Differential Privacy Under Continual Observation

Total Page:16

File Type:pdf, Size:1020Kb

Differential Privacy Under Continual Observation Differential Privacy Under Continual Observation ¤ Cynthia Dwork Moni Naor Microsoft Research Weizmann Institute of Science Mountain View, CA, USA Rehovot, Israel [email protected] [email protected] y z Toniann Pitassi Guy N. Rothblum University of Toronto Princeton University Toronto, Canada Princeton, NJ, USA [email protected] [email protected] ABSTRACT General Terms Di®erential privacy is a recent notion of privacy tailored to Algorithms, Security, Theory, Privacy, Private Data Analy- privacy-preserving data analysis [10]. Up to this point, re- sis search on di®erentially private data analysis has focused on the setting of a trusted curator holding a large, static, data 1. INTRODUCTION set; thus every computation is a \one-shot" object: there is Di®erential privacy is a recent privacy guarantee tailored no point in computing something twice, since the result will to the problem of statistical disclosure control: how to pub- be unchanged, up to any randomness introduced for privacy. licly release statistical information about a set of people However, many applications of data analysis involve re- without compromising the privacy of any individual [10] peated computations, either because the entire goal is one (see [7, 8, 6] for motivation of the de¯nition, history, ba- of monitoring, e.g., of tra±c conditions, search trends, or sic techniques, and pointers to recent results). In a nutshell, incidence of influenza, or because the goal is some kind of di®erential privacy requires that the probability distribution adaptive optimization, e.g., placement of data to minimize on the published results of an analysis is \essentially the access costs. In these cases, the algorithm must permit con- same," independent of whether any individual opts in to, or tinual observation of the system's state. We therefore initi- opts out of, the data set. (The probabilities are over the ate a study of di®erential privacy under continual observa- coin flips of the privacy mechanism.) Statistical databases tion. We identify the problem of maintaining a counter in are frequently created to achieve a social goal, and increased a privacy preserving manner and show its wide applicability participation in the databases permits more accurate anal- to many di®erent problems. yses. The di®erential privacy guarantee supports the social goal by assuring each individual that she incurs little risk by Categories and Subject Descriptors joining the database: anything that can happen is essentially equally likely to do so whether she joins or abstains. F.2.0 [Theory of Computation]: Analysis of Algorithms Up to this point, research on di®erentially private data and problem complexity|General analysis has focused on the setting of a trusted curator hold- ing a large, static, data set, in a permanently infrangible storage system. The curator either responds to queries (the ¤Research supported by a grant from the Israel Science interactive case) or prepares some sort of summary or syn- Foundation. Part of this work was done while visiting MSR thetic database intended to answer all queries of a particu- and the Center for Computational Intractability at Prince- lar type (the non-interactive case)1. A line of work investi- ton University. gates the way in which the accuracy of the responses to the yResearch supported by Nserc. Part of this work was done queries may need to deteriorate with the number, sensitivity while visiting MSR. (a metric describing how much the addition or deletion of a zResearch supported by NSF Grants CCF-0635297, CCF- member of the database can change a®ect the outputs), and 0832797 and by a Computing Innovation Fellowship. Parts geometry of the query sequence [5, 11, 15, 16], and general of this work were done while visiting and interning at MSR. techniques have been developed that in some cases match these bounds [14, 2, 10, 18, 16, 3, 13]. In all previous work every computation is a \one-shot" ob- ject: there is no point in computing something twice, since the result will be unchanged, up to any perturbations in- Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are troduced for privacy. However, many applications of data not made or distributed for profit or commercial advantage and that copies analysis involve repeated computations, either because the bear this notice and the full citation on the first page. To copy otherwise, to 1 republish, to post on servers or to redistribute to lists, requires prior specific The one exception considers a distributed setting, in which permission and/or a fee. each data holder controls her own data and decides in which STOC’10, June 5–8, 2010, Cambridge, Massachusetts, USA. analyses to participate [9]. However, this is done by emulat- Copyright 2010 ACM 978-1-4503-0050-6/10/06 ...$10.00. ing the curator via secure multiparty computation. entire goal is one of monitoring, e.g., of tra±c conditions, risk { of anything { incurred by sharing one's information, search trends, or incidence of influenza, typically with a goal even in the presence of an intrusion, further encouraging of preparing some appropriate response, or the goal is to op- participation. Another motivation is the prevention of \mis- timize the placement of data to minimize access costs. In sion creep" for data, protecting the data curator from the such an application the system is required to continually pro- (very real!) pressure to allow data to be used for purposes duce outputs. We therefore initiate a study of di®erential other than that for which they were collected. This ¯ts privacy under continual observation. We illustrate the de- well with streaming algorithms with small state, which can sign goals of our continual observation algorithms by appeal at most store a few data items, and [12] does focus on the to a real-life example. streaming model. However, nothing prevents a streaming Continual Observation. Consider a website for H1N1 algorithm from storing in its state an event of a person of self-assessment2. Individuals can interact with the site to interest. Event-level pan-privacy rules this out, since the learn whether symptoms they are experiencing may be in- internal state must have essentially the same distribution, dicative of the H1N1 flu. The user ¯lls in some demographic independent of whether an event of the person of interest data (age, zipcode, sex), and responds to queries about his has, or has not, appeared in the stream. symptoms (fever over 100:4±F?, sore throat?, duration of We remark that, since an intrusion can occur at an unpre- symptoms?). We would like to continually analyze aggregate dictable time, designing pan-private algorithms is interest- information of consenting users in order to monitor regional ing even when the system will generate only a single output. health conditions, with the goal, for example, of organizing This was studied in [12]. The current paper addresses pan- improved flu response. Can we do this in a di®erentially pri- privacy under continual observation. We emphasize that vate fashion with reasonable accuracy (despite the fact that continual output and pan-privacy properties are interesting the system is continually producing outputs)? and non trivial to achieve and generally speaking are inde- We would expect a given individual to interact very few pendent of each other3. There combination is of course, is times with the H1N1 self-assessment site. For simplicity, let more powerful then each individually. us say this is just once (the general case is an easy exten- Adjacency notions: User-Level vs. Event-Level Pri- sion). In such a setting, it is su±cient to ensure event-level vacy. We have made the reasonable assumption that a sin- privacy, in which the privacy goal is to hide the presence or gle individual interacts with the H1N1 self-assessment site absence of a single event (interaction of one user with the at most a small number of times (one). Such an assump- self-assessment site). That is, the probability of any output tion is not reasonable for other kinds of websites, such as sequence should be essentially the same, independent of the a search engine. We ask: what kinds of statistics can we presence or absence of any single interaction with the site. gather while preserving the privacy of an individual's entire The privacy statement at the H1N1 self-assessment site history of accesses to the website? That is, what can we encourages users to allow their data to be shared: compute if we require that, no matter how many times an individual accesses the website, and no matter how these ac- \This information can be very helpful in monitor- cesses are interleaved with those of others, the distribution ing regional health conditions, plan flu response, on outputs, or, in the case of user-level pan-privacy, the dis- and conduct health research. By allowing the re- tribution on pairs (internal state, output sequence), should sponses to the survey questions to be used for be essentially the same, independent of presence or absence public health, education and research purposes, of of any individual's data in the stream? All the algorithms you can help your community." of [12] enjoy user-level pan-privacy. In this paper we con- struct several algorithms that exhibit user-level pan-privacy But the site also describes conditions under which the data under continual observation. may be disclosed: \...if required to do so by law or in the good faith 2. OVERVIEW OF OUR RESULTS belief that such action is necessary to (a) conform to the edicts of the law or comply with legal pro- Counter.
Recommended publications
  • The Limits of Post-Selection Generalization
    The Limits of Post-Selection Generalization Kobbi Nissim∗ Adam Smithy Thomas Steinke Georgetown University Boston University IBM Research – Almaden [email protected] [email protected] [email protected] Uri Stemmerz Jonathan Ullmanx Ben-Gurion University Northeastern University [email protected] [email protected] Abstract While statistics and machine learning offers numerous methods for ensuring gener- alization, these methods often fail in the presence of post selection—the common practice in which the choice of analysis depends on previous interactions with the same dataset. A recent line of work has introduced powerful, general purpose algorithms that ensure a property called post hoc generalization (Cummings et al., COLT’16), which says that no person when given the output of the algorithm should be able to find any statistic for which the data differs significantly from the population it came from. In this work we show several limitations on the power of algorithms satisfying post hoc generalization. First, we show a tight lower bound on the error of any algorithm that satisfies post hoc generalization and answers adaptively chosen statistical queries, showing a strong barrier to progress in post selection data analysis. Second, we show that post hoc generalization is not closed under composition, despite many examples of such algorithms exhibiting strong composition properties. 1 Introduction Consider a dataset X consisting of n independent samples from some unknown population P. How can we ensure that the conclusions drawn from X generalize to the population P? Despite decades of research in statistics and machine learning on methods for ensuring generalization, there is an increased recognition that many scientific findings do not generalize, with some even declaring this to be a “statistical crisis in science” [14].
    [Show full text]
  • Individuals and Privacy in the Eye of Data Analysis
    Individuals and Privacy in the Eye of Data Analysis Thesis submitted in partial fulfillment of the requirements for the degree of “DOCTOR OF PHILOSOPHY” by Uri Stemmer Submitted to the Senate of Ben-Gurion University of the Negev October 2016 Beer-Sheva This work was carried out under the supervision of Prof. Amos Beimel and Prof. Kobbi Nissim In the Department of Computer Science Faculty of Natural Sciences Acknowledgments I could not have asked for better advisors. I will be forever grateful for their close guidance, their constant encouragement, and the warm shelter they provided. Without them, this thesis could have never begun. I have been fortunate to work with Raef Bassily, Amos Beimel, Mark Bun, Kobbi Nissim, Adam Smith, Thomas Steinke, Jonathan Ullman, and Salil Vadhan. I enjoyed working with them all, and I thank them for everything they have taught me. iii Contents Acknowledgments . iii Contents . iv List of Figures . vi Abstract . vii 1 Introduction1 1.1 Differential Privacy . .2 1.2 The Sample Complexity of Private Learning . .3 1.3 Our Contributions . .5 1.4 Additional Contributions . 10 2 Related Literature 15 2.1 The Computational Price of Differential Privacy . 15 2.2 Interactive Query Release . 18 2.3 Answering Adaptively Chosen Statistical Queries . 19 2.4 Other Related Work . 21 3 Background and Preliminaries 22 3.1 Differential privacy . 22 3.2 Preliminaries from Learning Theory . 24 3.3 Generalization Bounds for Points and Thresholds . 29 3.4 Private Learning . 30 3.5 Basic Differentially Private Mechanisms . 31 3.6 Concentration Bounds . 33 4 The Generalization Properties of Differential Privacy 34 4.1 Main Results .
    [Show full text]
  • Calibrating Noise to Sensitivity in Private Data Analysis
    Calibrating Noise to Sensitivity in Private Data Analysis Cynthia Dwork1, Frank McSherry1, Kobbi Nissim2, and Adam Smith3? 1 Microsoft Research, Silicon Valley. {dwork,mcsherry}@microsoft.com 2 Ben-Gurion University. [email protected] 3 Weizmann Institute of Science. [email protected] Abstract. We continue a line of research initiated in [10, 11] on privacy- preserving statistical databases. Consider a trusted server that holds a database of sensitive information. Given a query function f mapping databases to reals, the so-called true answer is the result of applying f to the database. To protect privacy, the true answer is perturbed by the addition of random noise generated according to a carefully chosen distribution, and this response, the true answer plus noise, is returned to the user. Previous work focused on the case of noisy sums, in which f = P i g(xi), where xi denotes the ith row of the database and g maps database rows to [0, 1]. We extend the study to general functions f, proving that privacy can be preserved by calibrating the standard devi- ation of the noise according to the sensitivity of the function f. Roughly speaking, this is the amount that any single argument to f can change its output. The new analysis shows that for several particular applications substantially less noise is needed than was previously understood to be the case. The first step is a very clean characterization of privacy in terms of indistinguishability of transcripts. Additionally, we obtain separation re- sults showing the increased value of interactive sanitization mechanisms over non-interactive.
    [Show full text]
  • Differential Privacy, Property Testing, and Perturbations
    Differential Privacy, Property Testing, and Perturbations by Audra McMillan A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mathematics) in The University of Michigan 2018 Doctoral Committee: Professor Anna Gilbert, Chair Professor Selim Esedoglu Professor John Schotland Associate Professor Ambuj Tewari Audra McMillan [email protected] ORCID iD: 0000-0003-4231-6110 c Audra McMillan 2018 ACKNOWLEDGEMENTS First and foremost, I would like to thank my advisor, Anna Gilbert. Anna managed to strike the balance between support and freedom that is the goal of many advisors. I always felt that she believed in my ideas and I am a better, more confident researcher because of her. I was fortunate to have a large number of pseudo-advisors during my graduate ca- reer. Martin Strauss, Adam Smith, and Jacob Abernethy deserve special mention. Martin guided me through the early stages of my graduate career and helped me make the tran- sition into more applied research. Martin was the first to suggest that I work on privacy. He taught me that interesting problems and socially-conscious research are not mutually exclusive. Adam Smith hosted me during what became my favourite summer of graduate school. I published my first paper with Adam, which he tirelessly guided towards a pub- lishable version. He has continued to be my guide in the differential privacy community, introducing me to the right people and the right problems. Jacob Abernethy taught me much of what I know about machine learning. He also taught me the importance of being flexible in my research and that research is as much as about exploration as it is about solving a pre-specified problem.
    [Show full text]
  • Amicus Brief of Data Privacy Experts
    Case 3:21-cv-00211-RAH-ECM-KCN Document 99-1 Filed 04/23/21 Page 1 of 27 EXHIBIT A Case 3:21-cv-00211-RAH-ECM-KCN Document 99-1 Filed 04/23/21 Page 2 of 27 UNITED STATES DISTRICT COURT FOR THE MIDDLE DISTRICT OF ALABAMA EASTERN DIVISION THE STATE OF ALABAMA, et al., ) ) Plaintiffs, ) ) v. ) Civil Action No. ) 3:21-CV-211-RAH UNITED STATES DEPARTMENT OF ) COMMERCE, et al., ) ) Defendants. ) AMICUS BRIEF OF DATA PRIVACY EXPERTS Ryan Calo Deirdre K. Mulligan Ran Canetti Omer Reingold Aloni Cohen Aaron Roth Cynthia Dwork Guy N. Rothblum Roxana Geambasu Aleksandra (Seša) Slavkovic Somesh Jha Adam Smith Nitin Kohli Kunal Talwar Aleksandra Korolova Salil Vadhan Jing Lei Larry Wasserman Katrina Ligett Daniel J. Weitzner Shannon L. Holliday Michael B. Jones (ASB-5440-Y77S) Georgia Bar No. 721264 COPELAND, FRANCO, SCREWS [email protected] & GILL, P.A. BONDURANT MIXSON & P.O. Box 347 ELMORE, LLP Montgomery, AL 36101-0347 1201 West Peachtree Street, NW Suite 3900 Atlanta, GA 30309 Counsel for the Data Privacy Experts #3205841v1 Case 3:21-cv-00211-RAH-ECM-KCN Document 99-1 Filed 04/23/21 Page 3 of 27 TABLE OF CONTENTS STATEMENT OF INTEREST ..................................................................................... 1 SUMMARY OF ARGUMENT .................................................................................... 1 ARGUMENT ................................................................................................................. 2 I. Reconstruction attacks Are Real and Put the Confidentiality of Individuals Whose Data are Reflected
    [Show full text]
  • Calibrating Noise to Sensitivity in Private Data Analysis
    Calibrating Noise to Sensitivity in Private Data Analysis Cynthia Dwork1, Frank McSherry1, Kobbi Nissim2, and Adam Smith3? 1 Microsoft Research, Silicon Valley. {dwork,mcsherry}@microsoft.com 2 Ben-Gurion University. [email protected] 3 Weizmann Institute of Science. [email protected] Abstract. We continue a line of research initiated in [10, 11] on privacy- preserving statistical databases. Consider a trusted server that holds a database of sensitive information. Given a query function f mapping databases to reals, the so-called true answer is the result of applying f to the database. To protect privacy, the true answer is perturbed by the addition of random noise generated according to a carefully chosen distribution, and this response, the true answer plus noise, is returned to the user. P Previous work focused on the case of noisy sums, in which f = i g(xi), where xi denotes the ith row of the database and g maps data- base rows to [0, 1]. We extend the study to general functions f, proving that privacy can be preserved by calibrating the standard deviation of the noise according to the sensitivity of the function f. Roughly speak- ing, this is the amount that any single argument to f can change its output. The new analysis shows that for several particular applications substantially less noise is needed than was previously understood to be the case. The first step is a very clean characterization of privacy in terms of indistinguishability of transcripts. Additionally, we obtain separation re- sults showing the increased value of interactive sanitization mechanisms over non-interactive.
    [Show full text]
  • Efficiently Querying Databases While Providing Differential Privacy
    Epsolute: Efficiently Querying Databases While Providing Differential Privacy Dmytro Bogatov Georgios Kellaris George Kollios Boston University Canada Boston University Boston, MA, USA [email protected] Boston, MA, USA [email protected] [email protected] Kobbi Nissim Adam O’Neill Georgetown University University of Massachusetts, Amherst Washington, D.C., USA Amherst, MA, USA [email protected] [email protected] ABSTRACT KEYWORDS As organizations struggle with processing vast amounts of informa- Differential Privacy; ORAM; differential obliviousness; sanitizers; tion, outsourcing sensitive data to third parties becomes a necessity. ACM Reference Format: To protect the data, various cryptographic techniques are used in Dmytro Bogatov, Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam outsourced database systems to ensure data privacy, while allowing O’Neill. 2021. Epsolute: Efficiently Querying Databases While Providing efficient querying. A rich collection of attacks on such systems Differential Privacy. In Proceedings of the 2021 ACM SIGSAC Conference on has emerged. Even with strong cryptography, just communication Computer and Communications Security (CCS ’21), November 15–19, 2021, volume or access pattern is enough for an adversary to succeed. Virtual Event, Republic of Korea. ACM, New York, NY, USA, 15 pages. https: In this work we present a model for differentially private out- //doi.org/10.1145/3460120.3484786 sourced database system and a concrete construction, Epsolute, that provably conceals the aforementioned leakages, while remaining 1 INTRODUCTION efficient and scalable. In our solution, differential privacy ispre- Secure outsourced database systems aim at helping organizations served at the record level even against an untrusted server that outsource their data to untrusted third parties, without compro- controls data and queries.
    [Show full text]
  • Towards Formalizing the GDPR's Notion of Singling
    Towards Formalizing the GDPR's Notion of Singling Out Aloni Cohen∗ Kobbi Nissim† December 21, 2020 Abstract There is a significant conceptual gap between legal and mathematical thinking around data privacy. The effect is uncertainty as to which technical offerings adequately match expectations expressed in legal standards. The uncertainty is exacerbated by a litany of successful privacy attacks demonstrating that traditional statistical disclosure limitation techniques often fall short of the sort of privacy envisioned by legal standards. We define predicate singling out, a new type of privacy attack intended to capture the concept of singling out appearing in the General Data Protection Regulation (GDPR). Informally, an adversary predicate singles out a dataset x using the output of a data-release mechanism M(x) if it manages to find a predicate p matching exactly one row x x with probability much better than a statistical baseline. A data-release mechanism that2 precludes such attacks is secure against predicate singling out (PSO secure). We argue that PSO security is a mathematical concept with legal consequences. Any data- release mechanism that purports to \render anonymous" personal data under the GDPR must be secure against singling out, and, hence, must be PSO secure. We then analyze PSO security, showing that it fails to self-compose. Namely, a combination of !(log n) exact counts, each individually PSO secure, enables an attacker to predicate single out. In fact, the composition of just two PSO-secure mechanisms can fail to provide PSO security. Finally, we ask whether differential privacy and k-anonymity are PSO secure. Leveraging a connection to statistical generalization, we show that differential privacy implies PSO security.
    [Show full text]
  • Differentially Private Deep Learning with Smooth Sensitivity
    Differentially Private Deep Learning with Smooth Sensitivity Lichao Sun Yingbo Zhou University of Illinois at Chicago Salesforce Research [email protected] [email protected] Philip S. Yu Caiming Xiong University of Illinois at Chicago Salesforce Research [email protected] [email protected] ABSTRACT KEYWORDS Ensuring the privacy of sensitive data used to train modern ma- privacy, differential privacy, smooth sensitivity, teacher-student chine learning models is of paramount importance in many areas learning, data-dependent analysis of practice. One approach to study these concerns is through the ACM Reference Format: lens of differential privacy. In this framework, privacy guarantees Lichao Sun, Yingbo Zhou, Philip S. Yu, and Caiming Xiong. 2020. Differ- are generally obtained by perturbing models in such a way that entially Private Deep Learning with Smooth Sensitivity. In KDD ’20: ACM specifics of data used to train the model are made ambiguous. A SIGKDD International Conference on Knowledge discovery and data min- particular instance of this approach is through a “teacher-student” ing, Aug 22–27, 2020, San Diego, CA. ACM, New York, NY, USA, 10 pages. framework, wherein the teacher, who owns the sensitive data, pro- https://doi.org/10.1145/1122445.1122456 vides the student with useful, but noisy, information, hopefully allowing the student model to perform well on a given task without access to particular features of the sensitive data. Because stronger 1 INTRODUCTION privacy guarantees generally involve more significant perturbation Recent years have witnessed impressive breakthroughs of deep on the part of the teacher, deploying existing frameworks funda- learning in a wide variety of domains, such as image classifica- mentally involves a trade-off between student’s performance and tion [20], natural language processing [8], and many more.
    [Show full text]
  • The Gödel Prize 2020 - Call for Nominatonn
    The Gödel Prize 2020 - Call for Nominatonn Deadline: February 15, 2020 The Gödel Prize for outntanding papern in the area of theoretial iomputer niienie in nponnored jointly by the European Annoiiaton for Theoretial Computer Siienie (EATCS) and the Annoiiaton for Computng Maihinery, Speiial Innterent Group on Algorithmn and Computaton Theory (AC M SInGACT) The award in prenented annually, with the prenentaton taaing plaie alternately at the Innternatonal Colloquium on Automata, Languagen, and Programming (InCALP) and the AC M Symponium on Theory of Computng (STOC) The 28th Gödel Prize will be awarded at the 47th Innternatonal Colloquium on Automata, Languagen, and Programming to be held during 8-12 July, 2020 in Beijing The Prize in named in honour of Kurt Gödel in reiogniton of hin major iontributonn to mathematial logii and of hin interent, diniovered in a leter he wrote to John von Neumann nhortly before von Neumann’n death, in what han beiome the famoun “P vernun NP” quenton The Prize iniluden an award of USD 5,000 Award Committee: The 2020 Award Commitee ionnintn of Samnon Abramnay (Univernity of Oxford), Anuj Dawar (Chair, Univernity of Cambridge), Joan Feigenbaum (Yale Univernity), Robert Krauthgamer (Weizmann Innnttute), Daniel Spielman (Yale Univernity) and David Zuiaerman (Univernity of Texan, Auntn) Eligibility: The 2020 Prize rulen are given below and they nupernede any diferent interpretaton of the generii rule to be found on webniten of both SInGACT and EATCS Any renearih paper or nerien of papern by a ningle author or by
    [Show full text]
  • Smooth Sensitivity and Sampling in Private Data Analysis∗
    Smooth Sensitivity and Sampling in Private Data Analysis∗ Kobbi Nissimy Sofya Raskhodnikovaz Adam Smithx Draft Full Version, v1.0 May 17, 2011 Abstract We introduce a new, generic framework for private data analysis. The goal of private data analysis is to release aggregate information about a data set while protecting the privacy of the individuals whose information the data set contains. Our framework allows one to release functions f of the data with instance-specific additive noise. That is, the noise magnitude is determined not only by the function we want to release, but also by the database itself. One of the challenges is to ensure that the noise magnitude does not leak information about the database. To address that, we calibrate the noise magnitude to the smooth sensitivity of f on the database x — a measure of variability of f in the neighborhood of the instance x. The new framework greatly expands the applicability of output perturbation, a technique for protecting individuals’ privacy by adding a small amount of random noise to the released statistics. To our knowledge, this is the first formal analysis of the effect of instance-specific noise in the context of data privacy. Our framework raises many interesting algorithmic questions. Namely, to apply the framework one must compute or approximate the smooth sensitivity of f on x. We show how to do this efficiently for several different functions, including the median and the cost of the minimum spanning tree. We also give a generic procedure based on sampling that allows one to release f(x) accurately on many databases x.
    [Show full text]
  • Printable Format
    SIGMOD/PODS 2003 Final Program San Diego, California June 8-13, 2003 Answer Queries, Rada Chirkova, Chen Li Streams, Abhinandan Das, Johannes Sunday, June 8th Gehrke, Mirek Riedewald 8:30-17:30 The Impact of the Constant Complement DEBS Workshop (Windsor) Approach Towards View Updating, Jens SIGMOD Research Session 3: OLAP PKC50 Workshop (Hampton) Lechtenboerger (Garden Salon 1) MPDS Workshop (Sheffield) Chair: Latha Colby View-Based Query Containment, Diego 19:30-21:30 Calvanese, Giuseppe De Giacomo, Maurizio Best Paper: Spreadsheets in RDBMS for SIGMOD/PODS Welcoming Reception Lenzerini, Moshe Y. Vardi OLAP, Abhinav Gupta, Andy Witkowski, (Garden Salon 1) Gregory Dorman, Srikanth Bellamkonda, The View Selection Problem for XML Tolga Bozkaya, Nathan Folkert, Lei Sheng, Content Based Routing, Ashish Kumar Sankar Subramanian Monday, June 9th Gupta, Alon Y. Halevy, Dan Suciu 8:00-8:45 QC-Trees: An Efficient Summary Structure Continental Breakfast (Atlas Foyer) 19:00-22:00 for Semantic OLAP, Laks Lakshmanan, Jian SIGMOD New DB Faculty Symposium Pei, Yan Zhao 8:45-10:00 (Windsor & Sheffield) PODS Session 1: Invited Talk SIGMOD Industrial Session 1: Web (Hampton & Sheffield) 21:00-23:00 Services (Sheffield) Chair: Tova Milo PODS Business Meeting Chair: Surajit Chaudhuri (Garden Salon 1) E-services: A Look Behind the Curtain, Rick The Future of Web Services - I, Adam Hull Bosworth (BEA Systems) Tuesday, June 10th 10:00-10:15 8:00-8:45 The Future of Web Services - II, Felipe Morning Coffee Break (Atlas Foyer) Continental Breakfast (Atlas Foyer) Cabrera (Microsoft) 10:15-11:15 8:45-9:45 SIGMOD Demos: Group A (Crescent) PODS Session 2: Award Papers SIGMOD Keynote (Regency Ballroom) (Hampton & Sheffield) Chair: Alon Halevy A System for Watermarking Relational Chair: Catriel Beeri Databases, Rakesh Agrawal, Jerry Kiernan The Database Course Qua Poster Child For Best Paper: An Information-Theoretic More Efficient Education, Jeffrey D.
    [Show full text]