Passive Snapshot Remote Sensing of Orbital Velocity

Total Page:16

File Type:pdf, Size:1020Kb

Passive Snapshot Remote Sensing of Orbital Velocity ABSTRACT PANTALONE, BRETT ANTHONY. Passive Snapshot Remote Sensing of Orbital Velocity. (Under the direction of Michael Kudenov). Techniques for tracking objects in low Earth orbit include line of sight angle measure- ments and active range measurements using RADAR or laser reflection. Active ranging techniques are less effective for high-altitude orbits because of the relatively large signal loss from distant targets. Passive methods using only optical telescopes require a minimum of three separate observations to solve the orbit equation. This thesis demonstrates how incorporation of passive Doppler shift measurement of solar Fraunhofer lines can improve initial orbit determination, while reducing the number of required observations to two. First, a discussion of the current state of space situational awareness establishes the mo- tivation for this work. Then, a brief review of conventional Doppler velocimetry highlights the strengths and weaknesses of current methods. In Chapter2, passive Doppler velocimetry is discussed, along with the rationale and limitations of Fraunhofer lines as wavelength references. This is followed by a radiometric analysis to estimate the optical power received from sunlight reflected off small orbiting objects. Next, the topic of spatial heterodyning is introduced as a potential technique for im- proving the signal-to-noise ratio of a passive velocimeter. Results of computer simulations are presented to support this idea. The derivation of a new mathematical algorithm for initial orbit determination incor- porating Doppler shift measurement is presented in Chapter3. The new technique is a modification of Gooding’s method, which is also described to provide proper context. Next, the results of orbital simulations using both methods are presented and compared. The results indicate that in some orbital configurations, the new method can successfully solve an initial orbit using only two observations, proving the feasibility of the method. The design and development of optical hardware for measuring the Doppler shift of Fraunhofer lines is described in Chapter4. Trade-space analysis of several alternate designs are considered, before concluding with a walk-through of the final design of a dual-beam, Doppler ratio, polarimetric, direct correlation spectrometer. Chapter5 recounts the assembly, calibration, and preliminary testing of the prototype instrument. Bench tests demonstrate a working spectral resolution of 0.04 nm, while radial velocity measurements of the planet Venus differ from theoretical calculations by only 0.59%. Finally, chapter6 concludes with a summary and discussion of future work. c Copyright 2018 by Brett Anthony Pantalone All Rights Reserved Passive Snapshot Remote Sensing of Orbital Velocity by Brett Anthony Pantalone A dissertation submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Electrical Engineering Raleigh, North Carolina 2018 APPROVED BY: Robert Kolbas Leda Lunardi Kenan Gundogdu Michael Kudenov Chair of Advisory Committee DEDICATION To my friend and mentor, Herbert Cooper, whose advice and encouragement have been invaluable. ii BIOGRAPHY Brett Pantalone was born in Ravenna, Ohio to parents Paul and Virginia Pantalone. Brett graduated from the University of Akron with a B.S. in electrical engineering in 1992. For the next 20 years, he worked in the consumer electronics industry, writing embedded software for mobile phones and other wireless devices. Brett moved to southern Sweden in 1999, working for the telecommunications giant Ericsson. In 2001 he returned to Raleigh, North Carolina to work in the technology office of the newly formed Sony Ericsson joint venture. In 2006 Brett left Sony Ericsson to become an independent software consultant for technology companies in and around Research Triangle Park. After marrying his wife, Vicki, in 2008, he joined the full-time staff of Device Solutions, a small startup in Morrisville, North Carolina. Cursed with an insatiable curiosity and a desire to solve new types of problems, Brett re- turned to school in 2013 as a graduate student at North Carolina State University. Originally pursuing an M.S. in aerospace engineering, he eventually ended up as a doctoral student in electrical engineering, working in the Optical Sensing Laboratory under the supervision of Dr. Michael Kudenov. Brett’s research interests include remote sensing and astronomical instruments. Now, Brett lives with his wife and two spoiled cats in Pittsboro, North Carolina. He is just waiting for the next adventure. iii ACKNOWLEDGEMENTS Perhaps the most important thing I have learned as a graduate student is that no difficult journey should be undertaken alone. There are many people who deserve my thanks for helping me on this trek. First, I would like to thank Dr. Kudenov for giving me the opportunity and support to do this work. I am also grateful to my current and former peers in the Optical Sensing Laboratory, especially Bryan Maione, Ruonan Yang, David Luo, Ethan Woodard, Yifan Wang, and Brandon Ballance. In addition to their problem-solving assistance, they made a “non-traditional” student feel welcome in their group. I owe a special debt of gratitude to my wife, Dr. Vicki Behrens, for her patience and encouragement. I also thank my parents, Paul and Virginia, for their unflinching belief in my ability. Finally, I thank Misha and Willa for reminding me when to take a break. iv TABLE OF CONTENTS LIST OF TABLES .................................................. vii LIST OF FIGURES ................................................. viii Chapter 1 INTRODUCTION ........................................ 1 1.1 Review of Fraunhofer Lines.................................... 3 1.2 Review of Doppler Velocimetry................................. 5 Chapter 2 PASSIVE DOPPLER VELOCIMETRY .......................... 9 2.1 Radiometric Analysis ........................................ 11 2.1.1 Radiometric Transfer Model.............................. 12 2.1.2 Instrument Noise Model ................................ 13 2.1.3 Signal to Noise Ratio................................... 15 2.2 Spatial Heterodyning........................................ 16 2.3 Heterodyne Simulation....................................... 19 2.4 Velocity-Fitting Simulation.................................... 21 2.4.1 Single-Band Results.................................... 22 2.4.2 Two-Band Results..................................... 28 2.4.3 Three-Band Results.................................... 29 2.4.4 Manual Results....................................... 31 Chapter 3 ORBITAL SIMULATION ................................... 34 3.1 Background............................................... 35 3.2 Mathematical development ................................... 38 3.3 Simulation................................................ 40 3.3.1 Orbit generation...................................... 41 3.3.2 Orbit prediction ...................................... 41 3.4 Testing and results.......................................... 48 3.4.1 Geostationary orbits................................... 50 3.4.2 Mid-altitude orbits .................................... 52 3.4.3 Eccentric and inclined orbits............................. 55 3.4.4 Coplanar observer..................................... 58 3.5 Discussion................................................ 58 Chapter 4 INSTRUMENT DESIGN ................................... 66 4.1 Full Spectral Imaging........................................ 67 4.1.1 Heterodyned Birefringent Interferometer.................... 68 4.1.2 Heterodyned Sagnac Interferometer ....................... 71 4.2 Dual-Band Doppler Ratio..................................... 74 v 4.2.1 Atomic Line Filters .................................... 75 4.2.2 Birefringent Filters .................................... 85 4.2.3 Fiber Bragg Grating.................................... 89 4.2.4 Optical Correlator..................................... 94 4.3 Trade-Space Summary....................................... 103 4.4 Direct Correlation Spectrometer................................ 105 4.4.1 Spatial Light Modulators................................ 106 4.4.2 Design of the Optical Correlator........................... 108 Chapter 5 ASSEMBLY AND CALIBRATION ............................. 113 5.1 Frequency Stability.......................................... 117 5.2 Alignment and Calibration.................................... 119 5.3 Test Results ............................................... 124 Chapter 6 CONCLUSION .......................................... 130 REFERENCES .................................................... 133 vi LIST OF TABLES Table 1.1 Major Fraunhofer line designations, sources, and wavelengths...... 5 Table 2.1 Values used for calculation of system SNR..................... 16 Table 4.1 Filter parameters for the Voigt optical filter.................... 84 Table 4.2 Simulation parameters for the fiber Bragg grating filter. .......... 92 Table 4.3 Optimized grating parameters for the fiber Bragg grating filter. 93 Table 4.4 First order parameters at the Bragg condition for the VPH grating from Wasatch Photonics...................................... 100 Table 4.5 Design trade-space. .................................... 105 Table 5.1 Key specifications of the direct correlation spectrometer. 114 Table 5.2 Imaging sensor Apogee A694 specifications.................... 127 Table 5.3 Santec spatial light modulator SLM-100
Recommended publications
  • Stability of Narrow-Band Filter Radiometers in the Solar-Reflective Range
    Stability of Narrow-Band Filter Radiometers in the Solar-Reflective Range D. E. Flittner and P. N. Slater Optical Sciences Center, University of Arizona, Tucson, AZ 85721 ABSTRACT:We show that the calibration, with respect to a continuous-spech.umsource, and the stability of radiometers using filters of about 10 nm full width, half maximum (FWHM) in the wavelength interval 0.4 to 1.0 pm, can change by several percent if the filters change in position by only a few nanometres. The cause is the shifts of the passbands of the filters into or out of Fraunhofer lines in the solar spectrum or water vapor or oxygen absorption bands in the Earth's atmosphere. These shifts can be due to ageing accompanied by the absorption of water vapor into the filter or temperature changes for field radiometers, or to outgassing and possibly high energy solar irradiation for space instru- ments such as the MODerate resolution Imaging Spectrometer - Nadir (MODIS-N) proposed for the Earth Observing System. INTRODUCTION sun, but can lead to errors in moderate to high spectral reso- lution measurements of the Earth-atmosphere system if their T IS WELL KNOWN that satellite multispectral sensor data in Ithe visible and near infrared are acquired with spectral band- effect is not taken into account. The concern is that the narrow- widths from about 40 nm (System Probatoire &Observation de band filters in a radiometer may shift, causing them to move la Terre (SPOT) band 2) and 70 nm (Thematic Mapper (TM)band into or out of a region containing a Fraunhofer line, thereby 3) to about 200 and 400 nm (Multispectral Scanner System (MSS) causing a noticeable change in the radiometer output.
    [Show full text]
  • Fraunhofer Lidar Prototype in the Green Spectral Region for Atmospheric Boundary Layer Observations
    Remote Sens. 2013, 5, 6079-6095; doi:10.3390/rs5116079 OPEN ACCESS Remote Sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Fraunhofer Lidar Prototype in the Green Spectral Region for Atmospheric Boundary Layer Observations Songhua Wu *, Xiaoquan Song and Bingyi Liu Ocean Remote Sensing Institute, Ocean University of China, 238 Songling Road, Qingdao 266100, China; E-Mails: [email protected] (X.S.); [email protected] (B.L.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +86-532-6678-2573. Received: 8 October 2013; in revised form: 27 October 2013 / Accepted: 13 November 2013 / Published: 18 November 2013 Abstract: A lidar detects atmospheric parameters by transmitting laser pulse to the atmosphere and receiving the backscattering signals from molecules and aerosol particles. Because of the small backscattering cross section, a lidar usually uses the high sensitive photomultiplier and avalanche photodiode as detector and uses photon counting technology for collection of weak backscatter signals. Photon Counting enables the capturing of extremely weak lidar return from long distance, throughout dark background, by a long time accumulation. Because of the strong solar background, the signal-to-noise ratio of lidar during daytime could be greatly restricted, especially for the lidar operating at visible wavelengths where solar background is prominent. Narrow band-pass filters must therefore be installed in order to isolate solar background noise at wavelengths close to that of the lidar receiving channel, whereas the background light in superposition with signal spectrum, limits an effective margin for signal-to-noise ratio (SNR) improvement. This work describes a lidar prototype operating at the Fraunhofer lines, the invisible band of solar spectrum, to achieve photon counting under intense solar background.
    [Show full text]
  • The Solar Spectrum: an Atmospheric Remote Sensing Perspecnve
    The Solar Spectrum: an Atmospheric Remote Sensing Perspec7ve Geoffrey Toon Jet Propulsion Laboratory, California Ins7tute of Technology Noble Seminar, University of Toronto, Oct 21, 2013 Copyright 2013 California Instute of Technology. Government sponsorship acknowledged. BacKground Astronomers hate the Earth’s atmosphere – it impedes their view of the stars and planets. Forces them to make correc7ons for its opacity. Atmospheric scien7sts hate the sun – the complexity of its spectrum: • Fraunhofer absorp7on lines • Doppler shis • Spaal Non-uniformi7es (sunspots, limb darKening) • Temporal variaons (transits, solar cycle, rotaon, 5-minute oscillaon) all of which complicate remote sensing of the Earth using sunlight. In order to more accurately quan5fy the composi5on of the Earth’s atmosphere, it is necessary to beFer understand the solar spectrum. Mo7vaon Solar radiaon is commonly used for remote sensing of the Earth: • the atmosphere • the surface Both direct and reflected sunlight are used: • Direct: MkIV, ATMOS, ACE, SAGE, POAM, NDACC, TCCON, etc. • Reflected: OCO, GOSAT, SCIAMACHY, TOMS, etc. Sunlight provides a bright, stable, and spectrally con7nuous source. As accuracy requirements on atmospheric composi5on measurements grows more stringent (e.g. TCCON), beFer representa5ons of the solar spectrum are needed. Historical Context Un7l 1500 (Copernicus), it was assumed that the Sun orbited the Earth. Un7l 1850 sun was assumed 6000 years old, based on the Old Testament. Sunspots were considered openings in the luminous exterior of the sun, through which the sun’s solid interior could be seen. 1814: Fraunhofer discovers absorp7on lines in visible solar spectrum 1854: von Helmholtz calculated sun must be ~20MY old based on heang by gravitaonal contrac7on.
    [Show full text]
  • Measuring Sharp Spectral Edges to High Optical Density M
    Measuring Sharp Spectral Edges to High Optical Density M. Ziter, G. Carver, S. Locknar, T. Upton, and B. Johnson, Omega Optical, Brattleboro, VT ABSTRACT passband. For a dielectric stack of a given number of layers, reducing ripple at the transmission peak causes a decrease in Interference filters have improved over the years. Sharp the edge steepness. This tradeoff can be countered by increas- spectral edges (> 1 db/nm) reach high optical density (OD ing the total number of layers, but then other factors such as > 8) in a few nm. In-situ optical monitoring to within 0.1 % the length of the deposition and stress in the films become error enables these levels of performance. Due to limitations more important. Film stress (especially in thick >10 micron related to f-number and resolution bandwidth, post-deposition stacks) can be large enough to warp the substrate [2, 3], while testing in typical spectrophotometers cannot reveal the qual- exceedingly long deposition times reduce manufacturability ity of today’s filters. Laser based measurements at selected and increase cost. wavelengths prove that blocking above OD8 to OD9 is manufacturable with high yield. This paper compares mod- Once a design is developed and deposited on a substrate, the eled spectra and laser based measurements. manufacturer is faced with the limitations of the test equip- ment at hand. Most thin-film companies are equipped with INTRODUCTION scanning spectrometers which employ a grating or prism The advances in thin-film design software and automated, and slits. While convenient, the nature of these scanners computer-driven deposition systems have made it possible introduces a wavelength broadening of the measurement to create the most demanding optical filters.
    [Show full text]
  • Spectroscopy and the Stars
    SPECTROSCOPY AND THE STARS K H h g G d F b E D C B 400 nm 500 nm 600 nm 700 nm by DR. STEPHEN THOMPSON MR. JOE STALEY The contents of this module were developed under grant award # P116B-001338 from the Fund for the Improve- ment of Postsecondary Education (FIPSE), United States Department of Education. However, those contents do not necessarily represent the policy of FIPSE and the Department of Education, and you should not assume endorsement by the Federal government. SPECTROSCOPY AND THE STARS CONTENTS 2 Electromagnetic Ruler: The ER Ruler 3 The Rydberg Equation 4 Absorption Spectrum 5 Fraunhofer Lines In The Solar Spectrum 6 Dwarf Star Spectra 7 Stellar Spectra 8 Wien’s Displacement Law 8 Cosmic Background Radiation 9 Doppler Effect 10 Spectral Line profi les 11 Red Shifts 12 Red Shift 13 Hertzsprung-Russell Diagram 14 Parallax 15 Ladder of Distances 1 SPECTROSCOPY AND THE STARS ELECTROMAGNETIC RADIATION RULER: THE ER RULER Energy Level Transition Energy Wavelength RF = Radio frequency radiation µW = Microwave radiation nm Joules IR = Infrared radiation 10-27 VIS = Visible light radiation 2 8 UV = Ultraviolet radiation 4 6 6 RF 4 X = X-ray radiation Nuclear and electron spin 26 10- 2 γ = gamma ray radiation 1010 25 10- 109 10-24 108 µW 10-23 Molecular rotations 107 10-22 106 10-21 105 Molecular vibrations IR 10-20 104 SPACE INFRARED TELESCOPE FACILITY 10-19 103 VIS HUBBLE SPACE Valence electrons 10-18 TELESCOPE 102 Middle-shell electrons 10-17 UV 10 10-16 CHANDRA X-RAY 1 OBSERVATORY Inner-shell electrons 10-15 X 10-1 10-14 10-2 10-13 10-3 Nuclear 10-12 γ 10-4 COMPTON GAMMA RAY OBSERVATORY 10-11 10-5 6 4 10-10 2 2 -6 4 10 6 8 2 SPECTROSCOPY AND THE STARS THE RYDBERG EQUATION The wavelengths of one electron atomic emission spectra can be calculated from the Use the Rydberg equation to fi nd the wavelength ot Rydberg equation: the transition from n = 4 to n = 3 for singly ionized helium.
    [Show full text]
  • The Demographics of Massive Black Holes
    The fifth element: astronomical evidence for black holes, dark matter, and dark energy A brief history of astrophysics • Greek philosophy contained five “classical” elements: °earth terrestrial; subject to °air change °fire °water °ether heavenly; unchangeable • in Greek astronomy, the universe was geocentric and contained eight spheres, seven holding the known planets and the eighth the stars A brief history of astrophysics • Nicolaus Copernicus (1473 – 1543) • argued that the Sun, not the Earth, was the center of the solar system • the Copernican Principle: We are not located at a special place in the Universe, or at a special time in the history of the Universe Greeks Copernicus A brief history of astrophysics • Isaac Newton (1642-1747) • the law of gravity that makes apples fall to Earth also governs the motions of the Moon and planets (the law of universal gravitation) ° thus the square of the speed of a planet in its orbit varies inversely with its radius ⇒ the laws of physics that can be investigated in the lab also govern the behavior of stars and planets (relative to Earth) A brief history of astrophysics • Joseph von Fraunhofer (1787-1826) • discovered narrow dark features in the spectrum of the Sun • realized these arise in the Sun, not the Earth’s atmosphere • saw some of the same lines in the spectrum of a flame in his lab • each chemical element is associated with a set of spectral lines, and the dark lines in the solar spectrum were caused by absorption by those elements in the upper layers of the sun ⇒ the Sun is made of the same elements as the Earth A brief history of astrophysics ⇒ the Sun is made of the same elements as the Earth • in 1868 Fraunhofer lines not associated with any known element were found: “a very decided bright line...but hitherto not identified with any terrestrial flame.
    [Show full text]
  • Fraunhofer Lines and the Composition of the Sun 1 Summary 2 Papers and Datasets 3 Scientific Background
    Fraunhofer lines and the composition of the Sun 1 Summary The purpose of this lab is for you to examine the spectrum of the Sun, to learn about the composition of the Sun (it’s not just hydrogen and helium!), and to understand some basic concepts of spectroscopy. 2 Papers and datasets These documents are all available on the course web page. • Low resolution spectrum of the Sun (from the National Solar Observatory) • Absorption lines of various elements (from laserstars.org and NASA’s Goddard Space Flight Center) • Table of abundances in the Sun 3 Scientific background 3.1 Spectroscopy At its most basic level, spectroscopy is simply splitting light up into different wavelengths. The classic example is a prism: white light goes in, and a rainbow comes out. Spectroscopy for physics and astronomy usually drops the output onto some kind of detector that records the flux at different wavelengths as a “stripe” across the detector. In other words, the output is a data table that lists the measured flux as a function of pixel number. An critical aspect of spectroscopy is wavelength calibration: what wavelength corresponds to which pixel number? Note that that relationship does not have to be — and is often not — linear. That is, the mapping of wavelength to pixel is not a linear relationship, but something more complicated. 3.2 The Sun The Sun is mostly hydrogen and after that mostly helium. You have learned about the fusion processes in the Sun and in other stars that gradually convert hydrogen to helium and then, for some stars, onward to carbon, nitrogen, and oxygen (CNO cycle), and further upward through the periodic table to iron.
    [Show full text]
  • A Tunable Atomic Line Filter Without Sacrificing Transmission Based On
    Optik 148 (2017) 244–250 Contents lists available at ScienceDirect Optik j ournal homepage: www.elsevier.de/ijleo Original research article A tunable atomic line filter without sacrificing transmission based on the combination of selective pump and magnetic field a,b b,∗ b b a Shuangqiang Liu , Enming Zhao , Diyou Liu , Hanyang Li , Weimin Sun a College of Science, Harbin Engineering University, Harbin 150080, China b Key Lab of In-Fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150080, China a r t i c l e i n f o a b s t r a c t Article history: This paper presents a theoretical model of an atomic line filter based on optical anisotropy Received 19 May 2017 which is induced by the combination of the selective pump and an external magnetic field. Accepted 5 September 2017 By analyzing the pumping process, we carefully elucidated the influence of the selective pump and magnetic field on the pumping process, and furthermore on the tunability and PACS: peak transmission of the filter. Different from the previously reported filter, our numerical 42.79.Ci results suggest that this type of filter has a large-scale tunability at the transmission peak 33.55.+b position without sacrificing transmission, which is very important in free-space optical 42.25.Ja communication and lidar systems subjected to large Doppler shift. 42.62.Fi © 2017 Published by Elsevier GmbH. Keywords: Atomic line filter Large-scale tunablity Optical anisotropy Selective optical pumping 1. Introduction Atomic line filters (ALF), which feature high transmission, narrow bandwidth, and excellent out-of-band rejection [1], are crucial components in laser system [2], free-space optical communication [3], lidar system operation [4–6], space remote sensing [7], narrowband quantum light generation [8–10], laser frequency stabilization [11–13], and quantum key distri- bution [14].
    [Show full text]
  • 194 7Mnras.107. .274M the Fraunhofer Lines of The
    THE FRAUNHOFER LINES OF THE SOLAR SPECTRUM .274M {George Darwin Lecture, delivered by Professor M. G. J. Minnaert, on 1947 May 9) A lecture on Fraunhofer lines has inevitably a somewhat abstruse character.. 7MNRAS.107. The spectroscopist could not show you any of the wonderful pictures which the 194 telescope reveals. A spectrum looks at first sight like a rather dull succession of bright and dark stripes. But now comes the observer, using his refined methods and discovering the infinite variety of shades and halftones in that spectrum, the full richness of that chiaroscuro. And then comes the theorist, deriving by the power of his phantasy how that music of undulating spectral lines is due to the airy dance of the atoms in the fiery radiation of the Sun. Actually, the investigation of Fraunhofer lines is so fascinating, so rich in observational details and so important theoretically, that I shall have to restrict myself to one part of the subject: photometry; even then, I shall only be able to present before you some of the more important moments in the development of our knowledge and a general view of the present state of the problems involved. In this frame I shall give an account more particularly of the work done at Utrecht because with this work are connected so many personal reminiscences ; but we all know that progress in this field is due to the cooperation of many scientists all over the world.* Already the first observations of a good solar spectrum revealed, that among the individual Fraunhofer lines there is a great variety of intensity profiles.
    [Show full text]
  • Inaugural-Dissertation
    I NAUGURAL-DISSERTATION zur Erlangung der Doktorwürde der Naturwissenschaftlich-Mathematischen Gesamtfakultät der Ruprecht-Karls-Universität Heidelberg vorgelegt von Diplom-Chemiker Helmut Kronemayer aus Mannheim Tag der mündlichen Prüfung: 16. November 2007 Laser-based temperature diagnostics in practical combustion systems Laserbasierte Verfahren zur Temperaturmessung in technischen Verbrennungssystemen Gutachter: Prof. Dr. Jürgen Wolfrum Prof. Dr. Christof Schulz Abstract Today’s energy supply relies on the combustion of fossil fuels. This results in emissions of toxic pollutants and green-house gases that most likely influence the global climate. Hence, there is a large need for developing efficient combustion processes with low emissions. In order to achieve this, quantitative measurement techniques are required that allow accurate probing of important quantities, such as e.g. the gas temperature, in practical combustion devices. Diagnostic techniques: Thermocouples or other techniques requiring thermal contact are widely used for temperature measurements. Unfortunately, the investigated system is influenced by probe measurements. In order to overcome these drawbacks, laser-based thermometry methods have been developed, that are introduced and compared in this work. A recently invented multi-line technique based on laser-induced fluorescence (LIF) excitation spectra of nitric oxide (NO) was thoroughly investigated within this thesis. Numerical and experimental studies were conducted to identify ideal spectral excitation and detection strategies. The laser system was improved such that twice the laser energy as before (3 mJ) at 225 nm is available. New detection filters were selected that enable efficient (85%) NO-LIF detection while blocking scattered laser light by a factor of 107, which is an improvement by two orders of magnitude.
    [Show full text]
  • Frequency Measurement of the 6P3/2 → 7S1/2 Transition of Thallium
    PHYSICAL REVIEW A 88, 062513 (2013) Frequency measurement of the 6P3/2 → 7S1/2 transition of thallium Nang-Chian Shie,1 Chun-Yu Chang,2 Wen-Feng Hsieh,1 Yi-Wei Liu,3,4 and Jow-Tsong Shy2,3,4,* 1Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, 30050 Hsinchu, Taiwan 2Institute of Photonics Technologies, National Tsing Hua University, 30013 Hsinchu, Taiwan 3Department of Physics, National Tsing Hua University, 30013 Hsinchu, Taiwan 4Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan (Received 9 October 2013; published 30 December 2013) 203 205 The saturated absorption spectrum of the 6P3/2 → 7S1/2 transition of Tl and Tl in a hollow cathode lamp has been observed with a frequency-doubled 1070 nm Nd : GdVO4 laser. The third-derivative spectrum of the hyperfine components are obtained using the wavelength modulation spectroscopy and used to stabilize the laser frequency. The analysis of the error signal shows that the frequency stability reaches 30 kHz at 1 s averaging time. Such a frequency-stabilized light source at 535 nm can be used for laser cooling of thallium and for investigating the parity non-conservation effect in thallium. The absolute frequencies of hyperfine components are measured with an accuracy of 30 MHz using a precision wavelength meter. Including the pressure shift correction, the center of gravity of the transition frequency is determined to an accuracy of 22 MHz for both isotopes. Meanwhile, the isotope shift derived is in good agreement with earlier measurement. DOI: 10.1103/PhysRevA.88.062513 PACS number(s): 32.10.Fn, 32.30.−r I.
    [Show full text]
  • Formation Depths of Fraunhofer Lines
    Formation depths of Fraunhofer lines E.A. Gurtovenko, V.A. Sheminova Main Astronomical Observatory, National Academy of Sciences of Ukraine Zabolotnoho 27, 03689 Kyiv, Ukraine E-mail: [email protected] Abstract We have summed up our investigations performed in 1970–1993. The main task of this paper is clearly to show processes of formation of spectral lines as well as their distinction by validity and by location. For 503 photospheric lines of various chemical elements in the wavelength range 300–1000 nm we list in Table the average formation depths of the line depression and the line emission for the line centre and on the half-width of the line, the average formation depths of the continuum emission as well as the effective widths of the layer of the line depression formation. Dependence of average depths of line depression formation on excitation potential, equivalent widths, and central line depth are demonstrated by iron lines. 1 Historic aspect of the problem In the 60 years the quantitative studies of the solar atmosphere demanded knowledge of its physical characteristics at different depths. The majority of these characteristics were derived from the Fraunhofer lines observed. Naturally it was assumed that the atmospheric parameter derived from the specific Fraunhofer line must be referred to the formation depth of the line. Therefore, the question arose about the average depth of formation of spectral lines. Recall, that the Fraunhofer line or spectral absorption line is a weakening of the intensity of continuous spectrum of radiation, resulting from deficiency of photons in a narrow frequency range, compared with the nearby frequencies.
    [Show full text]