Biodiesel Effects on the Operation of

U.S. Light-Duty Tier 2 Engine and

Aftertreatment Systems

Marek Tatur

Harsha Nanjundaswamy, Dean Tomazic

FEV Engine Technology

Matthew Thornton

National Renewable Energy Laboratory

August 15, 2007 Disclaimer and Government License This work has been authored by Midwest Research Institute (MRI) under Contract No. DE-AC36-99GO10337 with the U.S. Department of Energy (the “DOE”). The United States Government (the “Government”) retains and the publisher, by accepting the work for publication, acknowledges that the Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work or allow others to do so, for Government purposes. Neither MRI, the DOE, the Government, nor any other agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe any privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement, recommendation, or favoring by the Government or any agency thereof. The views and opinions of the authors and/or presenters expressed herein do not necessarily state or reflect those of MRI, the DOE, the Government, or any agency thereof. Overview

‰ Project Goals ‰ Hardware Overview ‰ Control System Overview ‰ Fuel Specifications ‰ Test Results ‰ NOx Adsorber System ‰ DPF Regeneration

‰ Lean-Rich Modulation ‰ Vehicle Emission Test Results ‰ Summary and Conclusions Project Goals

‰ Evaluate the impact of Biodiesel fuel blends on the performance of advanced emission control systems for light-duty diesels e.g. conversion efficiencies, regeneration effects (NAC/DPF and SCR/DPF)

‰ Understand effects over time (system aging)

‰ Assess engine and fuel system operation impacts at end of project (i.e. combustion chamber, fuel injection system, fuel pump) Hardware Overview – NOx Adsorber System Hardware Overview – SCR System Hardware Overview – Test Engine Hardware

400 160 160

150 150

350 140 140

130 130

300 120 120

110 110

250 100 100

90 90

200 80 80

70 70 Power [HP] Power [kW] Torque [Nm]

150 60 60

50 50 Torque

100 40 40 Power [HP]

Power [kW] 30 30

50 20 20

10 10

0 0 0

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Engine Speed [rpm] Control System Overview

Only used with the NOx adsorber system

State Release Intervention Handler Module Module

Catalyst Protection Temperature DeSOx Input Release Control Merge End of Output Module DeNOx System System System Control Module

DPF Regeneration Lambda Rapid Warm-Up

NOx adsorber: Lean-rich modulation release SCR: Urea dosing Fuel Comparison

ULSD Base Fuel B20 Density (kg/dm3) 0.846 0.853

Cetane Number 42.0 43.2

Carbon (wt%) 87.08 85.04

Oxygen (wt%) 0.00 2.37

Hydrogen (wt%) 12.92 12.59 Kinematic Viscosity at 40°C [mm2/sec] 2.28 2.74 Regeneration DPFTest Results–Operationand

Accumulated Soot [g] 10 5 6 7 8 9 0 1 2 3 4 0 Base Fuel Base B20 500 1000

Soot Flowrate [g/hr] 10.0 10.0 11.0 12.0 13.0 14.0 15.0 Time [s] 1500 1500 0 500 2000 1000 1000 2800 rpm; 3 bar BMEP 2800 rpm;3bar Operating mode: Time [s] 1500 2500 2000 2500 3000 3000 Regeneration DPFTest Results–Operationand

Soot Burned [g] 10 0 1 2 3 4 5 6 7 8 9 0 50 100 150 200 ULSD B20 Time 250 2500 rpm; 5 bar BMEP 2500 rpm;5bar Operating mode: 300 350 400 450 500 200 250 300 350 400 450 500 550 600 650 700

DPF Bed Temperature [°C] Test Results – NOx AdsorberRegeneration Test Results–

Lambda [-] 0.80 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 35 36 37 38 Downstream NOx Adsorber Upstream NOx Adsorber 39 Time [s] Time 40 41 Lambda Setpoint Lambda ULSD B20 42 43 1635 rpm; 6 bar BMEP 1635 rpm;6bar Operating mode: 44 45 0.80 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40

Lambda [-] Test Results – NOx AdsorberRegeneration Test Results–

Throttle Valve Duty Cycle [%] EGR Duty Cycle [%]

25 10 15 20 25 30 35 40 45 50 10 15 20 30 35 40 45 50

0 5 0 5

5 6 738 37 36 35 39 Time [s] 0 1 24 4 5 5 63 8 9 0 14 3 4 45 44 43 42 41 40 39 38 37 36 35 45 44 43 42 41 40 B20

Time [s]Time

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 50 55 60 65 70 75 80 85 90 95 100 0.0 0.0 0.5 0.5 1.0

Post Injection VNT Duty Cycle [%]

Quantity [mm^3/inj]

Test Results – NOx AdsorberRegeneration Test Results–

Throttle Valve Duty Cycle [%] EGR Duty Cycle [%]

25 10 15 20 25 30 35 40 45 50 10 15 20 30 35 40 45 50

0 5 0 5

5 6 738 37 36 35 39 Time [s] 0 1 24 4 53 3 73 3 4 4 24 4 45 44 43 42 41 40 39 38 37 36 35 45 44 43 42 41 40 ULSD ULSD B20

Time [s]Time

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 50 55 60 65 70 75 80 85 90 95 100 0.0 0.0 0.5 0.5 1.0

Post Injection VNT Duty Cycle [%]

Quantity [mm^3/inj]

Test Results – NOx Adsorber Regeneration

6

5

4 B20 ULSD 3 CO [%] CO 2

1

0 2000 1750 1500 1250 1000 750 NMHC [ppm] 500 250 0

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 Time [s] B20 Fuel EPA ChassisDynamometer Test Results–

NMHC [g/mile] 0.000 0.000 0.025 0.050 0.075 0.100 PM [mg/mile] 10 11 0 1 2 3 4 5 6 7 8 9 0.00 0.00 0.0 0.0 Hot LA4 Hot LA4 Cold Composite FTP75 Composite 0.5 0.5 0.01 0.01 1.0 1.0 0.02 0.02 1.5 1.5 0.03 0.03 NOx [g/mile] CO [g/mile] 2.0 2.0 50,000 mile mile 50,000 Standard Standard 0.04 0.04 50,000 mile mile 50,000 2.5 2.5 Standard Standard 0.05 0.05 3.0 3.0 120,000 mile mile 120,000 Standard Standard 0.06 0.06 120,000 mile mile 120,000 Standard Standard 3.5 3.5 0.07 0.07 4.0 4.0 0.08 4.5 4.5 ULSD EPA ChassisDynamometer Test Results–

NMHC [g/mile] 0.000 0.000 0.025 0.050 0.075 0.100 PM [mg/mile] 10 11 0 1 2 3 4 5 6 7 8 9 0.00 0.00 0.0 0.0 Hot LA4 Hot LA4 Cold Composite FTP75 Composite 0.5 0.5 0.01 0.01 1.0 1.0 0.02 0.02 1.5 1.5 0.03 0.03 NOx [g/mile] CO [g/mile] 2.0 2.0 50,000 mile mile 50,000 Standard Standard 0.04 0.04 50,000 mile mile 50,000 2.5 2.5 Standard Standard 0.05 0.05 3.0 3.0 120,000 mile mile 120,000 Standard Standard 0.06 0.06 120,000 mile mile 120,000 Standard Standard 3.5 3.5 0.07 0.07 4.0 4.0 0.08 4.5 4.5 Test Results – EPA Chassis Dynamometer

B20 = 11% B20 = 46% B20 = 43% ULSD = 10% ULSD = 45% ULSD = 45% 60 50 40 30 20 10 0 Vehicle SpeedVehicle [mph] Engine Out - B20 3.5 Tail Pipe Out - B20 3.0 Engine Out - ULSD 2.5 Tail Pipe - ULSD 2.0 1.5 1.0 0.5 0.0 Accumulated NOx [g] 500 450 400 350 300 250 200 150 B20 - Temperature upstream LNT 100 ULSD - Temperature upstream LNT Temperature [°C] 50 0 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 Time [s] Test Results – EPA Chassis Dynamometer

0.74 B20 0.8 40.0 0.72 ULSD 35.3 34.8 31.8 0.7 30.7 35.0 30.7 30.1 0.6 54% 30.0

0.5 57% 25.0 0.34 0.4 96% 20.0 0.31

NOx [g/mile] NOx 0.3 92% 15.0

0.2 10.0 [mpg] Economy Fuel 0.05 0.1 0.03 5.0

0.0 0.0 T2B5 Tailpipe Tailpipe T2B5 Tailpipe T2B5 Base EURO 4 Base EURO 4 T2B5 Feedgas T2B5 Feedgas T2B5 Test Results – EPA ChassisDynamometer Test Results– ULSD B20 35.3 Base EURO 4 34.8 10% 31.8 T2B5 Feedgas 30.7 12% 13% 30.7 T2B5 Tailpipe 30.1 14% 25 26 27 28 29 30 31 32 33 34 35 36 37

Fuel Economy [mpg]

297

296

6 6

0

S 0 U

240 55 297

T T 209

E

208 F

W H 0 39 169 209 Contribution 2 317 313 0 Total CO2 emissions [g/mile] CO2 from bio mass [g/mile] fromCO2 diesel [g/mile] petro

58 317

254 4

LA

t

o H

360 356

A4 A4 0

L

ld

66

360 289 Co

ULSD ULSD B20 B20 Test Results – CO Test Results – Fuel Economy Comparison

City [miles/gallon] 60 Highway [miles/gallon]

50 -2% 0%

7% 5% 40 27% 32% 27% 34% 32% 23% 16% -28% -24% -21%

-3% 30 7% 17% 31% 17% 24% 24% 17%

20 Fuel Economy [miles/gallon]

10

0 Mercedes Audi NREL Audi A4 BMW 325i Saturn Ion Subaru Dodge Honda Bluetec Golf (DT) Jetta M5 Jetta A S6 C200 CDI AV 2.0 2.2 Legacy Stratus Accord 1.9 1.9 1.9 Diesel Summary and Conclusions ‰ Vehicle as well as test cell results indicate an increase in NOx and decrease in PM using Biodiesel blends – the greater the Biodiesel portion the more pronounced is this effect. This effect does not translate into greater tailpipe emissions with the NOx adsorber aftertreatment system. ‰ In the investigated configuration the DPF loading and regeneration performance did not change using Biodiesel fuel. ‰ NOx adsorber regeneration control remains the same comparing petroleum based and Biodiesel blended fuel. ‰ Fuel economy impact using Biodiesel fuel is marginal using an integrated Tier 2 Bin 5 system. ‰ Durability investigations focusing on Biodiesel effects on engine and aftertreatment system are currently underway. ‰ SCR system development and improvement currently underway. Acknowledgments DOE Office of FreedomCAR and Vehicle Technologies, Advance Petroleum Based and Non-Petroleum Based Fuels Activities: Stephen Goguen, Kevin Stork, and Dennis Smith, Technology Managers

National Biodiesel Board: Steve Howell

MECA: Joe Kubsh and Rasto Brezny

EPA: Charles Schenk