Probabilistic Data Analysis with Probabilistic Programming

Total Page:16

File Type:pdf, Size:1020Kb

Probabilistic Data Analysis with Probabilistic Programming Probabilistic Data Analysis with Probabilistic Programming by Feras Ahmad Khaled Saad S.B., Electrical Engineering and Computer Science, M.I.T. (2016) Submitted to the Department of Electrical Engineering and Computer Science in Partial Fulfillment of the Requirements for the Degree of Master of Engineering in Electrical Engineering and Computer Science at the Massachusetts Institute of Technology September 2016 c 2016 Massachusetts Institute of Technology. All rights reserved. Signature of Author: . Department of Electrical Engineering and Computer Science September 21, 2016 Certified by: . Dr. Vikash Mansinghka Research Scientist, Thesis Supervisor Accepted by: . Dr. Christopher Terman Chairman, Master of Engineering Thesis Committee Probabilistic Data Analysis with Probabilistic Programming by Feras Ahmad Khaled Saad S.B., Electrical Engineering and Computer Science, M.I.T. (2016) Submitted to the Department of Electrical Engineering and Computer Science in Partial Fulfillment of the Requirements for the Degree of Master of Engineering in Electrical Engineering and Computer Science Abstract Probabilistic techniques are central to data analysis, but different approaches can be challenging to apply, combine, and compare. This thesis introduces composable generative population models (CGPMs), a computational abstraction that extends directed graphical models and can be used to describe and compose a broad class of probabilistic data analysis techniques. Examples include hierarchical Bayesian models, multivariate kernel methods, discriminative machine learning, clus- tering algorithms, dimensionality reduction, and arbitrary probabilistic programs. We also demon- strate the integration of CGPMs into BayesDB, a probabilistic programming platform that can ex- press data analysis tasks using a modeling language and a structured query language. The practical value is illustrated in two ways. First, CGPMs are used in an analysis that identifies satellite data records which probably violate Kepler’s Third Law, by composing causal probabilistic programs with non-parametric Bayes in under 50 lines of probabilistic code. Second, for several representa- tive data analysis tasks, we report on lines of code and accuracy measurements of various CGPMs, plus comparisons with standard baseline solutions from Python and MATLAB libraries. Thesis Supervisor: Vikash Mansinghka Title: Research Scientist 3 To my mother and father, who gave and give me everything. Acknowledgments This project would not be possible without the help of my friends and colleagues at the Probabilistic Computing Project. I extend my sincerest gratitude to our principal investigator Vikash Mansinghka, the ideal professional and personal mentor in all respects. I am grateful to DARPA for funding this research and my appointment as a research assistant through the Probabilistic Programming for Advanced Machine Learning program. I thank my brother, Khaled, for his uplifting support, affection, and tolerance and engagement with my most atypical of thoughts. 5 Contents 1 Introduction 7 2 Related Work 8 3 Composable Generative Population Models 10 3.1 Populations . 10 3.2 Computational description of composable generative population models . 11 3.3 Statistical description of composable generative population models . 12 3.4 Composable generative population models are an abstraction for probabilistic pro- cesses . 14 4 Algorithmic Implementations of Composable Generative Population Models 15 4.1 Primitive univariate distributions and statistical data types . 16 4.2 Cross-Categorization . 17 4.3 Ensemble classifiers and regressors . 20 4.3.1 Classification . 20 4.3.2 Regression . 20 4.4 Factor analysis & probabilistic PCA . 20 4.5 Parametric mixture of experts . 22 4.6 Generative nearest neighbors . 23 4.7 Multivariate kernel density estimation . 25 4.8 Probabilistic programs in VentureScript . 26 5 Integrating Conditional Generative Population Models into BayesDB 29 5.1 Querying composable generative population models using the Bayesian Query Lan- guage . 30 5.2 Compositional networks of composable generative population models . 31 5.3 Building populations and networks of composable generative population models with the Metamodeling Language . 33 5.3.1 Population Schemas . 33 5.3.2 Metamodel Definitions . 34 5.3.3 Homogeneous Ensembles of CGPM Networks . 35 5.3.4 Heterogeneous Ensembles of CGPM Networks . 35 5.4 Composable generative population models generalize and extend generative popu- lation models in BayesDB . 36 6 Applications of Composable Generative Population Models 37 6.1 Analyzing satellites using a composite CGPM built from causal probabilistic pro- grams, discriminative machine learning, and Bayesian non-parametrics . 37 6.2 Comparing code length and accuracy on representative data analysis tasks . 39 7 Discussion and Future Work 46 References 48 1. Introduction Probabilistic techniques are central to data analysis, but can be difficult to apply, combine, and compare. Families of approaches such as parametric statistical modeling, machine learning and probabilistic programming are each associated with different formalisms and assumptions. This thesis shows how to address these challenges by defining a new family of probabilistic models and integrating them into BayesDB, a probabilistic programming platform for data analysis. It also gives empirical illustrations of the efficacy of the framework on multiple synthetic and real-world tasks in probabilistic data analysis. This thesis introduces composable generative population models (CGPMs), a computational formalism that extends graphical models for use with probabilistic programming. CGPMs specify a table of observable random variables with a finite number of columns and a countably infinite number of rows. They support complex intra-row dependencies among the observables, as well as inter-row dependencies among a field of latent variables. CGPMs are described by a computational interface for generating samples and evaluating densities for random variables derived from the base table by conditioning and marginalization. We show how to implement CGPMs for a broad class of model families including discriminative statistical learning, kernel density estimators, non- parametric Bayesian methods, and arbitrary probabilistic programs. We also describe algorithms and new syntaxes in the probabilistic Metamodeling Language for building compositions of CGPMs that can interoperate with BayesDB. The practical value is illustrated in two ways. First, the thesis outlines a collection of data analysis tasks with CGPMs on a high-dimensional, real-world dataset with heterogeneous types and sparse observations. The BayesDB script builds models which combine non-parametric Bayes, principal component analysis, random forest classification, ordinary least squares, and a causal probabilistic program that implements a stochastic variant of Kepler’s Third Law. Second, we illustrate coverage and conciseness of the CGPM abstraction by quantifying the lines of code and accuracy achieved on several representative data analysis tasks. Estimates are given for models expressed as CGPMs in BayesDB, as well as for baseline methods implemented in Python and MATLAB. Savings in lines of code of ~10x at no cost or improvement in accuracy are typical. The remainder of the thesis is structured as follows. Section 2 reviews related work to CGPMs in both graphical statistics and probabilisitc programming. Section 3 describes the conceptual, com- putational, and statistical formalism for CGPMs. Section 4 formulates a wide range of probabilistic models as CGPMs, and provides both algorithmic implementations of the interface as well as ex- amples of their invocations through the Metamodeling Language and Bayesian Query Language. Section 5 outlines an architecture of BayesDB for use with CGPMs. We show how CGPMs can be composed to form a generalized directed acyclic graph, constructing hybrid models from simpler primitives. We also present new syntaxes in MML and BQL for building and querying CGPMs in BayesDB. Section 6 applies CGPMs to several probabilistic data analysis tasks in a complex real- world dataset, and reports on lines of code and accuracy measurements. Section 7 concludes with a discussion and directions for future work. 7 2. Related Work Directed graphical models from statistics provide a compact, general-purpose modeling language to describe both the factorization structure and conditional distributions of a high-dimensional joint distribution (Koller et al., 2007). Each node is a random variable which is conditionally indepen- dent of its non-descendants given its parents, and its conditional distribution given all its parents is specified by a conditional probability table or density. CGPMs extend this mathematical descrip- tion to a computational one, where nodes are not only random variables with conditional densities but also computational units (CGPMs) with an interface that allows them to be composed directly as software. A CGPM node typically encapsulates a more complex statistical object than a single variable in a graphical model. Each node has a set of required input variables and output variables, and all variables are associated with statistical data types. Nodes are required to both simulate and evaluate the density of a subset of their outputs by conditioning on all their inputs, as well as either conditioning or marginalizing over another subset of their outputs. Internally, the joint distribution of output variables for a single CGPM node
Recommended publications
  • One-Network Adversarial Fairness
    One-network Adversarial Fairness Tameem Adel Isabel Valera Zoubin Ghahramani Adrian Weller University of Cambridge, UK MPI-IS, Germany University of Cambridge, UK University of Cambridge, UK [email protected] [email protected] Uber AI Labs, USA The Alan Turing Institute, UK [email protected] [email protected] Abstract is general, in that it may be applied to any differentiable dis- criminative model. We establish a fairness paradigm where There is currently a great expansion of the impact of machine the architecture of a deep discriminative model, optimized learning algorithms on our lives, prompting the need for ob- for accuracy, is modified such that fairness is imposed (the jectives other than pure performance, including fairness. Fair- ness here means that the outcome of an automated decision- same paradigm could be applied to a deep generative model making system should not discriminate between subgroups in future work). Beginning with an ordinary neural network characterized by sensitive attributes such as gender or race. optimized for prediction accuracy of the class labels in a Given any existing differentiable classifier, we make only classification task, we propose an adversarial fairness frame- slight adjustments to the architecture including adding a new work performing a change to the network architecture, lead- hidden layer, in order to enable the concurrent adversarial op- ing to a neural network that is maximally uninformative timization for fairness and accuracy. Our framework provides about the sensitive attributes of the data as well as predic- one way to quantify the tradeoff between fairness and accu- tive of the class labels.
    [Show full text]
  • Remote Sensing
    remote sensing Article A Method for the Estimation of Finely-Grained Temporal Spatial Human Population Density Distributions Based on Cell Phone Call Detail Records Guangyuan Zhang 1, Xiaoping Rui 2,* , Stefan Poslad 1, Xianfeng Song 3 , Yonglei Fan 3 and Bang Wu 1 1 School of Electronic Engineering and Computer Science, Queen Mary University of London, London E1 4NS, UK; [email protected] (G.Z.); [email protected] (S.P.); [email protected] (B.W.) 2 School of Earth Sciences and Engineering, Hohai University, Nanjing 211000, China 3 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; [email protected] (X.S.); [email protected] (Y.F.) * Correspondence: [email protected] Received: 10 June 2020; Accepted: 8 August 2020; Published: 10 August 2020 Abstract: Estimating and mapping population distributions dynamically at a city-wide spatial scale, including those covering suburban areas, has profound, practical, applications such as urban and transportation planning, public safety warning, disaster impact assessment and epidemiological modelling, which benefits governments, merchants and citizens. More recently, call detail record (CDR) of mobile phone data has been used to estimate human population distributions. However, there is a key challenge that the accuracy of such a method is difficult to validate because there is no ground truth data for the dynamic population density distribution in time scales such as hourly. In this study, we present a simple and accurate method to generate more finely grained temporal-spatial population density distributions based upon CDR data. We designed an experiment to test our method based upon the use of a deep convolutional generative adversarial network (DCGAN).
    [Show full text]
  • On Construction of Hybrid Logistic Regression-Naıve Bayes Model For
    JMLR: Workshop and Conference Proceedings vol 52, 523-534, 2016 PGM 2016 On Construction of Hybrid Logistic Regression-Na¨ıve Bayes Model for Classification Yi Tan & Prakash P. Shenoy [email protected], [email protected] University of Kansas School of Business 1654 Naismith Drive Lawrence, KS 66045 Moses W. Chan & Paul M. Romberg fMOSES.W.CHAN, [email protected] Advanced Technology Center Lockheed Martin Space Systems Sunnyvale, CA 94089 Abstract In recent years, several authors have described a hybrid discriminative-generative model for clas- sification. In this paper we examine construction of such hybrid models from data where we use logistic regression (LR) as a discriminative component, and na¨ıve Bayes (NB) as a generative com- ponent. First, we estimate a Markov blanket of the class variable to reduce the set of features. Next, we use a heuristic to partition the set of features in the Markov blanket into those that are assigned to the LR part, and those that are assigned to the NB part of the hybrid model. The heuristic is based on reducing the conditional dependence of the features in NB part of the hybrid model given the class variable. We implement our method on 21 different classification datasets, and we compare the prediction accuracy of hybrid models with those of pure LR and pure NB models. Keywords: logistic regression, na¨ıve Bayes, hybrid logistic regression-na¨ıve Bayes 1. Introduction Data classification is a very common task in machine learning and statistics. It is considered an in- stance of supervised learning. For a standard supervised learning problem, we implement a learning algorithm on a set of training examples, which are pairs consisting of an input object, a vector of explanatory variables F1;:::;Fn, called features, and a desired output object, a response variable C, called class variable.
    [Show full text]
  • Data-Driven Topo-Climatic Mapping with Machine Learning Methods
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Nat Hazards (2009) 50:497–518 DOI 10.1007/s11069-008-9339-y ORIGINAL PAPER Data-driven topo-climatic mapping with machine learning methods A. Pozdnoukhov Æ L. Foresti Æ M. Kanevski Received: 31 October 2007 / Accepted: 19 December 2008 / Published online: 16 January 2009 Ó Springer Science+Business Media B.V. 2009 Abstract Automatic environmental monitoring networks enforced by wireless commu- nication technologies provide large and ever increasing volumes of data nowadays. The use of this information in natural hazard research is an important issue. Particularly useful for risk assessment and decision making are the spatial maps of hazard-related parameters produced from point observations and available auxiliary information. The purpose of this article is to present and explore the appropriate tools to process large amounts of available data and produce predictions at fine spatial scales. These are the algorithms of machine learning, which are aimed at non-parametric robust modelling of non-linear dependencies from empirical data. The computational efficiency of the data-driven methods allows producing the prediction maps in real time which makes them superior to physical models for the operational use in risk assessment and mitigation. Particularly, this situation encounters in spatial prediction of climatic variables (topo-climatic mapping). In complex topographies of the mountainous regions, the meteorological processes are highly influ- enced by the relief. The article shows how these relations, possibly regionalized and non- linear, can be modelled from data using the information from digital elevation models.
    [Show full text]
  • Categorical and Numerical Data Examples
    Categorical And Numerical Data Examples Phrenologic Vinod execrates some reglet after sparse Roberto remainders just. Explicative Ugo sometimes postdated his shamus voetstoots and voyage so gratis! Ephram deport latterly while imposable Marko crests logarithmically or intermixes facilely. The target encoding techniques can i use simple slopes for missing or resented with and categorical data more complicated Types of Statistical Data Numerical Categorical and Ordinal. What is his example of numerical data? Nominal- and ordinal-scale variables are considered qualitative or categorical variables. Do you in What string of cuisine would the results from this business produce. Categorical vs Numerical Data by Britt Hargreaves on Prezi. Categorical data can also dwell on numerical values Example 1 for direction and 0 for male force that those numbers don't have mathematical meaning. Please free resources, categorical and data examples of the difference between numerical? The Categorical Variable Categorical data describes categories or groups One is would the car brands like Mercedes BMW and Audi they discuss different. For troop a GPA of 33 and a GPA of 40 can be added together. Given the stochastic nature general the algorithm or evaluation procedure or differences in numerical precision. Categorical data MIT. What is an example specify an independent and counter dependent variable. Higher than men therefore honor is not categorical in fact below is numerical. Quantitative variables take numerical values and represent different kind of measurement In our medical example news is few example toward a quantitative variable because earth can take are multiple numerical values It also makes sense to contribute about stroll in numerical form that stump a library can be 1 years old or 0 years old.
    [Show full text]
  • Contributions to Biostatistics: Categorical Data Analysis, Data Modeling and Statistical Inference Mathieu Emily
    Contributions to biostatistics: categorical data analysis, data modeling and statistical inference Mathieu Emily To cite this version: Mathieu Emily. Contributions to biostatistics: categorical data analysis, data modeling and statistical inference. Mathematics [math]. Université de Rennes 1, 2016. tel-01439264 HAL Id: tel-01439264 https://hal.archives-ouvertes.fr/tel-01439264 Submitted on 18 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. HABILITATION À DIRIGER DES RECHERCHES Université de Rennes 1 Contributions to biostatistics: categorical data analysis, data modeling and statistical inference Mathieu Emily November 15th, 2016 Jury: Christophe Ambroise Professeur, Université d’Evry Val d’Essonne, France Rapporteur Gérard Biau Professeur, Université Pierre et Marie Curie, France Président David Causeur Professeur, Agrocampus Ouest, France Examinateur Heather Cordell Professor, University of Newcastle upon Tyne, United Kingdom Rapporteur Jean-Michel Marin Professeur, Université de Montpellier, France Rapporteur Valérie Monbet Professeur, Université de Rennes 1, France Examinateur Korbinian Strimmer Professor, Imperial College London, United Kingdom Examinateur Jean-Philippe Vert Directeur de recherche, Mines ParisTech, France Examinateur Pour M.H.A.M. Remerciements En tout premier lieu je tiens à adresser mes remerciements à l’ensemble des membres du jury qui m’ont fait l’honneur d’évaluer mes travaux.
    [Show full text]
  • A Discriminative Model to Predict Comorbidities in ASD
    A Discriminative Model to Predict Comorbidities in ASD The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:38811457 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA i Contents Contents i List of Figures ii List of Tables iii 1 Introduction 1 1.1 Overview . 2 1.2 Motivation . 2 1.3 Related Work . 3 1.4 Contribution . 4 2 Basic Theory 6 2.1 Discriminative Classifiers . 6 2.2 Topic Modeling . 10 3 Experimental Design and Methods 13 3.1 Data Collection . 13 3.2 Exploratory Analysis . 17 3.3 Experimental Setup . 18 4 Results and Conclusion 23 4.1 Evaluation . 23 4.2 Limitations . 28 4.3 Future Work . 28 4.4 Conclusion . 29 Bibliography 30 ii List of Figures 3.1 User Zardoz's post on AutismWeb in March 2006. 15 3.2 User Zardoz's only other post on AutismWeb, published in February 2006. 15 3.3 Number of CUIs extracted per post. 17 3.4 Distribution of associated ages extracted from posts. 17 3.5 Number of posts written per author . 17 3.6 Experimental Setup . 22 4.1 Distribution of AUCs for single-concept word predictions . 25 4.2 Distribution of AUCs for single-concept word persistence . 25 4.3 AUC of single-concept word vs.
    [Show full text]
  • Performance Comparison of Different Pre-Trained Deep Learning Models in Classifying Brain MRI Images
    ACTA INFOLOGICA dergipark.org.tr/acin DOI: 10.26650/acin.880918 RESEARCH ARTICLE Performance Comparison of Different Pre-Trained Deep Learning Models in Classifying Brain MRI Images Beyin MR Görüntülerini Sınıflandırmada Farklı Önceden Eğitilmiş Derin Öğrenme Modellerinin Performans Karşılaştırması Onur Sevli1 ABSTRACT A brain tumor is a collection of abnormal cells formed as a result of uncontrolled cell division. If tumors are not diagnosed in a timely and accurate manner, they can cause fatal consequences. One of the commonly used techniques to detect brain tumors is magnetic resonance imaging (MRI). MRI provides easy detection of abnormalities in the brain with its high resolution. MR images have traditionally been studied and interpreted by radiologists. However, with the development of technology, it becomes more difficult to interpret large amounts of data produced in reasonable periods. Therefore, the development of computerized semi-automatic or automatic methods has become an important research topic. Machine learning methods that can predict by learning from data are widely used in this field. However, the extraction of image features requires special engineering in the machine learning process. Deep learning, a sub-branch of machine learning, allows us to automatically discover the complex hierarchy in the data and eliminates the limitations of machine learning. Transfer learning is to transfer the knowledge of a pre-trained neural network to a similar model in case of limited training data or the goal of reducing the workload. In this study, the performance of the pre-trained Vgg-16, ResNet50, Inception v3 models in classifying 253 brain MR images were evaluated. The Vgg-16 model showed the highest success with 94.42% accuracy, 83.86% recall, 100% precision and 91.22% F1 score.
    [Show full text]
  • A Latent Model of Discriminative Aspect
    A Latent Model of Discriminative Aspect Ali Farhadi 1, Mostafa Kamali Tabrizi 2, Ian Endres 1, David Forsyth 1 1 Computer Science Department University of Illinois at Urbana-Champaign {afarhad2,iendres2,daf}@uiuc.edu 2 Institute for Research in Fundamental Sciences [email protected] Abstract example, the camera location in the room might be a rough proxy for aspect. However, we believe this notion of aspect Recognition using appearance features is confounded by is not well suited for recognition tasks. First, it imposes phenomena that cause images of the same object to look dif- the unnatural constraint that objects in different classes be ferent, or images of different objects to look the same. This aligned into corresponding pairs of views. This is unnatural may occur because the same object looks different from dif- because the front of a car looks different to the front of a ferent viewing directions, or because two generally differ- bicycle. Worse, the appearance change from the side to the ent objects have views from which they look similar. In this front of a car is not comparable with that from side to front paper, we introduce the idea of discriminative aspect, a set of a bicycle. Second, the geometrical notion of aspect does of latent variables that encode these phenomena. Changes not identify changes that affect discrimination. We prefer a in view direction are one cause of changes in discrimina- notion of aspect that is explicitly discriminative, even at the tive aspect, but others include changes in texture or light- cost of geometric precision. ing.
    [Show full text]
  • On Surrogate Supervision Multi-View Learning
    AN ABSTRACT OF THE THESIS OF Gaole Jin for the degree of Master of Science in Electrical and Computer Engineering presented on December 3, 2012. Title: On Surrogate Supervision Multi-view Learning Abstract approved: Raviv Raich Data can be represented in multiple views. Traditional multi-view learning meth- ods (i.e., co-training, multi-task learning) focus on improving learning performance using information from the auxiliary view, although information from the target view is sufficient for learning task. However, this work addresses a semi-supervised case of multi-view learning, the surrogate supervision multi-view learning, where labels are available on limited views and a classifier is obtained on the target view where labels are missing. In surrogate multi-view learning, one cannot obtain a classifier without information from the auxiliary view. To solve this challenging problem, we propose discriminative and generative approaches. c Copyright by Gaole Jin December 3, 2012 All Rights Reserved On Surrogate Supervision Multi-view Learning by Gaole Jin A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of Science Presented December 3, 2012 Commencement June 2013 Master of Science thesis of Gaole Jin presented on December 3, 2012. APPROVED: Major Professor, representing Electrical and Computer Engineering Director of the School of Electrical Engineering and Computer Science Dean of the Graduate School I understand that my thesis will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my thesis to any reader upon request. Gaole Jin, Author ACKNOWLEDGEMENTS My most sincere thanks go to my advisor, Dr.
    [Show full text]
  • Generative and Discriminative Models
    30 Jonathan Richard Shewchuk 6 Decision Theory; Generative and Discriminative Models DECISION THEORY aka Risk Minimization [Today I’m going to talk about a style of classifier very di↵erent from SVMs. The classifiers we’ll cover in the next few weeks are based on probability.] [One aspect of probabilistic data is that sometimes a point in feature space doesn’t have just one class. Suppose one borrower with income $30,000 and debt $15,000 defaults. another ” ” ” ” ” ” ” doesn’t default. So in your feature space, you have two feature vectors at the same point with di↵erent classes. Obviously, in that case, you can’t draw a decision boundary that classifies all points with 100% accuracy.] Multiple sample points with di↵erent classes could lie at same point: we want a probabilistic classifier. Suppose 10% of population has cancer, 90% doesn’t. Probability distributions for calorie intake, P(X Y): [caps here mean random variables, not matrices.] | calories (X) < 1,200 1,200–1,600 > 1,600 cancer (Y = 1) 20% 50% 30% no cancer (Y = 1) 1% 10% 89% − [I made these numbers up. Please don’t take them as medical advice.] Recall: P(X) = P(X Y = 1) P(Y = 1) + P(X Y = 1) P(Y = 1) | | − − P(1,200 X 1,600) = 0.5 0.1 + 0.1 0.9 = 0.14 ⇥ ⇥ You meet guy eating x = 1,400 calories/day. Guess whether he has cancer? [If you’re in a hurry, you might see that 50% of people with cancer eat 1,400 calories, but only 10% of people with no cancer do, and conclude that someone who eats 1,400 calories probably has cancer.
    [Show full text]
  • Adaptive Discriminative Generative Model and Its Applications
    Adaptive Discriminative Generative Model and Its Applications Ruei-Sung Lin† David Ross‡ Jongwoo Lim† Ming-Hsuan Yang∗ †University of Illinois ‡University of Toronto ∗Honda Research Institute [email protected] [email protected] [email protected] [email protected] Abstract This paper presents an adaptive discriminative generative model that gen- eralizes the conventional Fisher Linear Discriminant algorithm and ren- ders a proper probabilistic interpretation. Within the context of object tracking, we aim to find a discriminative generative model that best sep- arates the target from the background. We present a computationally efficient algorithm to constantly update this discriminative model as time progresses. While most tracking algorithms operate on the premise that the object appearance or ambient lighting condition does not significantly change as time progresses, our method adapts a discriminative genera- tive model to reflect appearance variation of the target and background, thereby facilitating the tracking task in ever-changing environments. Nu- merous experiments show that our method is able to learn a discrimina- tive generative model for tracking target objects undergoing large pose and lighting changes. 1 Introduction Tracking moving objects is an important and essential component of visual perception, and has been an active research topic in computer vision community for decades. Object tracking can be formulated as a continuous state estimation problem where the unobserv- able states encode the locations or motion parameters of the target objects, and the task is to infer the unobservable states from the observed images over time. At each time step, a tracker first predicts a few possible locations (i.e., hypotheses) of the target in the next frame based on its prior and current knowledge.
    [Show full text]