Explorative Analysis of 2D Color Maps

Total Page:16

File Type:pdf, Size:1020Kb

Explorative Analysis of 2D Color Maps WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision Explorative Analysis of 2D Color Maps M. Steiger*, J. Bernard*, S. Thum*, S. Mittelstädt†, M. Hutter*, D. Keim†, J. Kohlhammer* Fraunhofer IGD, Darmstadt*, University of Konstanz†, Germany ABSTRACT Color is one of the most important visual variables in information visualization. In many cases, two-dimensional information can be color-coded based on a 2D color map. A variety of color maps as well as a number of quality criteria for the use of color have been presented. The choice of the best color map depends on the analytical task users intend to perform and the design space in choosing an appropriate 2D color map is large. In this paper, we present the ColorMap-Explorer, a visual-interactive system that helps users in selecting the most appropriate 2D color map for their particular use case. ColorMap-Explorer also provides a library of many color map im- plementations that have been proposed in the scientific literature. To analyze their usefulness for different tasks, ColorMap-Explorer provides use case scenarios to allow users to obtain qualitative feedback. In addition, quan- titative metrics are provided on a global (i.e. per color map) and local (i.e. per point) scale. ColorMap-Explorer enables users to explore the strengths and weaknesses of existing as well as user-provided color maps to find the best fit for their task. Any color map can be exported to be reused in other visualization tools. The code is published as open source software, so that the visualization community can use both the color map library and the ColorMap-Explorer tool. This also allows users to contribute new implementations. Keywords explorative analysis, color maps 1 INTRODUCTION As a result, the viewer can estimate the relative similarity of high-dimensional data by comparing Color is one of the most important visual variables colors. As such, 2D color maps are appropriate for in information visualization. Depending on the prop- high-dimensional data; we do not recommend the erties of the underlying data, different types of color direct use of two data attributes as coordinates in the maps can be applied to encode data attributes visually map (cf. Wainer et al. [WF80]). in the most accurate way. Qualitative color maps al- low for the distinction between different categories of A variety of different static 2D color maps has been pre- elements. Quantitative color maps allow for an identi- sented in the past. The survey of Bernard et al. gives an fication of similar (and dissimilar) data elements with overview [BSM∗15]. The authors review quality crite- respect to a quantitative value domain. For quantita- ria and design guidelines for color maps and depict the tive color maps, the most relevant representatives are huge design space for the design and the use of static either sequential (unipolar) or diverging (bipolar). In 2D color maps. those cases where a single data variable (attribute) is encoded, a one-dimensional color ramp can be used. In order to faithfully reflect the relative pair-wise dis- tances of the original data as closely as possible, such For high-dimensional data, 2D color maps are used a 2D color map should preserve the notion of perceived to preserve similarity of the items in a visual vari- similarity in terms of color. The perceived distance be- able. Data items with more than two attributes are first tween colors should be linearly related to the geometric mapped into the two-dimensional space according to distance in both the high- and the 2-dimensional space. some transformation or projection method. The result Another quality criterion for a color map is to exploit of these upstream techniques is a mapping in 2D that the given color space, aiming for a maximum number can directly be used as position information in a 2D of distinguishable colors. In many cases the choice of color map. color maps is also made with respect to colorblindness sensitivity. For example, about 8-10 percent of the male population in Europe suffer from a color vision defi- Permission to make digital or hard copies of all or part of ciency [Alb10]. Additional requirements to color maps this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit may be based on user-centered constraints like corpo- or commercial advantage and that copies bear this notice and rate designs. In some cases, 2D color maps may also the full citation on the first page. To copy otherwise, or re- require a certain contrast against the background color publish, to post on servers or to redistribute to lists, requires so that the visual elements can be clearly identified as prior specific permission and/or a fee. such. Some other visualizations may require that text Full Papers Proceedings 151 ISBN 978-80-86943-65-7 WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision and other overlays are legible on a canvas that is drawn downstream visualization, several views stress the color based on the color map. map against other visual variables in different example A taxonomy of different color map design criteria is scenarios. Finally, the selected color map can be ex- presented by Tominski et al. [TFS08]. According to the ported for re-use in downstream visualization tools. authors, meaningful color encodings strongly depend on the data, the task, the target user group, and the dis- play device. A fourth dimension in the problem space is the large number of static 2D color maps presented in literature. Naturally, there is no color map that is perfect with respect to all requirements. To give an ex- ample, a color map can hardly be colorblind-safe and maximize color exploitation at the same time. Visual- ization designers need to balance a trade-off between different complementary design criteria. A premature color map decision may lead to false assumptions with respect to the underlying data properties. Consequently, Figure 1: The main window of the ColorMap-Explorer: choosing a 2D color map for a visualization should be the config and info panel is placed on left side, the col- done carefully. lection of views is stored in individual tabs at the right. The Overview tab enumerates all available color maps. To the best of our knowledge, a decision support sys- tem that supports the user in making such a choice has The workflow of the ColorMap-Explorer is as follows: not yet been presented. We identify the following chal- starting with an overview of all color map implementa- lenges: tions, the user can select up to three color maps which then are put in juxtaposition. This allows for direct • R1:Visual overview of existing color maps comparison to narrow down the number of candidates with respect to the analytical task. Individual color • R2:Comparison of color maps with respect to global quantitative quality measures maps are then investigated in more detail before the best fit is identified. When the decision on the best • R3:Assessment of local properties of a color map matching color map has been made, the user can save • R4:Visual analysis of the shape of a color map with the color map as an image to disk. The user can respect to different color spaces. always move backwards and forwards in this workflow pipeline as desired. • R5:Assessment of the maximum amount of dis- cernible information that can be encoded The paper is organized as follows: In Section 2, we • R :Showing the homogeneity of perceived similarity discuss related software tools that support the user in 6 finding colors for visualization tasks. Section 3 gives • R7:Assessment of the interplay of color map with a definition of perceived color differences, before the other visual variables ColorMap-Explorer is illustrated in detail in Section 4. We show some discoveries along an example applica- We present the ColorMap-Explorer, a visual-interactive tion in Section 5. Conclusion and outlook are at the end decision support system for 2D color maps. The system of the paper in Section 6. assists visualization designers to find the best-fitting color map in this complex search space. At the mo- 2 RELATED WORK ment, it contains 22 color map implementations that were discussed in the scientific literature. Visual access Appropriate color maps for specific tasks and specific to these 2D color maps is provided in an overview visu- data properties is a well discussed topic in the litera- alization. For every color map, quantitative metrics are ture. General guidelines on selecting color maps can provided on a global (i.e. per color map) and local (i.e. be found in [RO86,War88,RTB96,Rhe00]. In addition, per point) scale. For the comparison of multiple color linear color ranges (1D) for segmentation and categori- maps, we provide a view utilizing the global measures. cal data have been discussed previously [Hea96,HB03]. A detailed analysis of local properties is provided by For two-dimensional color maps there are few guide- several views, each shedding light from a different per- lines available. The study of Wainer et al. [WF80] spective. In particular, we allow for the detailed anal- showed that encoding of two dimensional data with two ysis of a) different color channels b) local perceptual dimensional color maps is not intelligible. In contrast linearity, and c) the shape of the area in different color to this statement, Ware and Beatty [WB88] found that spaces for every color map. In order to get a first im- each additional color dimension (red, green, blue chan- pression of how the color map behaves in a targeted nel) is as effective as an additional spatial dimension Full Papers Proceedings 152 ISBN 978-80-86943-65-7 WSCG 2015 Conference on Computer Graphics, Visualization and Computer Vision in the encoding of multivariate (more than two dimen- obtained a color difference formula and different sional) data.
Recommended publications
  • Planar Maps: an Interaction Paradigm for Graphic Design
    CH1'89 PROCEEDINGS MAY 1989 PLANAR MAPS: AN INTERACTION PARADIGM FOR GRAPHIC DESIGN Patrick Baudelaire Michel Gangnet Digital Equipment Corporation Pads Research Laboratory 85, Avenue Victor Hugo 92563 Rueil-Malmaison France In a world of changing taste one thing remains as a foundation for decorative design -- the geometry of space division. Talbot F. Hamlin (1932) ABSTRACT Compared to traditional media, computer illustration soft- Figure 1: Four lines or a rectangular area ? ware offers superior editing power at the cost of reduced free- Unfortunately, with typical drawing software this dual in- dom in the picture construction process. To reduce this dis- terpretation is not possible. The picture contains no manipu- crepancy, we propose an extension to the classical paradigm lable objects other than the four original lines. It is impossi- of 2D layered drawing, the map paradigm, that is conducive ble for the software to color the rectangle since no such rect- to a more natural drawing technique. We present the key angle exists. This impossibility is even more striking when concepts on which the new paradigm is based: a) graphical the four lines are abutting as in Fig. 2. We feel that such a objects, called planar maps, that describe shapes with multi- restriction, counter to the traditional practice of the designer, ple colors and contours; b) a drawing technique, called map is a hindrance to productivity and creativity. In this paper sketching, that allows the iterative construction of arbitrarily we propose a new drawing paradigm that will permit a dual complex objects. We also discuss user interface design is- interpretation of Fig.
    [Show full text]
  • Investigating the Effect of Color Gamut Mapping Quantitatively and Visually
    Rochester Institute of Technology RIT Scholar Works Theses 5-2015 Investigating the Effect of Color Gamut Mapping Quantitatively and Visually Anupam Dhopade Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Dhopade, Anupam, "Investigating the Effect of Color Gamut Mapping Quantitatively and Visually" (2015). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Investigating the Effect of Color Gamut Mapping Quantitatively and Visually by Anupam Dhopade A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Print Media in the School of Media Sciences in the College of Imaging Arts and Sciences of the Rochester Institute of Technology May 2015 Primary Thesis Advisor: Professor Robert Chung Secondary Thesis Advisor: Professor Christine Heusner School of Media Sciences Rochester Institute of Technology Rochester, New York Certificate of Approval Investigating the Effect of Color Gamut Mapping Quantitatively and Visually This is to certify that the Master’s Thesis of Anupam Dhopade has been approved by the Thesis Committee as satisfactory for the thesis requirement for the Master of Science degree at the convocation of May 2015 Thesis Committee: __________________________________________ Primary Thesis Advisor, Professor Robert Chung __________________________________________ Secondary Thesis Advisor, Professor Christine Heusner __________________________________________ Graduate Director, Professor Christine Heusner __________________________________________ Administrative Chair, School of Media Sciences, Professor Twyla Cummings ACKNOWLEDGEMENT I take this opportunity to express my sincere gratitude and thank all those who have supported me throughout the MS course here at RIT.
    [Show full text]
  • Texture / Image-Based Rendering Texture Maps
    Texture / Image-Based Rendering Texture maps Surface color and transparency Environment and irradiance maps Reflectance maps Shadow maps Displacement and bump maps Level of detail hierarchy CS348B Lecture 12 Pat Hanrahan, Spring 2005 Texture Maps How is texture mapped to the surface? Dimensionality: 1D, 2D, 3D Texture coordinates (s,t) Surface parameters (u,v) Direction vectors: reflection R, normal N, halfway H Projection: cylinder Developable surface: polyhedral net Reparameterize a surface: old-fashion model decal What does texture control? Surface color and opacity Illumination functions: environment maps, shadow maps Reflection functions: reflectance maps Geometry: bump and displacement maps CS348B Lecture 12 Pat Hanrahan, Spring 2005 Page 1 Classic History Catmull/Williams 1974 - basic idea Blinn and Newell 1976 - basic idea, reflection maps Blinn 1978 - bump mapping Williams 1978, Reeves et al. 1987 - shadow maps Smith 1980, Heckbert 1983 - texture mapped polygons Williams 1983 - mipmaps Miller and Hoffman 1984 - illumination and reflectance Perlin 1985, Peachey 1985 - solid textures Greene 1986 - environment maps/world projections Akeley 1993 - Reality Engine Light Field BTF CS348B Lecture 12 Pat Hanrahan, Spring 2005 Texture Mapping ++ == 3D Mesh 2D Texture 2D Image CS348B Lecture 12 Pat Hanrahan, Spring 2005 Page 2 Surface Color and Transparency Tom Porter’s Bowling Pin Source: RenderMan Companion, Pls. 12 & 13 CS348B Lecture 12 Pat Hanrahan, Spring 2005 Reflection Maps Blinn and Newell, 1976 CS348B Lecture 12 Pat Hanrahan, Spring 2005 Page 3 Gazing Ball Miller and Hoffman, 1984 Photograph of mirror ball Maps all directions to a to circle Resolution function of orientation Reflection indexed by normal CS348B Lecture 12 Pat Hanrahan, Spring 2005 Environment Maps Interface, Chou and Williams (ca.
    [Show full text]
  • COLOR SPACE MODELS for VIDEO and CHROMA SUBSAMPLING
    COLOR SPACE MODELS for VIDEO and CHROMA SUBSAMPLING Color space A color model is an abstract mathematical model describing the way colors can be represented as tuples of numbers, typically as three or four values or color components (e.g. RGB and CMYK are color models). However, a color model with no associated mapping function to an absolute color space is a more or less arbitrary color system with little connection to the requirements of any given application. Adding a certain mapping function between the color model and a certain reference color space results in a definite "footprint" within the reference color space. This "footprint" is known as a gamut, and, in combination with the color model, defines a new color space. For example, Adobe RGB and sRGB are two different absolute color spaces, both based on the RGB model. In the most generic sense of the definition above, color spaces can be defined without the use of a color model. These spaces, such as Pantone, are in effect a given set of names or numbers which are defined by the existence of a corresponding set of physical color swatches. This article focuses on the mathematical model concept. Understanding the concept Most people have heard that a wide range of colors can be created by the primary colors red, blue, and yellow, if working with paints. Those colors then define a color space. We can specify the amount of red color as the X axis, the amount of blue as the Y axis, and the amount of yellow as the Z axis, giving us a three-dimensional space, wherein every possible color has a unique position.
    [Show full text]
  • Cielab Color Space
    Gernot Hoffmann CIELab Color Space Contents . Introduction 2 2. Formulas 4 3. Primaries and Matrices 0 4. Gamut Restrictions and Tests 5. Inverse Gamma Correction 2 6. CIE L*=50 3 7. NTSC L*=50 4 8. sRGB L*=/0/.../90/99 5 9. AdobeRGB L*=0/.../90 26 0. ProPhotoRGB L*=0/.../90 35 . 3D Views 44 2. Linear and Standard Nonlinear CIELab 47 3. Human Gamut in CIELab 48 4. Low Chromaticity 49 5. sRGB L*=50 with RGB Numbers 50 6. PostScript Kernels 5 7. Mapping CIELab to xyY 56 8. Number of Different Colors 59 9. HLS-Hue for sRGB in CIELab 60 20. References 62 1.1 Introduction CIE XYZ is an absolute color space (not device dependent). Each visible color has non-negative coordinates X,Y,Z. CIE xyY, the horseshoe diagram as shown below, is a perspective projection of XYZ coordinates onto a plane xy. The luminance is missing. CIELab is a nonlinear transformation of XYZ into coordinates L*,a*,b*. The gamut for any RGB color system is a triangle in the CIE xyY chromaticity diagram, here shown for the CIE primaries, the NTSC primaries, the Rec.709 primaries (which are also valid for sRGB and therefore for many PC monitors) and the non-physical working space ProPhotoRGB. The white points are individually defined for the color spaces. The CIELab color space was intended for equal perceptual differences for equal chan- ges in the coordinates L*,a* and b*. Color differences deltaE are defined as Euclidian distances in CIELab. This document shows color charts in CIELab for several RGB color spaces.
    [Show full text]
  • Digital Mapping & Spatial Analysis
    Digital Mapping & Spatial Analysis Zach Silvia Graduate Community of Learning Rachel Starry April 17, 2018 Andrew Tharler Workshop Agenda 1. Visualizing Spatial Data (Andrew) 2. Storytelling with Maps (Rachel) 3. Archaeological Application of GIS (Zach) CARTO ● Map, Interact, Analyze ● Example 1: Bryn Mawr dining options ● Example 2: Carpenter Carrel Project ● Example 3: Terracotta Altars from Morgantina Leaflet: A JavaScript Library http://leafletjs.com Storytelling with maps #1: OdysseyJS (CartoDB) Platform Germany’s way through the World Cup 2014 Tutorial Storytelling with maps #2: Story Maps (ArcGIS) Platform Indiana Limestone (example 1) Ancient Wonders (example 2) Mapping Spatial Data with ArcGIS - Mapping in GIS Basics - Archaeological Applications - Topographic Applications Mapping Spatial Data with ArcGIS What is GIS - Geographic Information System? A geographic information system (GIS) is a framework for gathering, managing, and analyzing data. Rooted in the science of geography, GIS integrates many types of data. It analyzes spatial location and organizes layers of information into visualizations using maps and 3D scenes. With this unique capability, GIS reveals deeper insights into spatial data, such as patterns, relationships, and situations - helping users make smarter decisions. - ESRI GIS dictionary. - ArcGIS by ESRI - industry standard, expensive, intuitive functionality, PC - Q-GIS - open source, industry standard, less than intuitive, Mac and PC - GRASS - developed by the US military, open source - AutoDESK - counterpart to AutoCAD for topography Types of Spatial Data in ArcGIS: Basics Every feature on the planet has its own unique latitude and longitude coordinates: Houses, trees, streets, archaeological finds, you! How do we collect this information? - Remote Sensing: Aerial photography, satellite imaging, LIDAR - On-site Observation: total station data, ground penetrating radar, GPS Types of Spatial Data in ArcGIS: Basics Raster vs.
    [Show full text]
  • Geotime As an Adjunct Analysis Tool for Social Media Threat Analysis and Investigations for the Boston Police Department Offeror: Uncharted Software Inc
    GeoTime as an Adjunct Analysis Tool for Social Media Threat Analysis and Investigations for the Boston Police Department Offeror: Uncharted Software Inc. 2 Berkeley St, Suite 600 Toronto ON M5A 4J5 Canada Business Type: Canadian Small Business Jurisdiction: Federally incorporated in Canada Date of Incorporation: October 8, 2001 Federal Tax Identification Number: 98-0691013 ATTN: Jenny Prosser, Contract Manager, [email protected] Subject: Acquiring Technology and Services of Social Media Threats for the Boston Police Department Uncharted Software Inc. (formerly Oculus Info Inc.) respectfully submits the following response to the Technology and Services of Social Media Threats RFP. Uncharted accepts all conditions and requirements contained in the RFP. Uncharted designs, develops and deploys innovative visual analytics systems and products for analysis and decision-making in complex information environments. Please direct any questions about this response to our point of contact for this response, Adeel Khamisa at 416-203-3003 x250 or [email protected]. Sincerely, Adeel Khamisa Law Enforcement Industry Manager, GeoTime® Uncharted Software Inc. [email protected] 416-203-3003 x250 416-708-6677 Company Proprietary Notice: This proposal includes data that shall not be disclosed outside the Government and shall not be duplicated, used, or disclosed – in whole or in part – for any purpose other than to evaluate this proposal. If, however, a contract is awarded to this offeror as a result of – or in connection with – the submission of this data, the Government shall have the right to duplicate, use, or disclose the data to the extent provided in the resulting contract. GeoTime as an Adjunct Analysis Tool for Social Media Threat Analysis and Investigations 1.
    [Show full text]
  • Arcgis® + Geotime®: GIS Technology to Support the Analysis Of
    ® ® In many application areas, this is not enough: Geo- spatial and temporal correlations between the data ArcGIS + GeoTime : GIS technology should be studied, so that, on the basis of this insight, the available data - more and more numerous - can to support the analysis of telephone be translated into knowledge and therefore in appropriate decisions . In the area of ​​security, to name an example, all this results in the predictive traffic data analysis of the spatial-temporal occurrence of crimes. Lastly, a technologically advanced GIS platform must Giorgio Forti, Miriam Marta, Fabrizio Pauri ® ensure data sharing and enable the world of mobile devices (system of engagement). ® There are several ways to share data / information, all supported by ArcGIS, such as: sharing within a single Historical mobile phone traffic billboards analysis is organization, according to the profiles assigned becoming increasingly important in investigative Figure 2: Sample data representation of two (identity); the sharing of multiple organizations that activities of public security organizations around the cellphone users in GeoTime may / should share confidential data (a very common world, and leading technology companies have been situation in both Public Security and Emergency trying to respond to the strong demand for the most Other predefined analysis features are already Management); public communication, open to all (for suitable tools for supporting such activities. available (automatic cluster search, who attends sites example, to report investigative success, or to of investigation interest, mobility compatibility with communicate to citizens unsafe areas for the Originally developed as a project funded in the United participation in events, etc.), allowing considerable frequency of criminal offenses).
    [Show full text]
  • Techniques for Spatial Analysis and Visualization of Benthic Mapping Data: Final Report
    Techniques for spatial analysis and visualization of benthic mapping data: final report Item Type monograph Authors Andrews, Brian Publisher NOAA/National Ocean Service/Coastal Services Center Download date 29/09/2021 07:34:54 Link to Item http://hdl.handle.net/1834/20024 TECHNIQUES FOR SPATIAL ANALYSIS AND VISUALIZATION OF BENTHIC MAPPING DATA FINAL REPORT April 2003 SAIC Report No. 623 Prepared for: NOAA Coastal Services Center 2234 South Hobson Avenue Charleston SC 29405-2413 Prepared by: Brian Andrews Science Applications International Corporation 221 Third Street Newport, RI 02840 TABLE OF CONTENTS Page 1.0 INTRODUCTION..........................................................................................1 1.1 Benthic Mapping Applications..........................................................................1 1.2 Remote Sensing Platforms for Benthic Habitat Mapping ..........................................2 2.0 SPATIAL DATA MODELS AND GIS CONCEPTS ................................................3 2.1 Vector Data Model .......................................................................................3 2.2 Raster Data Model........................................................................................3 3.0 CONSIDERATIONS FOR EFFECTIVE BENTHIC HABITAT ANALYSIS AND VISUALIZATION .........................................................................................4 3.1 Spatial Scale ...............................................................................................4 3.2 Habitat Scale...............................................................................................4
    [Show full text]
  • Fast and Stable Color Balancing for Images and Augmented Reality
    Fast and Stable Color Balancing for Images and Augmented Reality Thomas Oskam 1,2 Alexander Hornung 1 Robert W. Sumner 1 Markus Gross 1,2 1 Disney Research Zurich 2 ETH Zurich Abstract This paper addresses the problem of globally balanc- ing colors between images. The input to our algorithm is a sparse set of desired color correspondences between a source and a target image. The global color space trans- formation problem is then solved by computing a smooth Source Image Target Image Color Balanced vector field in CIE Lab color space that maps the gamut of the source to that of the target. We employ normalized ra- dial basis functions for which we compute optimized shape parameters based on the input images, allowing for more faithful and flexible color matching compared to existing RBF-, regression- or histogram-based techniques. Further- more, we show how the basic per-image matching can be Rendered Objects efficiently and robustly extended to the temporal domain us- Tracked Colors balancing Augmented Image ing RANSAC-based correspondence classification. Besides Figure 1. Two applications of our color balancing algorithm. Top: interactive color balancing for images, these properties ren- an underexposed image is balanced using only three user selected der our method extremely useful for automatic, consistent correspondences to a target image. Bottom: our extension for embedding of synthetic graphics in video, as required by temporally stable color balancing enables seamless compositing applications such as augmented reality. in augmented reality applications by using known colors in the scene as constraints. 1. Introduction even for different scenes. With today’s tools this process re- quires considerable, cost-intensive manual efforts.
    [Show full text]
  • Psychovisual Evaluation of the Effect of Color Spaces and Color Quantification in Jpeg2000 Image Compression
    PSYCHOVISUAL EVALUATION OF THE EFFECT OF COLOR SPACES AND COLOR QUANTIFICATION IN JPEG2000 IMAGE COMPRESSION Mohamed-Chaker Larabi, Christine Fernandez-Maloigne and Noel¨ Richard IRCOM-SIC Laboratory, University of Poitiers BP 30170 - 86962 Futuroscope cedex FRANCE Email : [email protected] ABSTRACT 4]. Figure 1 shows the fundamental building blocks of a typical JPEG2000 is an emerging standard for still image compres- JPEG2000 encoder as described by Rabbani[4]. sion. It is not only intended to provide rate-distortion and subjective image quality performance superior to existing standards, but also to provide features and additional func- tionalities that current standards can not address sufficiently such as lossless and lossy compression, progressive trans- mission by pixel accuracy and by resolution, etc. Currently the JPEG2000 standard is set up for use with the sRGB three-component color space.the aim of this research is to Fig. 1. JPEG2000 fundamental building blocks. determine thanks to psychovisual experiences whether or Color management in JPEG2000 was an important topic in not the color space selected will significantly improve the the development of the standard and the issue of present- image compression. The RGB, XYZ, CIELAB, CIELUV, ing color properly is becoming more and more important as YIQ, YCrCb and YUV color spaces were examined and com- systems get better and as a wider range of systems are doing pared. In addition, we started a psychovisual evaluation similar things. In the past, color has been targeted as an area on the effect of color quantification on JPEG2000 image of least concern with the overall presentation.
    [Show full text]
  • Hiding Color Watermarks in Halftone Images Using Maximum-Similarity
    Signal Processing: Image Communication 48 (2016) 1–11 Contents lists available at ScienceDirect Signal Processing: Image Communication journal homepage: www.elsevier.com/locate/image Hiding color watermarks in halftone images using maximum- similarity binary patterns Pedro Garcia Freitas a,n, Mylène C.Q. Farias b, Aletéia P.F. Araújo a a Department of Computer Science, University of Brasília (UnB), Brasília, Brazil b Department of Electrical Engineering, University of Brasília (UnB), Brasília, Brazil article info abstract Article history: This paper presents a halftoning-based watermarking method that enables the embedding of a color Received 3 June 2016 image into binary black-and-white images. To maintain the quality of halftone images, the method maps Received in revised form watermarks to halftone channels using homogeneous dot patterns. These patterns use a different binary 25 August 2016 texture arrangement to embed the watermark. To prevent a degradation of the host image, a max- Accepted 25 August 2016 imization problem is solved to reduce the associated noise. The objective function of this maximization Available online 26 August 2016 problem is the binary similarity measure between the original binary halftone and a set of randomly Keywords: generated patterns. This optimization problem needs to be solved for each dot pattern, resulting in Color embedding processing overhead and a long running time. To overcome this restriction, parallel computing techni- Halftone ques are used to decrease the processing time. More specifically, the method is tested using a CUDA- Color restoration based parallel implementation, running on GPUs. The proposed technique produces results with high Watermarking Enhancement visual quality and acceptable processing time.
    [Show full text]