, P. G. Hatcher & H. E. Lerch III. 1989. 1, 3, 5-Hydroxybenzene Struc- tures in Mosses. Phytochemistry 28, 1395- 1400. Wollenweber, E. 1981. Unusual flavanones from a rare American fern . Z. Naturforsch. 36c: 604- 606. Wyatt, R., D. M. Lane & A. Stoneburner. l991 a. Chemosystematics of the Mniaceae. II. Flavonoids of Plagiomnium Section Rosulata. Bryologist 94: 443-448. Wyatt, R., D. M. Lane & A. Stoneburner. 199lb. Chemosystematics of the Mniaceae. III. Sources of intraspecific variation in flavonoids. Bryologist 94: 452-456. 51 Zapp, J. 1992. Phytochemische Untersuchungen an ausgewahlten Lebermoosen der Gattung Anastrophyllum sowie der beiden Laubmoose Dicranum scoparium und Pleurozium schre­ beri. Dissertation. Saarbriicken. Zinsmeister, H. D. & R. Mues (eds.). 1990. Bryophytes. Their chemistry and chemical taxonomy. Proceedings of the Phytochemical Society of Europe 29. Clarendon Press. Oxford. 52 Zinsmeister, H. D., J. Weyand, A. Voigt, T. Seeger & H. Geiger (1996). Bi- and triflavonoids of representative moss species from six different families. Z. Naturforsch. 5lc: 781 - 783 .

APPENDIX List of the specimens that have been examined by 2D-TLC and their location in the private herbaria of Jan-Peter Frahm (J.-P. F.); Hans Geiger (H. G.); Rudiger Mues, Saar­ briicken (R. M.); Tassilo Seeger (T. S.) & B. 0. Van Zanten, Groningen (V Z.).

Funaria hygrometrica Hedw.: Mues (Germany) R. M. Orthotrichum affine Brid.: Mues (France) R. M . 1023 491 0. /ye/Iii Hook. (Tay!.: Mues (France) R. M. 1035 Sp/achnum ampullaceum Hedw.: Schwab (Austria) 0. obtusifolium Brid.: Mues (Germany) R. M. 2505 T. S. 472 Ulota crispa (Hedw.) Brid.: Mues (France) R. M. S. sphaericum Hedw.: Mues s.n. (Switzerland) H. G. 2512 Tayloria tenuis (With.) Schimp.: Geiger 1988 U phyllantha Brid.: Geiger 383 (Scotland) H. G. (Switzerland) H. G. Helicophyl/um torquatum (Hook.) Brid.: Frahm 1507 Macromitrium guatemalense C. Muell.: Frahm et al. (Brazil) J.-P. F. 169 (Ecuador) J.-P. F. Anomobryumfiliforme (Dicks.) Husn.: Frahm et al. M. /ongipes (Hook.) Schwaegr.: Mues 12 (New I 00 (Ecuador) J.-P. F. Zealand) R. M. Bryum bi//ardieri Schwaegr.: Frahm 392 (Columbia) H. GEIGER et al. : The occurrence offiavonoids in arthrodontous mosses 305

J.-P. F. B. azorica (Mitt.) Card.: Schwab 336 (Azores) J.-P. F. B. truncorum Brid.: Mues 23 (New Zealand) R. M . B. boliviensis Herz.: Lewis 79-15041 (Bolivia) J.-P. F. Poh/ia wahlenbergii (Web. & Mohr.) Andr.: Geiger B. chrysea (C. Muell.) Jaeg.: Frahm et al. 261 1549 (New Zealand) H. G. (Ecuador) J.-P. F. Rhodobryum grandifo/ium (Tay!.) C. Muell.: Frahm et B. chrysocoma (Hedw.) Lindb.: Geiger 392 (Scotland) al. 264 (Ecuador) J.-P. F. H. G. Leptostomum inclinans R. Br.: Mues 32 (New B. defiexifo/ia Card.: Frahm 792293 (Mexico) J.-P. F. Zealand) R. M. B. dijfracta Mitt. : Frahm 6944 (Zaire) J.-P. F. L. macrocarpon (Hedw.) Pyl.: Geiger 1804 (New B. elongata (H. f. & W.) Mitt.: Geiger 931 (New Zealand) H. G. Zealand) H. G. Mnium hornum Hedw.: Mues (Germany) R. M. 3315 B. eugeniae Aongstr.: H.O. Whittier 2591 (Tahiti) J.-P. Plagiomnium rostratum (Schrad.) Kop.: Geiger 1849 F. (New Zealand) H. G. B. integrifolia (Tayl.) Jaeg.: H. Hertel 24774 (Marion Spiridens viellardii Schimp.: H. Hurlimann s. n. (New Island) J.-P. F. Caledonia) H. G. B. pendula (Hook.) Mitt.: Mues 18 (New Zealand) Cryptopodium bartramioides (Hook.) Brid.: Geiger R. M. 18 11 (New Zealand) H. G. B. stuhlmannii Broth.: Frahm 6274 (Rwanda) J.-P. F. Pyrrhobryum latifolium (Bosch & Lac.) Mitt.: M. B. tomentosa (Sw. ex Brid.) Jaeg.: Frahm et al. 95 Koponen 35664 (New Guinea) J. - P. F. (Ecuador) J.-P. F. P. mnioides (Hook.) Manuel: M. Veit s.n. (New Conostomum macrotheca Herz.: M. Lewis 79-2436A Zealand) H. G. (Bolivia) J. -P. F. P. paramattense (C. Muell.) Manuel: Henn s.n. C. pentastichum (Brid.) Lindb.: Frahm 1504 (Brazil) (Australia) H. G. J.-P. F. Rhizogonium distichum (Sw.) Brid.: Mues 47 (New C. pusillum H. f. & W. : Fife 5187 (New Zealand) Zealand) R. M. H. G. Schistostega pennata (Hedw.) Web. & Mohr: Mues C. tetragonum (Hedw.) Lindb.: E. Sauer (Sweden) (Germany) R. M. 1435 R. M. 1626 Hypnodendron comatum (C. Muell.).Touw: Mues 55 Leiomela bartramioides (Broth.) Par.: Frahm et al. 804 (New Zealand) R. M. (Peru) J. -P. F. H. kerrii (Mitt.) Par.: Mues 38 ( ew Zealand) R. M. L. deciduifo/ia Herz.: Churchill et al. 13266 Timmia austriaca Hedw.: Frahm 89259 (Canada, (Columbia) J.-P. F. Yukon) J.-P. F. L. lopezii Griffin: Cleef6733 (Columbia) J.-P. F. Anaco/ia intertexta (Schimp.) Jaeg.: Eggers & Frahm L. piligera (Hampe) Broth.: Frahm 1913 (Brazil) 792556 (Mexico) J.-P. F. J.-P. F. A. laevisphaera (Tay!.) Flowers: Frahm et al. 866 Philonotis austra/is (Mitt.) Jaeg.: Geiger 1024 (New (Peru) J.-P. F. Zealand) H. G. A. menziesii (Turn.) Par.: v. Hiibschmann s.n. (Canada, P. ca/carea (B. & S.) Schimp.: Seeger (Austria) T. S. B. C.) J.-P. F. 458 Bartramia angustifo/ia Mitt.: Churchill et al. 13442 P. revoluta Bosch & Lac.: v. Hiibschmann s.n. (Sri (Columbia) J.-P. F. Lanka) J.-P. F. B. ithyphylla Brid.: Mues (Switzerland) R. M. 100 P. scabrifo/ia (H. F. & W.) Broth.: Geiger 1031 (New B. mathewsii (Mitt.): Delgadillo 4619 (Mexico) J.-P. F. Zealand) H. G. B. mossmanniana C. Muell.: Fife 8625 (New Zealand) P. seriata Mitt.: Sievers (Italy) T. S. 523 H.G. P. sphaerocarpa (Hedw.) Brid.: Buck 4007 (Puerto B. papillara H. f. & Wils.: Geiger I 079 (New Zealand) Rico) J.-P. F. H.G. P. uncinata (Schwaegr.) Brid.: Frahm 1206 (Brazil) B. patens Brid.: Ochyra 2085/80 (Antarctica) J.-P. F. J.-P. F. B. rufescens Hampe: Frahm 1506 (Brazil) J.-P. F. Plagiopus oederi (Brid.) Limpr.: E. Sauer s.n. Breutelia aifinis (Hook.) Mitt.: Fife 4514 (New (Austria) T. S. 421 Zealand) J. -P. F. Meesia triquetra Aongstr.: Frahm 89256 (Canada, B. a/lionii Broth.: Frahm et al. 784 (Peru) J.-P. F. Yukon) J.-P. F. 306 J. Hattori Bot. Lab. No. 83 I 9 9 7

Paludella squarrosa Brid.: Mues (Switzerland) R. M. 1113 3104 P. succulentum (Wils.) Lindb.: Mues (Germany) R. M. Catoscopium nigritum (Hedw.) Brid.: Mues (Austria) 2092 R. M. 230 P. undulatum (Hedw.) B., S. & G.: Huneck (Germany) Myurellajulacea (Schwaegr.) B.,S. & G.: Seeger T.S. 524 (Austria) T. S. 452 Herzogiella seligeri (Brid) lwats.: Mues (France) Thuidiopsisfurfurosa (H. f. & Wi ls.) Fleisch.: Mues R. M. 1092 11 (New Zealand) R. M. Hyocomium armoricum (Brid.) Wijk & Marg.: Geiger Echinodium hispidum (H. f. & Wi ls.) Reichdt.: Mues 488 (Scotland) H. G. 3 (New Zealand) R. M. Mittenothamnium deminutivum (Hampe) Britt: Frahm Racopilum capense C. Muell.: van Zanten 76096 12. et al. 123 (Ecuador) J.-P. F. (South Africa) V. Z. Rhytidiadelphus loreus (Hedw.) Warnst.: Geiger 4 77 R. strumiferum C. Muell.: Mues 31 (New Zealand) (Scotland) H. G. R. M. Rhytidium rugosum (Hedw.) Kindb.: Mues (Austria) Camptochaete arbuscula (Sm.) Reichdt.: Geiger 1620 R. M. 605 (New Zealand) H. G. Entodon schleicheri (Schimp.) Demet.: Mues Acrocladium auriculatum (Mont.) Mitt.: Geiger 1774 (Germany) R. M. 391 (New Zealand) H. G. Sematophyllum amoenum (Hedw.) Mitt.: Geiger 1628 Amblystegium serpens (Hedw.) B., S. (G.: Mues (New Zealand) H. G. (Germany) R. M. 2415 Wijkia extenuata (Brid.) Crum: Geiger 1697 (New Calliergon giganteum (Schmp.) Kindb.: S. Caspari Zealand) H. G. (Switzerland) R. M. 2710 Fontinalis antipyretica Hedw.: Mues (Switzerland) C. sarmentosum (Wahlenb.) Kindb.: Geiger 460 R. M.423 (Scotland) H. G. Climacium dendroides (Hedw.) Web. (Mohr: Geiger Calliergonella cuspidata (Hedw.) Loeske: Mues 313 (Germany) H. G. (Germany) R. M. 14 Haplohymenium longinerve (Broth.) Broth.: Mues Cratoneuron commutatum (Hedw.) G. Roth.: Mues (Japan) R. M. (Austria) R. M. 28 Hylocomiopsis cylindricarpa Ther.: Frahm 6961 Cratoneuropsis rela.xa (H . f. & Wils.) Broth.: Mues 34 (Zaire) J.-P. F. (New Zealand) R. M. Lescuraea incurvata (Hedw.) Lawt: Mues (Austria) Drepanocladus unicinatum (Hedw.) Warnst.: Mues R. M. 720 (Switzerland) R. M. 39 Leskea polycarpa Hedw. : Mues (Germany) R. M. 729 Hygrohypnum luridum (Hedw.) Jenn.: Mues Pterigynandrumfiliforme Hedw. : Mues (Switzerland) (Switzerland) R. M. 2758 R. M. 733 Cirriphyllum piliferum (Hedw.) Grout: Mues Cryphaea dilatata H. f. & Wils.: Geiger 1831 (New (Germany) R. M. 155 Zealand) H. G. Eurhynchium angustirete (Broth.) T. Kop.: Mues C. tenella C. Muell.: Mues 35 (New Zealand) R. M. (Austria) R. M. 1655 Leucodon sciuroides (Hedw.) Schwaeg.: Mues (Italy) E. praelongum (Hedw.) B., S. & G: Geiger 1557 (New R. M. 2301 Zealand) H. G. Pterogonium gracile (Hedw.) Sm.: E. Sauer (Turky) Homalothecium nitens (Hedw.) Robins: A. Loken R. M. 3305 (Norway) R. M. 2384 Braunia alopecura (Brid.) Limpr.: Frahm 19/IX/76 Isothecium myosuroides Brid.: Geiger 411 (Scotland) (Italy) J.-P. F. H. G. B. squarrosula (Hampe) Brotherus: Frahm 11 /Ill/79 Scleropodium purum (Hedw.) Limpr.: B. Marx (Mexico) J.-P. F. (Germany) R. M. 183 Hedwigidium integrifolium (P. Beauv.) Dix.: Frahm Plagiothecium cavifolium (Brid.) lwats: Mues 11 /IV/74 (Italy) J.-P. F. (Germany) R. M. 1098 Pseudobraunia ca/ifornica (Lesq.) Broth.: v. P. denticulatum (Hedw.) B., S. & G.: Mues (Germany) Hubschmann 22/X/76 (Canada-BC) J.-P. F. R. M. 2088 Rhacocarpus humboldtii (Hook.) Lindb.: Geiger 1085 P. nemorale (Mitt.) Jaeg.: Mues (Germany) R. M. (New Zealand) H. G. H. GEIGER et al.: The occurrence of ftavonoids in arthrodontous mosses 307

Cyrtopus setosus (Hedw.) Hook. f.: Geiger 1714 H. novae-seelandiae C. Muell.: Mues 20 (New (New Zealand) H. G. Zealand) R. M. Prionodon densus (Hedw.) C. Muell.: Frahm et al. H. setigerum H. f. & Wils.: Mues 5 (New Zealand) (Ecuador) J.-P. F. R. M. Lepyrodon tomentosus (Hook.) Mitten: Rauh s.n. Lopidium concinnum (Hook.) H. f. & Wils.: Mues 2 (Peru) H. G. (New Zealand) R. M. Myurium hochstetteri (Schimp.) Kindb.: Geiger 435 Diphysciumfo/iosum (Hedw.) Mohr: Geiger 652 (Scotland) H. G. (France) H. G. Pterobryon densum (Schwaegr.) Homsch.: Frahm et Encalypta spathulata C. Muell.: Mues (Austria) R. M. al. 724 (Peru) J.-P. F. 381 Renauldia hoenelii (C. M.) Broth.: Piers VI/62 E. streptocarpa Hedw.: Mues (Austria) R. M. 384 (Kenya) H. G. Anoectangium aestivum (Hedw.) Mitt.: A. Loken Trachylomap/anifo/ium (Hedw.) Brid.: Geiger 1685 (Norway) R. M. 2387 (New Zealand) H. G. A. compactum Schwaegr.: Frahm et al. 98 (Ecuador) Floribundaria aurea sups. nipponica (Nog.) Nog.: J.-P. F. Mues (Japan) R. M. Barbu/a convoluta Hedw.: Mues (Germany) R. M. Papil/aria imponderosa (Tayl.) Broth.: Frahm et al. 2432 159 (Ecuador) J.-P: F. Bryoerythrophyllum recurvirostre (Hedw.) Chen: Squamidium nigricans (Hook.) Broth.: Frahm et al. Mues (Germany) R. M. 1198 2 77 (Ecuador) J.-P. F. Didymodon vinea/is (Brid.) Zander: Mues (Germany) Weymouthia cochlearifolia (Schwaegr.) Dix.: Mues 1 R.M. 1219 (New Zealand) R. M. Eucladium verticillatum (Brid.) B.,S. & G. : Mues W. mollis (Hedw.) Broth.: Mues 21 (New Zealand) (Switzerland) R. M.1220 R.M. Leptodontium interruptum (Mitt.) Broth.: Geiger 1603 Cladomnion ericoides H. f. & Wils.: Geiger 993 (New (New Zealand) H. G. Zealand) H. G. L. styriacum: (Jur.) Limpr.: Mues (Switzerland) R. M. Ptychomnion aciculare (Brid.) Mitt.: Mues 7 (New 1232 Zealand) R. M. P/eurochaete squarrosa (Brid.) Lindb.: Mues Homaliafalcifo/ia (H. f. & Wils.) H. f. ( Wils.: Geiger (Germany) R. M. 1236 1555 (New Zealand) H. G. Pottia intermedia (Tum.) Fuem.: Mues (Netherlands) H. pulchella Wils.: Geiger 1639 (New Zealand) H. G. R. M. 1239 Neckera complanata (Hedw.) Hueb.: Geiger 680 Pseudocrossidium revolutum (Brid.) Zander: Mues (Luxembourg) H. G. (Germany) R. M. 2560 Porotrichum /ongirostre (Hook.) Brid.: Frahm et al. Scopelophila cataractae (Mitt.) Broth.: Mues 172 (Ecuador) (Belgium) R. M. 1253 Catagonium politum (H. f. & Wils.) Dus.: Geiger Torte/la inclinata (Hedw. f.) Limpr.: Mues (Germany) 1884 (New Zealand) H. G. R. M. 1254 Achrophyllum dentatum (H. f. & Wils.) Vitt (Crosby: T tortuosa (Hedw.) Limpr.: Mues (Switzerland) R. M. Mues 9 (New Zealand) R. M. 1259 Distichophyl/um pulchel/um (C. Muell.) Mitt.: Mues Tortu/a latifo/ia Bruch ex Hartm.: Mues (France) 37a (New Zealand) R. M. R. M. 2202 Hookeria lucens (Hedw.) Sm.: Mues (Germany) R. M. T mura/is Hedw.: Mues (Germany) R. M. 1267 550 T norvegica (Web.) Wahlenb. ex Lindb.: Mues Tetrastichium fontanum (Mitt.) Card.: Schwab 2NI/8 l (Austria) R. M. 1268 (Azores) R. M. 551 T ruralis (Hedw.) Gaerten.: Mues (Germany) R. M. Catharomnion ci/iatum (Hedw.) H. f. & Wils.: Mues 3306 25 (New Zealand) R. M. Tridontium tasmanicum Hook. f.: Geiger 1618 (New Cyathophorum bulbosum (Hedw.) C. Muell.: Mues Zealand) H. G. 25a (New Zealand) R. M. Triquetrel/a papi/lata (H. f. & Wils.) Broth.: Geiger Hypopterygiumfilicu/aeforme (Hedw.) Brid.: Mues 6 1597 (New Zealand) H. G. (New Zealand) R. M. Weissia condensa (Voit) Lindb.: Mues (France) R. M. 308 J. Hattori Bot. Lab. No. 83 I 9 9 7

2209 Rica) J.-P. F. Octoblepharum pulvinatum (Dozy & Molk.) Mitt.: P. longirostratus Mitt.: Frahm et al. 94 (Ecuador) J. -P. Frahm 391 (Columbia) J.-P. F. F. Atractylocarpus alticaulis L.: Frahm 8351 (Rwanda) P subjulaceus Hampe: Frahm 1604 (Brasil) J.-P. F. J.-P. F. Trematodon suberectus Hook. f.: Geiger 1906 (New A. longisetus (Hook.) Bartr.: P. & E. Hegewald 6974 Zealand) H. G. (Peru) J.-P. F. Leucobryum glaucum (Hedw.) Aongstr.: Geiger 768 Bryohumbertiafiavicoma (C. Muell.) Frahm: Frahm (France) H. G. loc. 135 (Zaire) J.-P. F. Amphidium mougeotii (B. & S.) Schimp.: Mues Campy/opus aemulans (Hampe) Jaeg.: Schiifer­ (Germany) R. M. 2634 Verwimp 9670 (Brazil) J.-P. F. Rhabdoweisiafugax (Hedw.) B., S. (G.: Mues (Spain) C. atrovirens var. atrovirens De Not.: Geiger 370 R. M. 335 (Scotland) H. G. Ceratodon purpureus (Hedw.) Brid.: Mues (Germany) C. atrovirens var.falcatus Braithw.: Geiger 486 H. G. 280R (Scotland) H. G. Ditrichumjiexicaule (Schwaegr.) Hampe: Mues C. capitulatus Williams: Frahm et al. 77 (Ecuador) (Austria) R. M. 178 1 J.-P. F. D. punctulatum Mitt.: Geiger 1846 (New Zealand) C. cavifolius Mitt.: Frahm et al. 292 (Ecuador) J.-P. F. H. G. C.jiexuosus (Hedw.) Brid.: Schwab 24/JV/84 (Canary Eustichia spruceana (C. Muell.) Par.: Frahm et al. Islands) J.-P. F. (Ecuador) J.-P. F. C.fragilis (Brid.) B., S. & G.: Frahm et al. 145 Phyl/odrepanium falcifolium (Schwaegr.) Crosby: (Ecuador) J.-P. F. Gradstein 5804 (French Guyana) J.-P. F. C.jamesonii (Hook.) Jaeg.: Frahm loc. 106 (Rwanda) Eucamptodon infiatus (H. f. & Wils.) Mitt.: Geiger J.-P. F. 1171 (New Zealand) H. G. C. leukochlorus (C. Muell.) Par.: Frahm 6937 (Zaire) Mesotus celatus Mitt.: Geiger 1755 (New Zealand) J.-P. F. H. G. C. nivalis (Brid.) Brid.: Frahm 8357 (Rwanda) J.-P. F. Fissidens adianthoides Hedw.: Mues (Austria) R. M. C. pi/ifer Brid.: Eggers SL 5, 1 (Sri Lanka) J.-P. F. 1789 C. pittieri Williams: Frahm et al. 296 (Ecuador) J.-P. F. F. asplenioides Hedw. : Geiger 874 (New Zealand) C. rejiexisetus (C. Muell.) Broth.: Frahm et al. 281 H. G. (Ecuador) J.- P. F. F. polyphyl/us Wils. ex B., S. & G.: Mues (Madeira) C. richardii Brid.: Frahm et al. 85 (Ecuador) J.-P. F. R. M. 3307 C. shawii Wils. ex Hunt: Geiger 413 (Scotland) H. G. F. taxifolius Hedw.: Mues (Germany) R. M. 2567 C. umbe/latus (Am.) Par.: Eggers SL 6, 1 (Sri Lanka) Blindia acuta (Hedw.) B., S. & G. : Hiirlimann J.-P. F. (Switzerland) R. M. 2427 Chorisodontium mittenii (C. Muell.) Broth.: Frahm et Ptychomitrium po/yphyl/um (Sw.) B. & S.: Mues al. 279 (Ecuador) J.-P. F. (Madeira) R. M. 3308 Dicranella heteromalla (Hedw.) Schimp.: Mues Grimmia aifinis Hornsch.: Mues (Switzerland) R. M. (Germany) R. M. 298 502 Dicranodontium denudatum (Brid.) Britt: Geiger 773 G. montana B. & S. : Mues (Germany) R. M. 2632 (France) H. G. G. ova/is (Hedw.) Lindb.: Mues (Germany) R. M. Dicranumfulvum Hook.: Frahm 61 (France) J.-P. F. 2629 D. tauricum Sap.: Mues (Germany) R. M. 1767 Racomitrium ptychophy/lum (Mitt.) Hook. f.: Veit Microcampylopus laevigatus (Ther.) Giese (Frahm: 11/91 (New Zealand) H. G. Frahm 6140 (Rwanda) J.-P. F. S. maritimum (Turn.) B. & S. : Geiger 397 (Scotland) Pilopogon africanus Broth.: Frahm 7014 (Zaire) J.-P. H.G. F. S. rivulare (Brid.) Podp.: Mues (Switzerland) R. M. P. guadeloupensis (Brid.) Frahm: Crosby 6140 (Costa 265