Math655 Lecture Notes: Part 0
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Set-Theoretic Geology, the Ultimate Inner Model, and New Axioms
Set-theoretic Geology, the Ultimate Inner Model, and New Axioms Justin William Henry Cavitt (860) 949-5686 [email protected] Advisor: W. Hugh Woodin Harvard University March 20, 2017 Submitted in partial fulfillment of the requirements for the degree of Bachelor of Arts in Mathematics and Philosophy Contents 1 Introduction 2 1.1 Author’s Note . .4 1.2 Acknowledgements . .4 2 The Independence Problem 5 2.1 Gödelian Independence and Consistency Strength . .5 2.2 Forcing and Natural Independence . .7 2.2.1 Basics of Forcing . .8 2.2.2 Forcing Facts . 11 2.2.3 The Space of All Forcing Extensions: The Generic Multiverse 15 2.3 Recap . 16 3 Approaches to New Axioms 17 3.1 Large Cardinals . 17 3.2 Inner Model Theory . 25 3.2.1 Basic Facts . 26 3.2.2 The Constructible Universe . 30 3.2.3 Other Inner Models . 35 3.2.4 Relative Constructibility . 38 3.3 Recap . 39 4 Ultimate L 40 4.1 The Axiom V = Ultimate L ..................... 41 4.2 Central Features of Ultimate L .................... 42 4.3 Further Philosophical Considerations . 47 4.4 Recap . 51 1 5 Set-theoretic Geology 52 5.1 Preliminaries . 52 5.2 The Downward Directed Grounds Hypothesis . 54 5.2.1 Bukovský’s Theorem . 54 5.2.2 The Main Argument . 61 5.3 Main Results . 65 5.4 Recap . 74 6 Conclusion 74 7 Appendix 75 7.1 Notation . 75 7.2 The ZFC Axioms . 76 7.3 The Ordinals . 77 7.4 The Universe of Sets . 77 7.5 Transitive Models and Absoluteness . -
Cantor-Von Neumann Set-Theory Fa Muller
Logique & Analyse 213 (2011), x–x CANTOR-VON NEUMANN SET-THEORY F.A. MULLER Abstract In this elementary paper we establish a few novel results in set the- ory; their interest is wholly foundational-philosophical in motiva- tion. We show that in Cantor-Von Neumann Set-Theory, which is a reformulation of Von Neumann's original theory of functions and things that does not introduce `classes' (let alone `proper classes'), developed in the 1920ies, both the Pairing Axiom and `half' the Axiom of Limitation are redundant — the last result is novel. Fur- ther we show, in contrast to how things are usually done, that some theorems, notably the Pairing Axiom, can be proved without invok- ing the Replacement Schema (F) and the Power-Set Axiom. Also the Axiom of Choice is redundant in CVN, because it a theorem of CVN. The philosophical interest of Cantor-Von Neumann Set- Theory, which is very succinctly indicated, lies in the fact that it is far better suited than Zermelo-Fraenkel Set-Theory as an axioma- tisation of what Hilbert famously called Cantor's Paradise. From Cantor one needs to jump to Von Neumann, over the heads of Zer- melo and Fraenkel, and then reformulate. 0. Introduction In 1928, Von Neumann published his grand axiomatisation of Cantorian Set- Theory [1925; 1928]. Although Von Neumann's motivation was thoroughly Cantorian, he did not take the concept of a set and the membership-relation as primitive notions, but the concepts of a thing and a function — for rea- sons we do not go into here. This, and Von Neumann's cumbersome nota- tion and terminology (II-things, II.I-things) are the main reasons why ini- tially his theory remained comparatively obscure. -
Are Large Cardinal Axioms Restrictive?
Are Large Cardinal Axioms Restrictive? Neil Barton∗ 24 June 2020y Abstract The independence phenomenon in set theory, while perva- sive, can be partially addressed through the use of large cardinal axioms. A commonly assumed idea is that large cardinal axioms are species of maximality principles. In this paper, I argue that whether or not large cardinal axioms count as maximality prin- ciples depends on prior commitments concerning the richness of the subset forming operation. In particular I argue that there is a conception of maximality through absoluteness, on which large cardinal axioms are restrictive. I argue, however, that large cardi- nals are still important axioms of set theory and can play many of their usual foundational roles. Introduction Large cardinal axioms are widely viewed as some of the best candi- dates for new axioms of set theory. They are (apparently) linearly ordered by consistency strength, have substantial mathematical con- sequences for questions independent from ZFC (such as consistency statements and Projective Determinacy1), and appear natural to the ∗Fachbereich Philosophie, University of Konstanz. E-mail: neil.barton@uni- konstanz.de. yI would like to thank David Aspero,´ David Fernandez-Bret´ on,´ Monroe Eskew, Sy-David Friedman, Victoria Gitman, Luca Incurvati, Michael Potter, Chris Scam- bler, Giorgio Venturi, Matteo Viale, Kameryn Williams and audiences in Cambridge, New York, Konstanz, and Sao˜ Paulo for helpful discussion. Two anonymous ref- erees also provided helpful comments, and I am grateful for their input. I am also very grateful for the generous support of the FWF (Austrian Science Fund) through Project P 28420 (The Hyperuniverse Programme) and the VolkswagenStiftung through the project Forcing: Conceptual Change in the Foundations of Mathematics. -
Lecture Notes: Axiomatic Set Theory
Lecture Notes: Axiomatic Set Theory Asaf Karagila Last Update: May 14, 2018 Contents 1 Introduction 3 1.1 Why do we need axioms?...............................3 1.2 Classes and sets.....................................4 1.3 The axioms of set theory................................5 2 Ordinals, recursion and induction7 2.1 Ordinals.........................................8 2.2 Transfinite induction and recursion..........................9 2.3 Transitive classes.................................... 10 3 The relative consistency of the Axiom of Foundation 12 4 Cardinals and their arithmetic 15 4.1 The definition of cardinals............................... 15 4.2 The Aleph numbers.................................. 17 4.3 Finiteness........................................ 18 5 Absoluteness and reflection 21 5.1 Absoluteness...................................... 21 5.2 Reflection........................................ 23 6 The Axiom of Choice 25 6.1 The Axiom of Choice.................................. 25 6.2 Weak version of the Axiom of Choice......................... 27 7 Sets of Ordinals 31 7.1 Cofinality........................................ 31 7.2 Some cardinal arithmetic............................... 32 7.3 Clubs and stationary sets............................... 33 7.4 The Club filter..................................... 35 8 Inner models of ZF 37 8.1 Inner models...................................... 37 8.2 Gödel’s constructible universe............................. 39 1 8.3 The properties of L ................................... 41 8.4 Ordinal definable sets................................. 42 9 Some combinatorics on ω1 43 9.1 Aronszajn trees..................................... 43 9.2 Diamond and Suslin trees............................... 44 10 Coda: Games and determinacy 46 2 Chapter 1 Introduction 1.1 Why do we need axioms? In modern mathematics, axioms are given to define an object. The axioms of a group define the notion of a group, the axioms of a Banach space define what it means for something to be a Banach space. -
UC Irvine UC Irvine Electronic Theses and Dissertations
UC Irvine UC Irvine Electronic Theses and Dissertations Title Axiom Selection by Maximization: V = Ultimate L vs Forcing Axioms Permalink https://escholarship.org/uc/item/9875g511 Author Schatz, Jeffrey Robert Publication Date 2019 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, IRVINE Axiom Selection by Maximization: V = Ultimate L vs Forcing Axioms DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Philosophy by Jeffrey Robert Schatz Dissertation Committee: Distinguished Professor Penelope Maddy, Chair Professor Toby Meadows Dean’s Professor Kai Wehmeier Professor Jeremy Heis 2019 All materials c 2019 Jeffrey Robert Schatz DEDICATION To Mike and Lori Schatz for always encouraging me to pursue my goals AND In memory of Jackie, a true and honest friend. ii TABLE OF CONTENTS Page ACKNOWLEDGMENTS iv CURRICULUM VITAE vi ABSTRACT OF THE DISSERTATION vii CHAPTER 1: Two Contemporary Candidates for A Strong Theory of Sets 1 1 The Axiomatization of Set Theory and The Question of Axiom Selection 2 1.1 The Inner Model Program 14 1.2 The Forcing Axiom Program 27 1.3 How to Settle This Dispute? 36 1.4 CHAPTER 2: Axiom Selection and the Maxim of ‘Maximize’ 38 2 ‘Maximize’ as a Methodological Maxim 39 2.1 Two Notions of Maximize 43 2.2 Re-characterizing M-Max for Extensions of ZFC 50 2.3 CHAPTER 3: Applying ‘Maximize’ to Contemporary Axiom Candidates 53 3 Towards a Theory for Ultimate L 54 3.1 S-Max: -
The Bristol Model (5/5)
The Bristol model (5/5) Asaf Karagila University of East Anglia 22 November 2019 RIMS Set Theory Workshop 2019 Set Theory and Infinity Asaf Karagila (UEA) The Bristol model (5/5) 22 November 2019 1 / 23 Review Bird’s eye view of Bristol We started in L by choosing a Bristol sequence, that is a sequence of permutable families and permutable scales, and we constructed one step at a time models, Mα, such that: 1 M0 = L. Mα Mα+1 2 Mα+1 is a symmetric extension of Mα, and Vω+α = Vω+α . 3 For limit α, Mα is the finite support limit of the iteration, and Mα S Mβ Vω+α = β<α Vω+β. By choosing our Mα-generic filters correctly, we ensured that Mα ⊆ L[%0], where %0 was an L-generic Cohen real. We then defined M, the Bristol model, S S Mα as α∈Ord Mα = α∈Ord Vω+α. Asaf Karagila (UEA) The Bristol model (5/5) 22 November 2019 2 / 23 Properties of the Bristol model Small Violations of Choice Definition (Blass) We say that V |= SVC(X) if for every A there is an ordinal η and a surjection f : X × η → A. We write SVC to mean ∃X SVC(X). Theorem If M = V (x) where V |= ZFC, then M |= SVC. Theorem If M is a symmetric extension of V |= ZFC, Then M |= SVC. The following are equivalent: 1 SVC. 2 1 ∃X such that X<ω AC. 3 ∃P such that 1 P AC. 4 V is a symmetric extension of a model of ZFC (Usuba). -
On the Origins of Bisimulation and Coinduction
On the Origins of Bisimulation and Coinduction DAVIDE SANGIORGI University of Bologna, Italy The origins of bisimulation and bisimilarity are examined, in the three fields where they have been independently discovered: Computer Science, Philosophical Logic (precisely, Modal Logic), Set Theory. Bisimulation and bisimilarity are coinductive notions, and as such are intimately related to fixed points, in particular greatest fixed points. Therefore also the appearance of coinduction and fixed points is discussed, though in this case only within Computer Science. The paper ends with some historical remarks on the main fixed-point theorems (such as Knaster-Tarski) that underpin the fixed-point theory presented. Categories and Subject Descriptors: F.4.1 [Mathematical logic and formal languages]: Math- ematical Logic—Computational logic; Modal logic; Set theory; F.4.0 [Mathematical logic and formal languages]: General General Terms: Theory, Verification Additional Key Words and Phrases: Bisimulation, coinduction, fixed points, greatest fixed points, history Contents 1 Introduction 112 2 Background 114 2.1 Bisimulation................................ 114 2.2 Approximants of bisimilarity . 116 2.3 Coinduction................................116 3 Bisimulation in Modal Logic 119 3.1 Modallogics................................119 3.2 Fromhomomorphismtop-morphism . 120 3.3 JohanvanBenthem ........................... 122 3.4 Discussion.................................125 4 Bisimulation in Computer Science 125 4.1 Algebraictheoryofautomata . 125 4.2 RobinMilner ...............................128 Author’s address: Dipartimento di Scienze dell’Informazione Universita’ di Bologna Mura Anteo Zamboni, 7 40126 Bologna, ITALY. Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the ACM, Inc. -
Paradox and Foundation Zach Weber Submitted in Total Fulfilment of The
Paradox and Foundation Zach Weber Submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy May 2009 School of Philosophy, Anthropology and Social Inquiry The University of Melbourne This is to certify that - the thesis comprises only my original work towards the PhD, - due acknowledgement has been made in the text to all other material used, - the thesis is less than 100,000 words in length. Preface Dialethic paraconsistency is an approach to formal and philosophical theories in which some but not all contradictions are true. Advancing that program, this thesis is about paradoxes and the foundations of mathematics, and is divided accordingly into two main parts. The first part concerns the history and philosophy of set theory from Cantor through the independence proofs, focusing on the set concept. A set is any col- lection of objects that is itself an object, with identity completely determined by membership. The set concept is called naive because it is inconsistent. I argue that the set concept is inherently and rightly paradoxical, because sets are both intensional and extensional objects: Sets are predicates in extension. All consistent characterizations of sets are either not explanatory or not coherent. To understand sets, we need to reason about them with an appropriate logic; paraconsistent naive set theory is situated as a continuation of the original foundational project. The second part produces a set theory deduced from an unrestricted compre- hension principle using the weak relevant logic DLQ, dialethic logic with quantifiers. I discuss some of the problems involved with embedding in DLQ, especially related to identity and substitution. -
Florida State University Libraries
Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2009 A Defense of Platonic Realism in Mathematics: Problems About the Axiom of Choice Wataru Asanuma Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES A DEFENSE OF PLATONIC REALISM IN MATHEMATICS: PROBLEMS ABOUT THE AXIOM OF CHOICE By WATARU ASANUMA A Dissertation submitted to the Department of Philosophy in partial fulfillment of the requirements for the degree of Doctor of Philosophy Degree Awarded: Spring Semester, 2009 The members of the Committee approve the Dissertation of Wataru Asanuma defended on April 7, 2009. __________________________ Russell M. Dancy Professor Directing Dissertation __________________________ Philip L. Bowers Outside Committee Member __________________________ J. Piers Rawling Committee Member __________________________ Joshua Gert Committee Member Approved: _________________________________________________________________ J. Piers Rawling, Chair, Philosophy _________________________________________________________________ Joseph Travis, Dean, College of Arts and Sciences The Graduate School has verified and approved the above named committee members. ii ACKNOWLEDGMENTS First of all, I would like to thank all my dissertation committee members, Dr. Russell Dancy, Dr. Piers Rawling, Dr. Joshua Gert and Dr. Philip Bowers. Special thanks go to my major professor, Dr. Dancy, who has guided my dissertation every step of the way. The courses they offered, especially Dr. Dancy‘s ―υlato‘s ‗Unwritten Doctrines‘,‖ Dr. Rawling‘s ―Modern Logic I & II‖ and Dr. Gert‘s ―υhilosophy of Mathematics,‖ formed the backbone of my dissertation. I would also like to thank Dr. Bowers (Department of Mathematics) for serving as an outside committee member. -
Forcing and the Universe of Sets: Must We Lose Insight?
Forcing and the Universe of Sets: Must we lose insight? Neil Barton∗ 29 January 2018y Abstract A central area of current philosophical debate in the foundations of mathe- matics concerns whether or not there is a single, maximal, universe of set theory. Universists maintain that there is such a universe, while Multiversists argue that there are many universes, no one of which is ontologically privileged. Often forc- ing constructions that add subsets to models are cited as evidence in favour of the latter. This paper informs this debate by analysing ways the Universist might interpret this discourse that seems to necessitate the addition of subsets to V . We argue that despite the prima facie incoherence of such talk for the Universist, she nonetheless has reason to try and provide interpretation of this discourse. We analyse extant interpretations of such talk, and argue that while tradeoffs in nat- urality have to be made, they are not too severe. Introduction Recent discussions of the philosophy of set theory have often focussed on how many universes of sets there are. The following is a standard position: Universism. There is a unique, maximal, proper class sized universe containing all the sets (denoted by ‘V ’). Universism has often been thought of as the ‘default’ position on the ontology of sets.1 However, some have seen the existence of many different epistemic pos- sibilities for the nature of the set-theoretic universe, shown by the large diversity of model-theoretic constructions witnessing independence (we discuss two of these methods later) as indicative of the existence of a diversity of different set-theoretic universes. -
Hamkins' Analogy Between Set Theory and Geometry
TAKING THE ANALOGY BETWEEN SET THEORY AND GEOMETRY SERIOUSLY SHARON BERRY Abstract. Set theorist Joel Hamkins uses considerations about forcing argu- ments in set theory together with an analogy between set theory and geometry to motivate his influential set-theoretic multiverse program: a distinctive and powerfully truthvalue-antirealist form of plenetudinous Platonism. However, I'll argue that taking this analogy seriously cuts against Hamkins' proposal in one important way. I'll then note that putting a (hyperintensional) modal twist on Hamkins' Multiverse lets take Hamkins' analogy further and address his motivations equally well (or better) while maintaining naive realism. 1. Introduction Philosophers who want to deny that there are right answers to mathematical ques- tions (like the Continuum Hypothesis) which are undecidable via deduction from mathematical axioms we currently accept often draw on an analogy between set theory and geometry [6, 12]1. In this paper I will discuss one of the most important and interesting recent examples of this phenomenon: set theorist Joel Hamkins' use of (a specific form of) this analogy to motivate his set-theoretic multiverse program. Hamkins has developed an influential2 multiverse approach to set theory, on which there are many different hierarchies of sets, and there's no fact of the matter about whether certain set-theoretic statements are true, beyond the fact that they are true of some hierarchies of sets within the multiverse and false in others. On this view there is no `full' intended hierarchy of sets which contains all subsets of sets it contains- or even all subsets of the natural numbers. -
Deconstructing Inner Model Theory
Deconstructing inner model theory Ralf-Dieter Schindler John Steel Martin Zeman October 17, 2000 1 Introduction In this paper we shall repair some errors and fill some gaps in the inner model theory of [2]. The problems we shall address affect some quite basic definitions and proofs. We shall be concerned with condensation properties of canonical inner models constructed from coherent sequences E~ of extenders as in [2]. Con- densation results have the general form: if x is definable in a certain way E~ E~ E~ over a level Jα , then either x ∈ Jα , or else from x we can reconstruct Jα in a simple way. The first condensation property considered in [2] is the initial segment condition, or ISC. In section 1 we show that the version of this condition described in [2] is too strong, in that no coherent E~ in which the extenders are indexed in the manner of [2], and which is such that L[E~ ] satisfies the mild large cardinal hypothesis that there is a cardinal which is strong past a measurable, can satisfy the full ISC of [2]. It follows that the coherent sequences constructed in [2] do not satisfy the ISC of [2]. We shall describe the weaker ISC which these sequences do satisfy, and indicate the small changes in the arguments of [2] this new condition requires. In section 2, we fill a gap in the proof that the standard parameters of a sufficiently iterable premouse are solid. This is Theorem 8.1 of [2], one of its central fine structural results.