Research Realizing the Promise of Genomics in Biomedical

Total Page:16

File Type:pdf, Size:1020Kb

Research Realizing the Promise of Genomics in Biomedical Realizing the Promise of Genomics in Biomedical Research Alan E. Guttmacher; Francis S. Collins Online article and related content current as of February 16, 2009. JAMA. 2005;294(11):1399-1402 (doi:10.1001/jama.294.11.1399) http://jama.ama-assn.org/cgi/content/full/294/11/1399 Correction Contact me if this article is corrected. Citations This article has been cited 31 times. Contact me when this article is cited. Topic collections Statistics and Research Methods; Genetics; Genetic Counseling/ Testing/ Therapy Contact me when new articles are published in these topic areas. Subscribe Email Alerts http://jama.com/subscribe http://jamaarchives.com/alerts Permissions Reprints/E-prints [email protected] [email protected] http://pubs.ama-assn.org/misc/permissions.dtl Downloaded from www.jama.com at Johns Hopkins University on February 16, 2009 COMMENTARIES Realizing the Promise of Genomics in Biomedical Research Alan E. Guttmacher, MD Another current initiative is the Encyclopedia of DNA El- ements project,16 which seeks to completely identify the bio- Francis S. Collins, MD, PhD logical mechanisms active in a carefully chosen represen- tative selection (about 1%) of the human genome. This effort N APRIL 2003, THE HUMAN GENOME PROJECT ACHIEVED has become increasingly important as evidence has mounted all of its original goals, including production of a fin- that not only the small portion of human DNA that codes ished sequence of the human genome.1 With that his- for proteins has biological importance. In fact, evolution- toric achievement, the Human Genome Project ended ary comparisons between multiple mammalian genome se- Iand the “genome era” began. Especially because this tran- quences indicate that about two thirds of the most strongly sition occurred only days before the 50th anniversary of Wat- conserved elements of the human genome fall outside of these son and Crick’s article describing the DNA double helix,2 it protein-coding regions.17 The “junk” in “junk DNA” de- led to much discussion regarding the future of genetics and scribes the current level of understanding of this part of the genomics and how they would affect biological explora- genome, not its biological significance. tion, health, and even society.3-8 Now, 2 years into the ge- Another ongoing effort that will help realize the promise nome era, is biomedical research any closer to that future, of genomics is in the area of “chemical genomics.” The goal and, if so, what does it look like? of this application of genomics is to expand the universe of small molecules that can be used as probes for understand- Current and Future Genome Initiatives ing biological pathways. While the human genome appears Several current genome initiatives afford a look at the fu- to contain more than 20 000 genes, the entire current phar- ture even as they bring it closer. One is an international ef- macopoeia targets only about 500 genes and their prod- fort to create a haplotype map (HapMap) to explore varia- ucts.18 In the past decade, advances in combinatorial chem- tion within the human genome.9,10 Now rapidly approaching istry have allowed the generation of libraries that contain completion, the HapMap Project11 has already provided les- hundreds of thousands of compounds, representing a broad sons about geographic distribution of human genome varia- diversity of chemical shapes. Improved methods of high- tion and has contributed convincing evidence that the varia- throughput screening have made it possible to screen these tion in the human genome is organized into local libraries with assays for particular targets, generating ago- neighborhoods, or haplotypes.12 Because of this structure, nists and antagonists for particular proteins, pathways, or cel- knowledge of which base is located in a particular variable lular phenotypes. However, most of this activity has occurred position of an individual’s genome sequence allows very good in the private sector, where only a minority of targets have prediction of the variants present nearby, a phenomenon been pursued as being “druggable.” As part of the Roadmap referred to as linkage disequilibrium. These regions of dis- process,19 the National Institutes of Health has recently estab- equilibrium operate over variable distances, but often stretch lished a network of chemical genomics centers available to across 10 to 30 kilobases. The HapMap project is defining all researchers, as well as a new database, PubChem,20 that the boundaries of these segments of linkage disequilib- makes much of the resultant data freely accessible. Availabil- rium across the whole genome. This now allows research- ity of these tools will enable academic researchers to broaden ers to choose a panel of a few hundred thousand single- the diversity of targets for chemical genomics. While most of nucleotide polymorphisms (SNPs) that ably represent the compounds identified in this way will be limited to use variation across the whole genome and, by genotyping only as research probes, a small percentage may even go forward this panel, to achieve an excellent first approximation of the into early-stage drug discovery. common variants in an individual’s entire, 3-billion–base Another critical area of current emphasis is to under- pair genome. HapMap-based SNPs already have enabled re- stand the complex interactions of genetic and environmen- search that was impractical, if not unimaginable, only a few years ago. An example is the research published this year Author Affiliations: National Human Genome Research Institute, National Insti- tutes of Health, Bethesda, Md. that identified the complement factor H gene as commonly Corresponding Author: Alan E. Guttmacher, MD, Room 4B09, 31 Center Dr, Na- involved in age-related macular degeneration.13-15 tional Institutes of Health, Bethesda, MD 20892-2152 ([email protected]). ©2005 American Medical Association. All rights reserved. (Reprinted) JAMA, September 21, 2005—Vol 294, No. 11 1399 Downloaded from www.jama.com at Johns Hopkins University on February 16, 2009 COMMENTARIES tal factors in health and disease. Case-control studies have molecule sequencing on solid supports, should accelerate proved valuable in adding to such understanding. In the past, this rapid decrease in sequencing costs. If that proves true, however, such studies have generally been forced to limit the promise of the $1000 genome may be less than a de- their search to candidate genes. Given that the chosen can- cade away. didate genes were generally based on hunches with a high Whether within 10 or 12 (or 8) years, such inexpensive risk of error, such studies have frequently lacked power or sequencing will change both research and clinical care, and have uncovered only weak associations that held up poorly progress does not need to wait even that long. The Na- in replication studies. That is all about to change. The use tional Human Genome Research Institute (NHGRI) plans of new tools, particularly the HapMap, should dramati- to focus a significant portion of the sequencing capacity that cally increase the usefulness and power of case-control stud- it supports on medical sequencing. For instance, the NHGRI ies by making practical a SNP-based methodology that ef- and the National Cancer Institute are actively considering fectively samples the entire human genome. Based on this a Human Cancer Genome Project,22 which would use DNA approach, it is likely that many of the major gene variants sequencing and a host of other genome technologies to gather that contribute to diabetes, heart disease, Alzheimer dis- information about the mutations and functional abnormali- ease, common cancers, mental illness, hypertension, asthma, ties found in multiple samples from many major types of and a host of other common disorders will be discovered cancer. Medical sequencing should also provide important in the next few years. insight into many other diseases. For example, sequencing Despite the usefulness of case-control studies for discov- all exons in X-linked mental retardation syndromes may re- ering gene variants associated with increased disease risk, veal much about their etiology. Sequencing candidate genes they have limits. They often contain significant biases due in the extremes of the distribution of quantitative traits should to case ascertainment methodology, provide little informa- also reveal much of importance about common diseases, such tion about predictive biomarkers, and are flawed with re- as coronary atherosclerosis.23 With further technological ad- spect to determination of environmental risk factors be- vances, other previously unimaginable research ap- cause of recall bias. For these and other methodological and proaches will become real. biological reasons, rigorous quantitative understanding of Similarly, clinical care will change dramatically. In a rela- the role of genes and environment in health and disease can tively few years, when the role of specific genetic factors in come only from large, population-representative, prospec- disease is more fully understood and a human genome can tive cohort studies.21 Several such studies have recently be- be sequenced for less than the cost of a colonoscopy (for gun or entered the planning stage in a number of coun- example), an individual’s sequence will likely become part tries. These will be important resources for understanding of the standard medical record, especially since, unlike the the relationships among genetic and environmental factors colon, an individual’s genome sequence is relatively static. and health and disease. But, no matter how helpful studies Thus, unlike colonoscopy, sequencing will not require fre- in other countries are, they alone cannot meet the needs of quent repetition. Similarly, it will become the standard of the United States. Only a US-based study could adequately care to sequence cancer patients’ tumors and to use that in- sample important US minority populations, gather data about formation to refine prognosis and guide therapy. environmental risk factors characteristic of the United States, and provide US researchers with full access to data and bio- Genomics and Health Care logical specimens.
Recommended publications
  • 13 Genomics and Bioinformatics
    Enderle / Introduction to Biomedical Engineering 2nd ed. Final Proof 5.2.2005 11:58am page 799 13 GENOMICS AND BIOINFORMATICS Spencer Muse, PhD Chapter Contents 13.1 Introduction 13.1.1 The Central Dogma: DNA to RNA to Protein 13.2 Core Laboratory Technologies 13.2.1 Gene Sequencing 13.2.2 Whole Genome Sequencing 13.2.3 Gene Expression 13.2.4 Polymorphisms 13.3 Core Bioinformatics Technologies 13.3.1 Genomics Databases 13.3.2 Sequence Alignment 13.3.3 Database Searching 13.3.4 Hidden Markov Models 13.3.5 Gene Prediction 13.3.6 Functional Annotation 13.3.7 Identifying Differentially Expressed Genes 13.3.8 Clustering Genes with Shared Expression Patterns 13.4 Conclusion Exercises Suggested Reading At the conclusion of this chapter, the reader will be able to: & Discuss the basic principles of molecular biology regarding genome science. & Describe the major types of data involved in genome projects, including technologies for collecting them. 799 Enderle / Introduction to Biomedical Engineering 2nd ed. Final Proof 5.2.2005 11:58am page 800 800 CHAPTER 13 GENOMICS AND BIOINFORMATICS & Describe practical applications and uses of genomic data. & Understand the major topics in the field of bioinformatics and DNA sequence analysis. & Use key bioinformatics databases and web resources. 13.1 INTRODUCTION In April 2003, sequencing of all three billion nucleotides in the human genome was declared complete. This landmark of modern science brought with it high hopes for the understanding and treatment of human genetic disorders. There is plenty of evidence to suggest that the hopes will become reality—1631 human genetic diseases are now associated with known DNA sequences, compared to the less than 100 that were known at the initiation of the Human Genome Project (HGP) in 1990.
    [Show full text]
  • Genomics and Its Impact on Science and Society: the Human Genome Project and Beyond
    DOE/SC-0083 Genomics and Its Impact on Science and Society The Human Genome Project and Beyond U.S. Department of Energy Genome Research Programs: genomics.energy.gov A Primer ells are the fundamental working units of every living system. All the instructions Cneeded to direct their activities are contained within the chemical DNA (deoxyribonucleic acid). DNA from all organisms is made up of the same chemical and physical components. The DNA sequence is the particular side-by-side arrangement of bases along the DNA strand (e.g., ATTCCGGA). This order spells out the exact instruc- tions required to create a particular organism with protein complex its own unique traits. The genome is an organism’s complete set of DNA. Genomes vary widely in size: The smallest known genome for a free-living organism (a bac- terium) contains about 600,000 DNA base pairs, while human and mouse genomes have some From Genes to Proteins 3 billion (see p. 3). Except for mature red blood cells, all human cells contain a complete genome. Although genes get a lot of attention, the proteins DNA in each human cell is packaged into 46 chro- perform most life functions and even comprise the mosomes arranged into 23 pairs. Each chromosome is majority of cellular structures. Proteins are large, complex a physically separate molecule of DNA that ranges in molecules made up of chains of small chemical com- length from about 50 million to 250 million base pairs. pounds called amino acids. Chemical properties that A few types of major chromosomal abnormalities, distinguish the 20 different amino acids cause the including missing or extra copies or gross breaks and protein chains to fold up into specific three-dimensional rejoinings (translocations), can be detected by micro- structures that define their particular functions in the cell.
    [Show full text]
  • Genetic Effects on Microsatellite Diversity in Wild Emmer Wheat (Triticum Dicoccoides) at the Yehudiyya Microsite, Israel
    Heredity (2003) 90, 150–156 & 2003 Nature Publishing Group All rights reserved 0018-067X/03 $25.00 www.nature.com/hdy Genetic effects on microsatellite diversity in wild emmer wheat (Triticum dicoccoides) at the Yehudiyya microsite, Israel Y-C Li1,3, T Fahima1,MSRo¨der2, VM Kirzhner1, A Beiles1, AB Korol1 and E Nevo1 1Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel; 2Institute for Plant Genetics and Crop Plant Research, Corrensstrasse 3, 06466 Gatersleben, Germany This study investigated allele size constraints and clustering, diversity. Genome B appeared to have a larger average and genetic effects on microsatellite (simple sequence repeat number (ARN), but lower variance in repeat number 2 repeat, SSR) diversity at 28 loci comprising seven types of (sARN), and smaller number of alleles per locus than genome tandem repeated dinucleotide motifs in a natural population A. SSRs with compound motifs showed larger ARN than of wild emmer wheat, Triticum dicoccoides, from a shade vs those with perfect motifs. The effects of replication slippage sun microsite in Yehudiyya, northeast of the Sea of Galilee, and recombinational effects (eg, unequal crossing over) on Israel. It was found that allele distribution at SSR loci is SSR diversity varied with SSR motifs. Ecological stresses clustered and constrained with lower or higher boundary. (sun vs shade) may affect mutational mechanisms, influen- This may imply that SSR have functional significance and cing the level of SSR diversity by both processes. natural constraints.
    [Show full text]
  • Gene Prediction and Genome Annotation
    A Crash Course in Gene and Genome Annotation Lieven Sterck, Bioinformatics & Systems Biology VIB-UGent [email protected] ProCoGen Dissemination Workshop, Riga, 5 nov 2013 “Conifer sequencing: basic concepts in conifer genomics” “This Project is financially supported by the European Commission under the 7th Framework Programme” Genome annotation: finding the biological relevant features on a raw genomic sequence (in a high throughput manner) ProCoGen Dissemination Workshop, Riga, 5 nov 2013 Thx to: BSB - annotation team • Lieven Sterck (Ectocarpus, higher plants, conifers, … ) • Yao-cheng Lin (Fungi, conifers, …) • Stephane Rombauts (green alga, mites, …) • Bram Verhelst (green algae) • Pierre Rouzé • Yves Van de Peer ProCoGen Dissemination Workshop, Riga, 5 nov 2013 Annotation experience • Plant genomes : A.thaliana & relatives (e.g. A.lyrata), Poplar, Physcomitrella patens, Medicago, Tomato, Vitis, Apple, Eucalyptus, Zostera, Spruce, Oak, Orchids … • Fungal genomes: Laccaria bicolor, Melampsora laricis- populina, Heterobasidion, other basidiomycetes, Glomus intraradices, Pichia pastoris, Geotrichum Candidum, Candida ... • Algal genomes: Ostreococcus spp, Micromonas, Bathycoccus, Phaeodactylum (and other diatoms), E.hux, Ectocarpus, Amoebophrya … • Animal genomes: Tetranychus urticae, Brevipalpus spp (mites), ... ProCoGen Dissemination Workshop, Riga, 5 nov 2013 Why genome annotation? • Raw sequence data is not useful for most biologists • To be meaningful to them it has to be converted into biological significant knowledge
    [Show full text]
  • Small Variants Frequently Asked Questions (FAQ) Updated September 2011
    Small Variants Frequently Asked Questions (FAQ) Updated September 2011 Summary Information for each Genome .......................................................................................................... 3 How does Complete Genomics map reads and call variations? ........................................................................... 3 How do I assess the quality of a genome produced by Complete Genomics?................................................ 4 What is the difference between “Gross mapping yield” and “Both arms mapped yield” in the summary file? ............................................................................................................................................................................. 5 What are the definitions for Fully Called, Partially Called, Half-Called and No-Called?............................ 5 In the summary-[ASM-ID].tsv file, how is the number of homozygous SNPs calculated? ......................... 5 In the summary-[ASM-ID].tsv file, how is the number of heterozygous SNPs calculated? ....................... 5 In the summary-[ASM-ID].tsv file, how is the total number of SNPs calculated? .......................................... 5 In the summary-[ASM-ID].tsv file, what regions of the genome are included in the “exome”? .............. 6 In the summary-[ASM-ID].tsv file, how is the number of SNPs in the exome calculated? ......................... 6 In the summary-[ASM-ID].tsv file, how are variations in potentially redundant regions of the genome counted? .....................................................................................................................................................................
    [Show full text]
  • Epigenetics Analysis and Integrated Analysis of Multiomics Data, Including Epigenetic Data, Using Artificial Intelligence in the Era of Precision Medicine
    biomolecules Review Epigenetics Analysis and Integrated Analysis of Multiomics Data, Including Epigenetic Data, Using Artificial Intelligence in the Era of Precision Medicine Ryuji Hamamoto 1,2,*, Masaaki Komatsu 1,2, Ken Takasawa 1,2 , Ken Asada 1,2 and Syuzo Kaneko 1 1 Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; [email protected] (M.K.); [email protected] (K.T.); [email protected] (K.A.); [email protected] (S.K.) 2 Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan * Correspondence: [email protected]; Tel.: +81-3-3547-5271 Received: 1 December 2019; Accepted: 27 December 2019; Published: 30 December 2019 Abstract: To clarify the mechanisms of diseases, such as cancer, studies analyzing genetic mutations have been actively conducted for a long time, and a large number of achievements have already been reported. Indeed, genomic medicine is considered the core discipline of precision medicine, and currently, the clinical application of cutting-edge genomic medicine aimed at improving the prevention, diagnosis and treatment of a wide range of diseases is promoted. However, although the Human Genome Project was completed in 2003 and large-scale genetic analyses have since been accomplished worldwide with the development of next-generation sequencing (NGS), explaining the mechanism of disease onset only using genetic variation has been recognized as difficult. Meanwhile, the importance of epigenetics, which describes inheritance by mechanisms other than the genomic DNA sequence, has recently attracted attention, and, in particular, many studies have reported the involvement of epigenetic deregulation in human cancer.
    [Show full text]
  • The Economic Impact and Functional Applications of Human Genetics and Genomics
    The Economic Impact and Functional Applications of Human Genetics and Genomics Commissioned by the American Society of Human Genetics Produced by TEConomy Partners, LLC. Report Authors: Simon Tripp and Martin Grueber May 2021 TEConomy Partners, LLC (TEConomy) endeavors at all times to produce work of the highest quality, consistent with our contract commitments. However, because of the research and/or experimental nature of this work, the client undertakes the sole responsibility for the consequence of any use or misuse of, or inability to use, any information or result obtained from TEConomy, and TEConomy, its partners, or employees have no legal liability for the accuracy, adequacy, or efficacy thereof. Acknowledgements ASHG and the project authors wish to thank the following organizations for their generous support of this study. Invitae Corporation, San Francisco, CA Regeneron Pharmaceuticals, Inc., Tarrytown, NY The project authors express their sincere appreciation to the following indi- viduals who provided their advice and input to this project. ASHG Government and Public Advocacy Committee Lynn B. Jorde, PhD ASHG Government and Public Advocacy Committee (GPAC) Chair, President (2011) Professor and Chair of Human Genetics George and Dolores Eccles Institute of Human Genetics University of Utah School of Medicine Katrina Goddard, PhD ASHG GPAC Incoming Chair, Board of Directors (2018-2020) Distinguished Investigator, Associate Director, Science Programs Kaiser Permanente Northwest Melinda Aldrich, PhD, MPH Associate Professor, Department of Medicine, Division of Genetic Medicine Vanderbilt University Medical Center Wendy Chung, MD, PhD Professor of Pediatrics in Medicine and Director, Clinical Cancer Genetics Columbia University Mira Irons, MD Chief Health and Science Officer American Medical Association Peng Jin, PhD Professor and Chair, Department of Human Genetics Emory University Allison McCague, PhD Science Policy Analyst, Policy and Program Analysis Branch National Human Genome Research Institute Rebecca Meyer-Schuman, MS Human Genetics Ph.D.
    [Show full text]
  • Mathematical Challenges from Genomics and Molecular Biology Richard M
    Mathematical Challenges from Genomics and Molecular Biology Richard M. Karp fundamental goal of biology is to un- algorithms and the role of combinatorics, opti- derstand how living cells function. This mization, probability, statistics, pattern recognition, understanding is the foundation for all and machine learning. higher levels of explanation, including We begin by presenting the minimal information Aphysiology, anatomy, behavior, ecology, about genes, genomes, and proteins required to and the study of populations. The field of molec- understand some of the key problems in genomics. ular biology analyzes the functioning of cells and Next we describe some of the fundamental goals of the processes of inheritance principally in terms of the molecular life sciences and the role of genomics interactions among three crucially important classes in attaining these goals. We then give a series of of macromolecules: DNA, RNA, and proteins. brief vignettes illustrating algorithmic and mathe- Proteins are the molecules that enable and execute matical questions arising in a number of specific most of the processes within a cell. DNA is the car- areas: sequence comparison, sequence assembly, rier of hereditary information in the form of genes gene finding, phylogeny construction, genome re- and directs the production of proteins. RNA is a key arrangement, associations between polymorphisms intermediary between DNA and proteins. and disease, classification and clustering of gene Molecular biology and genetics are undergoing expression data, and the logic of transcriptional revolutionary changes. These changes are guided by control. An annotated bibliography provides point- a view of a cell as a collection of interrelated sub- ers to more detailed information.
    [Show full text]
  • Genomics & Comp. Biology (GCB)
    Genomics & Comp. Biology (GCB) 1 GCB 535 Introduction to Bioinformatics GENOMICS & COMP. BIOLOGY This course provides overview of bioinformatics and computational biology as applied to biomedical research. A primary objective of the (GCB) course is to enable students to integrate modern bioinformatics tools into their research activities. Course material is aimed to address GCB 493 Epigentics of Human Health and Disease biological questions using computational approaches and the analysis Epigenetic alterations encompass heritable, non-genetic changes to of data. A basic primer in programming and operating in a UNIX chromatin (the polymer of DNA plus histone proteins) that influence enviroment will be presented, and students will also be introduced to cellular and organismal processes. This course will examine epigenetic Python R, and tools for reproducible research. This course emphasizes mechanisms in directing development from the earliest stages of direct, hands-on experience with applications to current biological growth, and in maintaining normal cellular homeostasis during life. We research problems. Areas include DNA sequence alignment, genetic will also explore how diverse epigenetic processes are at the heart of variation and analysis, motif discovery, study design for high-throughput numerous human disease states. We will review topics ranging from a sequencing RNA, and gene expression, single gene and whole-genome historical perspective of the discovery of epigenetic mechanisms to the analysis, machine learning, and topics in systems biology. The relevant use of modern technology and drug development to target epigenetic principles underlying methods used for analysis in these areas will mechanisms toincrease healthy lifespan and combat human disease. be introduced and discussed at a level appropriate for biologists The course will involve a ccombination of didactic lectures, primary without a background in computer science.
    [Show full text]
  • Genomics, Epigenetics and Their Application to Elucidate the Mechanism of Efficacious Actives for Personal Care
    Genomics, Epigenetics and Their Application to Elucidate the Mechanism of Efficacious Actives for Personal Care SCC Ontario Education Day Toronto, September 2011 Philip Ludwig Arch Personal Care Outline of the talk . The Human Genome: An Anniversary . Examination of Skin Antioxidants via Human Genomic Microarrays . Examination of Skin Lightening Ingredients via Human GiGenomic Microarrays . Examination of Epigenetic Methylation via Human Epigenomic Arrays . Conclusions Outline of the talk . The Human Genome: An Anniversary . Examination of Skin Antioxidants via Human Genomic Microarrays . Examination of Skin Lightening Ingredients via Human GiGenomic Microarrays . Examination of Epigenetic Methylation via Human Epigenomic Arrays . Conclusions The Human Genome: An Anniversary Science published a four part series celebrating the completion of the human genome sequencing. This occurred 10-years ago this year. The Human Genome 23 Human Chromosomes The Human Genome . Contains approximately 3 billion base pairs . We each vary by only 0.1 %, or approximately 3 million base pairs . The human genome has approximately 25,00025,000--30,00030,000 functioning genes . Approximately 1.5% of the genome codes for protein producing genes ––thethe rest is nonnon--cocoding RNA, in trons, nonnon--cocoding DNA . Our genes are provided to us equally by two parents . They define our physical makeup Outline of the talk . The Human Genome: An Anniversary . Examination of Skin Antioxidants via Human Genomic Microarrays . Examination of Skin Lightening Ingredients
    [Show full text]
  • Genomics Education in the Era of Personal Genomics: Academic, Professional, and Public Considerations
    International Journal of Molecular Sciences Review Genomics Education in the Era of Personal Genomics: Academic, Professional, and Public Considerations Kiara V. Whitley , Josie A. Tueller and K. Scott Weber * Department of Microbiology and Molecular Biology, 4007 Life Sciences Building, 701 East University Parkway, Brigham Young University, Provo, UT 84602, USA; [email protected] (K.V.W.); [email protected] (J.A.T.) * Correspondence: [email protected]; Tel.: +1-801-422-6259 Received: 31 December 2019; Accepted: 22 January 2020; Published: 24 January 2020 Abstract: Since the completion of the Human Genome Project in 2003, genomic sequencing has become a prominent tool used by diverse disciplines in modern science. In the past 20 years, the cost of genomic sequencing has decreased exponentially,making it affordable and accessible. Bioinformatic and biological studies have produced significant scientific breakthroughs using the wealth of genomic information now available. Alongside the scientific benefit of genomics, companies offer direct-to-consumer genetic testing which provide health, trait, and ancestry information to the public. A key area that must be addressed is education about what conclusions can be made from this genomic information and integrating genomic education with foundational genetic principles already taught in academic settings. The promise of personal genomics providing disease treatment is exciting, but many challenges remain to validate genomic predictions and diagnostic correlations. Ethical and societal concerns must also be addressed regarding how personal genomic information is used. This genomics revolution provides a powerful opportunity to educate students, clinicians, and the public on scientific and ethical issues in a personal way to increase learning.
    [Show full text]
  • Epigenetic Analysis: Bioinformatic Applications for Research
    Epigenetic Analysis: Bioinformatic Applications for Research Fios Genomics| Epigenetic Analysis: Bioinformatic Applications for Research 1 Index 1. What is epigenetics? 2. How to quantify epigenetic modification? 3. Challenges and resolutions for epigenetic research 4. Future of epigenetic research 5. Fios Genomics’ expertise 6. References Fios Genomics| Epigenetic Analysis: Bioinformatic Applications for Research 2 1.What is epigenetics analysis 1.1 What is epigenetics? Epigenetics is the study of physical Epigenetic modifications are dynamic modifications of DNA which do not alter and can occur naturally. However, several the underlying genetic sequence. This factors such as environment and lifestyle, encapsulates heritable changes which disease stage, and ageing, all affect the induce phenotypic variation without epigenome in context-specific ways. corresponding genotypic variation, and Epigenetic modification is a tightly includes DNA methylation and histone regulated process and in normal, healthy modifications. These modifications affect cells it is essential to regulate various how cells interpret gene sequences, which processes; inappropriate epigenetic in turn change the expression pattern of modification can have long-lasting effects genes. Epigenetic modifications essentially as well as deleterious results in a cell or underpin the cellular diversity within an tissue. organism. 1.2. Why analyse epigenetic modification? The understanding of epigenetic processes has an important role in the research of cancers, metabolic syndromes, brain disorders and development amongst other areas. By analysing epigenetic changes, investigations into disease mechanisms and the development of therapies which target the epigenome are Disease facilitated. Mechanisms Epigenetic modifications are influenced by the environment and lifestyle, which makes them important to consider as part of clinical research studies to further understand how a drug may specifically benefit certain sub-populations.
    [Show full text]