Co-Receptor Signaling in the Pathogenesis of Neurohiv
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SPECIALTY MEDICATIONS Available Through Accredo Health Group, Inc., Medco’S Specialty Pharmacy Call Toll-Free (800) 803-2523, 8:00 A.M
SPECIALTY MEDICATIONS available through Accredo Health Group, Inc., Medco’s specialty pharmacy Call toll-free (800) 803-2523, 8:00 a.m. to 8:00 p.m., eastern time, Monday through Friday, to confirm that your medication is covered. Effective as of July 1, 2011 Abraxane® (paclitaxel protein-bound particles) Berinert® (C 1 esterase inhibitor [human])* (PA) (QD) Actemra ™ (tocilizumab) (PA) Betaseron® (interferon beta-1b) (PA) Actimmune® (interferon gamma-1b) (PA) Botox® (botulinum toxin type A) (PA) Adagen® (pegademase bovine) Carbaglu ™ (carglumic acid) Adcirca® (tadalafil) (ST) (QD) Carimune® NF (immune globulin intravenous [human]) (PA) Advate® (antihemophilic factor [recombinant]) (CPA) Cerezyme® (imiglucerase) (CPA) (ST) Afinitor® (everolimus) (PA) (QD) Cimzia® (certolizumab pegol) (ST) Aldurazyme® (laronidase) (CPA) Copaxone® (glatiramer acetate) (PA) Alphanate® (antihemophilic factor [human]) (CPA) Copegus® (ribavirin) (ST) AlphaNine® SD (coagulation factor IX [human]) (CPA) Corifact® (factor XIII [human]) (CPA) Amevive® (alefacept) (PA) Cystadane® (betaine) Ampyra ™ (dalfampridine) (PA) CytoGam® (cytomegalovirus immune globulin Apokyn® (apomorphine hydrochloride) (PA) (QD) intravenous [human])* (CPA) Aralast® (alpha[1]-proteinase inhibitor [human]) Cytovene® IV (ganciclovir sodium)* Aranesp® (darbepoetin alfa) (PA) Dacogen® (decitabine) Arcalyst® (rilonacept) (PA) (QD) Dysport® (abobotulinumtoxinA) (PA) Arixtra® (fondaparinux sodium)* Egrifta ™ (tesamorelin) (PA) Arranon® (nelarabine) Elaprase® (idursulfase) (CPA) Arzerra® (ofatumumab) -
Review CCR5 Antagonists: Host-Targeted Antivirals for the Treatment of HIV Infection
Antiviral Chemistry & Chemotherapy 16:339–354 Review CCR5 antagonists: host-targeted antivirals for the treatment of HIV infection Mike Westby* and Elna van der Ryst Pfizer Global R&D, Kent, UK *Corresponding author: Tel: +44 1304 649876; Fax: +44 1304 651819; E-mail: [email protected] The human chemokine receptors, CCR5 and suggest that these compounds have a long plasma CXCR4, are potential host targets for exogenous, half-life and/or prolonged CCR5 occupancy, which small-molecule antagonists for the inhibition of may explain the delay in viral rebound observed HIV-1 infection. HIV-1 strains can be categorised by following compound withdrawal in short-term co-receptor tropism – their ability to utilise CCR5 monotherapy studies. A switch from CCR5 to (CCR5-tropic), CXCR4 (CXCR4-tropic) or both (dual- CXCR4 tropism occurs spontaneously in approxi- tropic) as a co-receptor for entry into susceptible mately 50% of HIV-infected patients and has been cells. CCR5 may be the more suitable co-receptor associated with, but is not required for, disease target for small-molecule antagonists because a progression. The possibility of a co-receptor natural deletion in the CCR5 gene preventing its tropism switch occurring under selection pressure expression on the cell surface is not associated by CCR5 antagonists is discussed. The completion with any obvious phenotype, but can confer of ongoing Phase IIb/III studies of maraviroc, resistance to infection by CCR5-tropic strains – the aplaviroc and vicriviroc will provide further insight most frequently sexually-transmitted strains. into co-receptor tropism, HIV pathogenesis and The current leading CCR5 antagonists in clinical the suitability of CCR5 antagonists as a potent development include maraviroc (UK-427,857, new class of antivirals for the treatment of HIV Pfizer), aplaviroc (873140, GlaxoSmithKline) and infection. -
Complete Dissertation
VU Research Portal Chemokine Receptors CXCR3 and CXCR7 Scholten, D.J. 2012 document version Publisher's PDF, also known as Version of record Link to publication in VU Research Portal citation for published version (APA) Scholten, D. J. (2012). Chemokine Receptors CXCR3 and CXCR7: Allosteric Ligand Binding, Biased Signaling, and Receptor Regulation. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. E-mail address: [email protected] Download date: 01. Oct. 2021 Chemokine Receptors CXCR3 and CXCR7: Allosteric Ligand Binding, Biased Signaling, and Receptor Regulation Danny Scholten The work described in this thesis was performed at the Leiden/Amsterdam Center for Drug Research (LACDR), Faculty of Sciences, Division of Medicinal Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands. This research was performed in the framework of the Dutch public-private partnership Top Institute Pharma (TI Pharma) in project “The GPCR Forum (D1-105)”. -
Aplaviroc (APL, 873140)
Hepatotoxicity observed in clinical trials of aplaviroc (APL, 873140) WG Nichols1, HM Steel1, TM Bonny1, SS Min1, L Curtis1, K Kabeya2, N Clumeck2 1 GlaxoSmithKline, Research Triangle Park, USA; 2 CHU-Saint-Pierre, Brussels, Belgium. Aplaviroc (APL, 873140, Ono 4128) O CH3 O HO • Specific CCR5 antagonist O N OH N NH • Potent HIV entry inhibitor O – mean 1.66 log10 decline at nadir in HIV-RNA after 10d monotherapy1 • Safety profile supported further study in humans 1 Lalezari J et al. AIDS 2005;19:1443–1448. Aplaviroc Phase 2b Program CCR100136 CCR102881 • 195 treatment-naïve • 147 treatment-naïve subjects randomized to subjects randomized to – APL 200mg BID / LPV/r – APL 600mg BID / Combivir – APL 400mg BID / LPV/r – APL 800mg BID / Combivir – APL 800mg QD / LPV/r – Combivir / efavirenz – LPV/r / Combivir – 2:2:1 randomisation – 2:2:2:1 randomization Sentinel case: Severe hepatitis • 39 year old HIV+ male – CD4 283 cells/mm3 – HBV/HCV negative – Normal AST/ALT/bilirubin • APL 800mg BID + COM • Day 59: developed severe hepatic cytolysis • Liver biopsy: – Chronic inflammatory infiltrate, mod intensity Liver biopsy (portal area) – Consistent with drug-induced hepatotoxicity CCR102881 Individual Patient LFT Plots ALP ALT AST BILT CK 70 60 50 40 30 APL RX 20 LFT Values (x ULN) 10 0 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 Study Day Review of Liver Enzyme Elevations in APL Phase IIb trials • 336 subjects received treatment – 282 subjects on APL – median duration of therapy: 13 wks • Central Lab database query to identify – any Grade -
The Role of Selected Chemokines and Their Receptors in the Development of Gliomas
International Journal of Molecular Sciences Review The Role of Selected Chemokines and Their Receptors in the Development of Gliomas Magdalena Groblewska 1, Ala Litman-Zawadzka 2 and Barbara Mroczko 1,2,* 1 Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland; [email protected] 2 Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-85-831-8785 Received: 29 April 2020; Accepted: 22 May 2020; Published: 24 May 2020 Abstract: Among heterogeneous primary tumors of the central nervous system (CNS), gliomas are the most frequent type, with glioblastoma multiforme (GBM) characterized with the worst prognosis. In their development, certain chemokine/receptor axes play important roles and promote proliferation, survival, metastasis, and neoangiogenesis. However, little is known about the significance of atypical receptors for chemokines (ACKRs) in these tumors. The objective of the study was to present the role of chemokines and their conventional and atypical receptors in CNS tumors. Therefore, we performed a thorough search for literature concerning our investigation via the PubMed database. We describe biological functions of chemokines/chemokine receptors from various groups and their significance in carcinogenesis, cancer-related inflammation, neo-angiogenesis, tumor growth, and metastasis. Furthermore, we discuss the role of chemokines in glioma development, with particular regard to their function in the transition from low-grade to high-grade tumors and angiogenic switch. We also depict various chemokine/receptor axes, such as CXCL8-CXCR1/2, CXCL12-CXCR4, CXCL16-CXCR6, CX3CL1-CX3CR1, CCL2-CCR2, and CCL5-CCR5 of special importance in gliomas, as well as atypical chemokine receptors ACKR1-4, CCRL2, and PITPMN3. -
Structural Determinants of MIF Functions in CXCR2-Mediated Inflammatory and Atherogenic Leukocyte Recruitment
Structural determinants of MIF functions in CXCR2-mediated inflammatory and atherogenic leukocyte recruitment Christian Weber*†‡, Sandra Kraemer*§, Maik Drechsler†, Hongqi Lue§, Rory R. Koenen†, Aphrodite Kapurniotu¶, Alma Zernecke†, and Ju¨ rgen Bernhagen‡§ †Institute for Molecular Cardiovascular Research (IMCAR); and §Department of Biochemistry and Molecular Cell Biology, RWTH Aachen University, 52056 Aachen, Germany; and ¶Laboratory of Peptide Biochemistry, Center of Integrated Protein Science Munchen,¨ Technische Universität, D-85350 Munich, Germany Edited by Charles A. Dinarello, University of Colorado Health Sciences Center, Denver, CO, and accepted by the Editorial Board August 15, 2008 (received for review April 25, 2008) We have recently identified the archaic cytokine macrophage ing to CCR5 (i.e., HisRS) and CCR3 (i.e., AsnRS) (9, 10), and migration inhibitory factor (MIF) as a non-canonical ligand of the fragments of TyrRS mediate pro-angiogenic activity by direct CXC chemokine receptors CXCR2 and CXCR4 in inflammatory and binding to CXCR1 through a CXCL8 (also known as interleu- atherogenic cell recruitment. Because its affinity for CXCR2 was kin-8; IL-8)-like N-terminal motif consisting of residues Glu, particularly high, we hypothesized that MIF may feature structural Leu, and Arg (ELR) (11). motives shared by canonical CXCR2 ligands, namely the conserved Macrophage migration inhibitory factor (MIF) is a long- N-terminal Glu-Leu-Arg (ELR) motif. Sequence alignment and struc- known T cell cytokine discovered more than four decades ago tural modeling indeed revealed a pseudo-(E)LR motif (Asp-44-X- that more recently has been recognized to be a key mediator of Arg-11) constituted by non-adjacent residues in neighboring loops innate immunity and pleiotropic inflammatory cytokine. -
The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors—A Review of Literature
International Journal of Molecular Sciences Review The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors—A Review of Literature Jan Korbecki 1 , Klaudyna Kojder 2, Patrycja Kapczuk 1, Patrycja Kupnicka 1 , Barbara Gawro ´nska-Szklarz 3 , Izabela Gutowska 4 , Dariusz Chlubek 1 and Irena Baranowska-Bosiacka 1,* 1 Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powsta´nców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; [email protected] (J.K.); [email protected] (P.K.); [email protected] (P.K.); [email protected] (D.C.) 2 Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-281 Szczecin, Poland; [email protected] 3 Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University in Szczecin, Powsta´nców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; [email protected] 4 Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powsta´nców Wlkp. 72 Av., 70-111 Szczecin, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-914661515 Abstract: Hypoxia is an integral component of the tumor microenvironment. Either as chronic or cycling hypoxia, it exerts a similar effect on cancer processes by activating hypoxia-inducible factor-1 (HIF-1) and nuclear factor (NF-κB), with cycling hypoxia showing a stronger proinflammatory influ- ence. One of the systems affected by hypoxia is the CXC chemokine system. This paper reviews all available information on hypoxia-induced changes in the expression of all CXC chemokines (CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8 (IL-8), CXCL9, CXCL10, CXCL11, CXCL12 Citation: Korbecki, J.; Kojder, K.; Kapczuk, P.; Kupnicka, P.; (SDF-1), CXCL13, CXCL14, CXCL15, CXCL16, CXCL17) as well as CXC chemokine receptors— Gawro´nska-Szklarz,B.; Gutowska, I.; CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6, CXCR7 and CXCR8. -
CXCR2 Related Chemokine Receptors, CXCR1 and Regulation
Actin Filaments Are Involved in the Regulation of Trafficking of Two Closely Related Chemokine Receptors, CXCR1 and CXCR2 This information is current as of September 23, 2021. Alon Zaslaver, Rotem Feniger-Barish and Adit Ben-Baruch J Immunol 2001; 166:1272-1284; ; doi: 10.4049/jimmunol.166.2.1272 http://www.jimmunol.org/content/166/2/1272 Downloaded from References This article cites 61 articles, 32 of which you can access for free at: http://www.jimmunol.org/content/166/2/1272.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 23, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2001 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Actin Filaments Are Involved in the Regulation of Trafficking of Two Closely Related Chemokine Receptors, CXCR1 and CXCR2 Alon Zaslaver, Rotem Feniger-Barish, and Adit Ben-Baruch The ligand-induced internalization and recycling of chemokine receptors play a significant role in their regulation. -
Gene Expression Profiles in the Rat Streptococcal Cell Wall-Induced
Available online http://arthritis-research.com/content/7/1/R101 ResearchVol 7 No 1 article Open Access Gene expression profiles in the rat streptococcal cell wall-induced arthritis model identified using microarray analysis Inmaculada Rioja1, Chris L Clayton2, Simon J Graham2, Paul F Life1 and Marion C Dickson1 1Rheumatoid Arthritis Disease Biology Department, GlaxoSmithKline, Medicines Research Centre, Stevenage, UK 2Transcriptome Analysis Department, GlaxoSmithKline, Medicines Research Centre, Stevenage, UK Corresponding author: Inmaculada Rioja, [email protected] Received: 3 Jul 2004 Revisions requested: 16 Sep 2004 Revisions received: 4 Oct 2004 Accepted: 9 Oct 2004 Published: 19 Nov 2004 Arthritis Res Ther 2005, 7:R101-R117 (DOI 10.1186/ar1458)http://arthritis-research.com/content/7/1/R101 © 2004 Rioja et al., licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/ 2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is cited. Abstract Experimental arthritis models are considered valuable tools for P < 0.01), showing specific levels and patterns of gene delineating mechanisms of inflammation and autoimmune expression. The genes exhibiting the highest fold increase in phenomena. Use of microarray-based methods represents a expression on days -13.8, -13, or 3 were involved in chemotaxis, new and challenging approach that allows molecular dissection inflammatory response, cell adhesion and extracellular matrix of complex autoimmune diseases such as arthritis. In order to remodelling. Transcriptome analysis identified 10 upregulated characterize the temporal gene expression profile in joints from genes (Delta > 5), which have not previously been associated the reactivation model of streptococcal cell wall (SCW)-induced with arthritis pathology and are located in genomic regions arthritis in Lewis (LEW/N) rats, total RNA was extracted from associated with autoimmune disease. -
Aging T Cell Chemokine Receptor Expression In
The Journal of Immunology T Cell Chemokine Receptor Expression in Aging1 Ruran Mo,* Jun Chen,* Yin Han,* Cecelia Bueno-Cannizares,* David E. Misek,† Pascal A. Lescure,† Samir Hanash,† and Raymond L. Yung2* Changes in chemokine receptor expression are important in determining T cell migration and the subsequent immune response. To better understand the contribution of the chemokine system in immune senescence we determined the effect of aging on CD4؉ T cell chemokine receptor function using microarray, RNase protection assays, Western blot, and in vitro chemokine transmi- ,gration assays. Freshly isolated CD4؉ cells from aged (20–22 mo) mice were found to express a higher level of CCR1, 2, 4, 5, 6 and 8 and CXCR2–5, and a lower level of CCR7 and 9 than those from young (3–4 mo) animals. Caloric restriction partially or completely restored the aging effects on CCR1, 7, and 8 and CXCR2, 4, and 5. The aging-associated differences in chemokine receptor expression cannot be adequately explained by the age-associated shift in the naive/memory or Th1/Th2 profile. CD4؉ cells from aged animals have increased chemotactic response to stromal cell-derived factor-1 and macrophage-inflammatory protein- 1␣, suggesting that the observed chemokine receptor changes have important functional consequences. We propose that the aging-associated changes in T cell chemokine receptor expression may contribute to the different clinical outcome in T cell chemokine receptor-dependent diseases in the elderly. The Journal of Immunology, 2003, 170: 895–904. he precise mechanisms linking the aging immune system (6–8). T cell-tropic HIV-1 isolates (X4 strains) preferentially use to diseases in the elderly are poorly understood. -
What Lessons Can We Learn from 20 Years of Chemokine T D Di ? Receptor
What lessons can we learn from 20 years of chemokine receptdtor drug discovery? John G. Cumming, PhD 5th RSC / SCI symposium on GPCRs in Medicinal Chemistry 15th-17th September 2014, Actelion, Allschwil, Basel, Switzerland Outline Background: chemokines and their receptors Chemokine receptor drug discovery and development Emerging opportunities for chemokine drug discovery Conclusions and learning Chemokines and chemokine receptors CXC(α) • Chemokines (chemoattractant cytokines) are 70-120 aa proteins • 44 chemokines in 4 major families and 22 chemokine receptors in human genome • ‘Cell positioning system’ in the body • Many receptors bind multiple ligands • Many ligands bind multiple receptors Chemotaxis Human monocytes + CCL2 (red) Volpe et al. PLoS ONE 2012, 7(5), e37208 CCR2 antagonists inhibit chemotaxis and infiltration Vasculature CCL2 release Spinal or Peripheral Tissue Recruited monocyte Site of CCL2 release CCR2 antagonists inhibit chemotaxis and infiltration CCR2 antagonist Circulating monocyte CCL2 release CCL2 release from peripheral injury site or central PAF terminals Role of chemokine system in pathophysiology • Potential role in inflammatory and autoimmune diseases: Multiple sclerosis, Rheumatoid arthritis, COPD, allergic asthma, IBD, psoriasis - Expression levels of chemokines and receptors in relevant tissues and organs of patients and animal disease models - Mouse knockout ppyphenotype in disease models • Established role in HIV infection Katschke et al., 2001 Arthritis Rheum, 44, 1022 - CCR5 and CXCR4 act as HIV-1 -
A Novel Small Molecule CCR5 Inhibitor Active Against R5-Tropic HIV-1S
www.nature.com/scientificreports OPEN Activity and structural analysis of GRL-117C: a novel small molecule CCR5 inhibitor active against R5- Received: 24 September 2018 Accepted: 1 March 2019 tropic HIV-1s Published: xx xx xxxx Hirotomo Nakata1,2, Kenji Maeda 3, Debananda Das 1, Simon B. Chang1, Kouki Matsuda3, Kalapala Venkateswara Rao4, Shigeyoshi Harada5, Kazuhisa Yoshimura5, Arun K. Ghosh4 & Hiroaki Mitsuya1,2,3 CCR5 is a member of the G-protein coupled receptor family that serves as an essential co-receptor for cellular entry of R5-tropic HIV-1, and is a validated target for therapeutics against HIV-1 infections. In the present study, we designed and synthesized a series of novel small CCR5 inhibitors and evaluated their antiviral activity. GRL-117C inhibited the replication of wild-type R5-HIV-1 with a sub-nanomolar IC50 value. These derivatives retained activity against vicriviroc-resistant HIV-1s, but did not show activity against maraviroc (MVC)-resistant HIV-1. Structural modeling indicated that the binding of compounds to CCR5 occurs in the hydrophobic cavity of CCR5 under the second extracellular loop, and amino acids critical for their binding were almost similar with those of MVC, which explains viral cross- resistance with MVC. On the other hand, one derivative, GRL-10018C, less potent against HIV-1, but more potent in inhibiting CC-chemokine binding, occupied the upper region of the binding cavity with its bis-THF moiety, presumably causing greater steric hindrance with CC-chemokines. Recent studies have shown additional unique features of certain CCR5 inhibitors such as immunomodulating properties and HIV-1 latency reversal properties, and thus, continuous eforts in developing new CCR5 inhibitors with unique binding profles is necessary.