Dallasaurus Turneri, a New Primitive Mosasauroid from the Middle Turonian of Texas and Comments on the Phytogeny of Mosasauridae (Squamata)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
JVP 26(3) September 2006—ABSTRACTS
Neoceti Symposium, Saturday 8:45 acid-prepared osteolepiforms Medoevia and Gogonasus has offered strong support for BODY SIZE AND CRYPTIC TROPHIC SEPARATION OF GENERALIZED Jarvik’s interpretation, but Eusthenopteron itself has not been reexamined in detail. PIERCE-FEEDING CETACEANS: THE ROLE OF FEEDING DIVERSITY DUR- Uncertainty has persisted about the relationship between the large endoskeletal “fenestra ING THE RISE OF THE NEOCETI endochoanalis” and the apparently much smaller choana, and about the occlusion of upper ADAM, Peter, Univ. of California, Los Angeles, Los Angeles, CA; JETT, Kristin, Univ. of and lower jaw fangs relative to the choana. California, Davis, Davis, CA; OLSON, Joshua, Univ. of California, Los Angeles, Los A CT scan investigation of a large skull of Eusthenopteron, carried out in collaboration Angeles, CA with University of Texas and Parc de Miguasha, offers an opportunity to image and digital- Marine mammals with homodont dentition and relatively little specialization of the feeding ly “dissect” a complete three-dimensional snout region. We find that a choana is indeed apparatus are often categorized as generalist eaters of squid and fish. However, analyses of present, somewhat narrower but otherwise similar to that described by Jarvik. It does not many modern ecosystems reveal the importance of body size in determining trophic parti- receive the anterior coronoid fang, which bites mesial to the edge of the dermopalatine and tioning and diversity among predators. We established relationships between body sizes of is received by a pit in that bone. The fenestra endochoanalis is partly floored by the vomer extant cetaceans and their prey in order to infer prey size and potential trophic separation of and the dermopalatine, restricting the choana to the lateral part of the fenestra. -
Tylosaurine Mosasaurs (Squamata) from the Late Cretaceous of Northern Germany
Netherlands Journal of Geosciences —– Geologie en Mijnbouw | 94 – 1 | 55-71 | 2015 doi: 10.1017/njg.2014.31 Tylosaurine mosasaurs (Squamata) from the Late Cretaceous of northern Germany J.J. Hornung1,2,* &M.Reich3,4 1 Georg-August University Gottingen,¨ Geoscience Centre, Department of Geobiology, Goldschmidt-Straße 3, 37077 Gottingen,¨ Germany 2 Current address: Fuhlsbuttler¨ Str. 611, 22337 Hamburg, Germany 3 SNSB - Bavarian State Collection for Palaeontology and Geology, Richard-Wagner-Str. 10, 80333 Munich, Germany 4 Department of Earth and Environmental Sciences, Ludwig-Maximilians University Munchen,¨ Richard-Wagner-Str. 10, 80333 Munich, Germany * Corresponding author. Email: [email protected] Manuscript received: 27 April 2014, accepted: 18 September 2014 Abstract Two genera of tylosaurine mosasaurs, Tylosaurus and Hainosaurus, are recorded for the first time from Germany. Tylosaurus sp. is represented by two isolated tooth crowns, originally described as Mosasaurus? alseni (here considered a nomen dubium) from the latest Santonian–Early Campanian, which are very similar to T. ivoensis and T. gaudryi.ThematerialofHainosaurus sp. comprises a maxillary with associated postorbitofrontal, two pterygoid teeth and several indeterminate cranial fragments. The specimen from the Late Campanian is slightly less derived than H. bernardi from the Maastrichtian in retaining labiolingually less compressed anterior maxillary teeth and unserrated pterygoid teeth with only very weak carinae. Despite only minor skeletal differences, the genus Hainosaurus is considered to be distinct from Tylosaurus because of its significant modification of the dental apparatus compared to the plesiomorphic condition in the latter. This dental morphology suggests a phylogenetic trend from a generalised-piercing marginal dentition in Tylosaurus towards the increasingly labiolingually compressed, symmetrical, strongly bicarinate cutting marginal teeth in Hainosaurus spp. -
Estimating the Evolutionary Rates in Mosasauroids and Plesiosaurs: Discussion of Niche Occupation in Late Cretaceous Seas
Estimating the evolutionary rates in mosasauroids and plesiosaurs: discussion of niche occupation in Late Cretaceous seas Daniel Madzia1 and Andrea Cau2 1 Department of Evolutionary Paleobiology, Institute of Paleobiology, Polish Academy of Sciences, Warsaw, Poland 2 Independent, Parma, Italy ABSTRACT Observations of temporal overlap of niche occupation among Late Cretaceous marine amniotes suggest that the rise and diversification of mosasauroid squamates might have been influenced by competition with or disappearance of some plesiosaur taxa. We discuss that hypothesis through comparisons of the rates of morphological evolution of mosasauroids throughout their evolutionary history with those inferred for contemporary plesiosaur clades. We used expanded versions of two species- level phylogenetic datasets of both these groups, updated them with stratigraphic information, and analyzed using the Bayesian inference to estimate the rates of divergence for each clade. The oscillations in evolutionary rates of the mosasauroid and plesiosaur lineages that overlapped in time and space were then used as a baseline for discussion and comparisons of traits that can affect the shape of the niche structures of aquatic amniotes, such as tooth morphologies, body size, swimming abilities, metabolism, and reproduction. Only two groups of plesiosaurs are considered to be possible niche competitors of mosasauroids: the brachauchenine pliosaurids and the polycotylid leptocleidians. However, direct evidence for interactions between mosasauroids and plesiosaurs is scarce and limited only to large mosasauroids as the Submitted 31 July 2019 predators/scavengers and polycotylids as their prey. The first mosasauroids differed Accepted 18 March 2020 from contemporary plesiosaurs in certain aspects of all discussed traits and no evidence Published 13 April 2020 suggests that early representatives of Mosasauroidea diversified after competitions with Corresponding author plesiosaurs. -
ONTOGENIA DE Iguana Iguana (Linnaeus, 1758): ESTÁGIOS EMBRIONÁRIOS E DESENVOLVIMENTO DO ESQUELETO
UNIVERSIDADE DE BRASÍLIA Instituto de Ciências Biológicas Programa de Pós-Graduação em Biologia Animal ONTOGENIA DE Iguana iguana (Linnaeus, 1758): ESTÁGIOS EMBRIONÁRIOS E DESENVOLVIMENTO DO ESQUELETO DOUTORANDO: FABIANO CAMPOS LIMA ORIENTADOR: DR. ANTONIO SEBBEN BRASÍLIA – DF JUNHO, 2015 ONTOGENIA DE Iguana iguana (Linnaeus, 1758): ESTÁGIOS EMBRIONÁRIOS E DESENVOLVIMENTO DO ESQUELETO FABIANO CAMPOS LIMA Tese apresentada ao Programa de Pós- Graduação em Biologia Animal do Instituto de Ciências Biológicas da Universidade de Brasília com requisito parcial para obtenção do título de Doutor em Biologia Animal. ORIENTADOR: DR. ANTONIO SEBBEN BRASÍLIA – DF JUNHO, 2015 UNIVERSIDADE DE BRASÍLIA Instituto de Ciências Biológicas Programa de Pós-Graduação em Biologia Animal FABIANO CAMPOS LIMA Título da Tese Ontogenia de Iguana iguana (Linnaeus, 1758): Estágios Embrionários e Desenvolvimento do Esqueleto Prof. Dr. Antonio Sebben Presidente/Orientador UnB Prof. Dr. Eduardo Maurício Mendes de Lima Profa. Dra. Lilian Gimenes Giugliano Membro Efetivo Externo Membro Efetivo Externo UnB UnB Profa. Dra. Aline Pic-Taylor Prof. Dr. Osmindo Rodrigues Pires Junior Membro Efetivo Interno Membro Efetivo Interno UnB UnB Profa. Dra. Jussara Rocha Ferreira Membro Suplente UnB Brasília, 23 de Junho de 2015 Existe um único caminho que nos leva a plenitude e a herança que o mundo nos permite: o conhecimento. AGRADECIMENTOS Nenhuma grande jornada pode ser concluída sem que muitos personagens tenham participado dela. Poder expressar gratidão por aqueles que tornaram sua trajetória mais exequível é motivo de satisfação, pois nem todos são gratos àqueles que o ajudaram a transpor as pedras em seu caminho. Sou imensamente grato ao meu orientador, o professor Antonio Sebben, que desde o primeiro dia depositou confiança em mim, um rapaz franzino que apareceu do nada com o objetivo de se tornar um doutor. -
Tylosaurus and Pteranodon
Tylosaurus and Pteranodon Estimate size and measure to check estimate. OBJECTIVES Students will: 1. identify the Tylosaurus and Pteranodon as the two state fossils of Kansas, and 2. estimate and check the wingspan of the Pteranodon or the length of the Tylosaurus. MATERIALS FROM THE TRUNK Tylosaurus model Pteranodon model Fossil sample OTHER MATERIALS Ruler or tape measure Masking tape, post-its or something similar to mark measurements on floor TEACHER PREPARATION Decide which of the two fossils you will measure: Pteranodon had a 25-foot wingspan or the Tylosaurus was 49 feet long. Identify a location with 50 linear feet of space that can be used to measure the wingspan of the Pteranodon or the length of the Tylosaurus. Consider using a hallway, playground, or gym. Once a location is identified, use a tape measure to mark the beginning and end of a 25-foot linear space and a 49-foot linear space. This is where the students will measure the two state fossils. HISTORICAL BACKGROUND In 2014 the Kansas Legislature passed a bill making the Tylosaurus and the Pteranodon the state fossils of Kansas. Both of these reptiles lived at the time of dinosaurs, but neither are dinosaurs. Mike Everhart, adjunct curator of paleontology at the Sternberg Museum, geologist Alan Deitrich, and Steven Fisher, a 4-H geology project member, testified in support of the bill. Fossil hunters and natural history museums initiated the adoption of these state fossils. Kansas 4-H geology project members supported the bill. Pteranodon (teh-RAN-oh-don) – “Pteranodon, a great, winged pterosaur with a wingspread of more than 24 feet, which flew the skies of Kansas during the cretaceous period of the mesozoic era, is hereby designated as the official flying fossil of the state Kansas Symbols Traveling Resource Trunk KANSAS HISTORICAL SOCIETY www.kshs.org ©2014 61 of Kansas.” (House Bill 2595) The first Pteranodon specimens discovered in North America were found in western Kansas in 1870 by Othniel Charles Marsh. -
(Squamata: Mosasauridae) from the Late Cretaceous Of
C. R. Palevol 14 (2015) 483–493 Contents lists available at ScienceDirect Comptes Rendus Palevol www.sci encedirect.com General Palaeontology, Systematics and Evolution (Vertebrate Palaeontology) An halisaurine (Squamata: Mosasauridae) from the Late Cretaceous of Patagonia, with a preserved tympanic disc: Insights into the mosasaur middle ear Un halisauriné (Squamata : Mosasauridae) du Crétacé supérieur de Patagonie, à disque tympanique conservé : un aperc¸ u de l’oreille moyenne des mosasaures a,∗ b Marta S. Fernández , Marianella Talevi a CONICET - División Paleontología Vertebrados, Museo de La Plata, Paseo del Bosque s/n, 1900 La Plata, Argentina b CONICET - Instituto de Investigación en Paleobiología y Geología, Universidad Nacional de Río Negro, Isidro Lobo y Belgrano, 8332 General Roca, Río Negro, Argentina a b s t r a c t a r t i c l e i n f o Article history: Halisaurinae is a subfamily of enigmatic, small- to medium-sized mosasauroids, which Received 15 September 2014 retain a mosaic of primitive and derived features. The first record of a South American Hal- Accepted after revision 13 May 2015 isaurus with precise stratigraphic information includes a quadrate carrying a tympanic disc together with twelve vertebrae, collected in the Late Maastrichtian of Jagüel Formation Handled by Nathalie Bardet in northern Patagonia (Argentina). The preservation of a tympanic disc allows exploring and discussing the mechanisms of sound transmission in these mosasauroids. The loca- Keywords: tion of the tympanic disc resembles that one formed by the extracolumella of aquatic Halisaurus turtles and at least one extant lizard. Based on morphological comparison of the middle Patagonia ear we discuss previous hypotheses on the modification of the tympanic middle ear system Late Maastrichtian of mosasauroids for underwater hearing, in a manner similar to that observed in aquatic Cretaceous turtles. -
Download Full Article in PDF Format
comptes rendus palevol 2021 20 20 iles — Jean- pt Cl re au d d n e a R s a n g a e i — b i h P p a l a m e a o f b o i o y l h o p g a y r g a o n e d g p o i a l b a o e DIRECTEURS DE LA PUBLICATION / PUBLICATION DIRECTORS : Bruno David, Président du Muséum national d’Histoire naturelle Étienne Ghys, Secrétaire perpétuel de l’Académie des sciences RÉDACTEURS EN CHEF / EDITORS-IN-CHIEF : Michel Laurin (CNRS), Philippe Taquet (Académie des sciences) ASSISTANTE DE RÉDACTION / ASSISTANT EDITOR : Adenise Lopes (Académie des sciences ; [email protected]) MISE EN PAGE / PAGE LAYOUT : Fariza Sissi (Muséum national d’Histoire naturelle ; [email protected]) RÉVISIONS LINGUISTIQUES DES TEXTES ANGLAIS / ENGLISH LANGUAGE REVISIONS : Kevin Padian (University of California at Berkeley) RÉDACTEURS ASSOCIÉS / ASSOCIATE EDITORS : Micropaléontologie/Micropalaeontology Maria Rose Petrizzo (Università di Milano, Milano) Paléobotanique/Palaeobotany Cyrille Prestianni (Royal Belgian Institute of Natural Sciences, Brussels) Métazoaires/Metazoa Annalisa Ferretti (Università di Modena e Reggio Emilia, Modena) Paléoichthyologie/Palaeoichthyology Philippe Janvier (Muséum national d’Histoire naturelle, Académie des sciences, Paris) Amniotes du Mésozoïque/Mesozoic amniotes Hans-Dieter Sues (Smithsonian National Museum of Natural History, Washington) Tortues/Turtles Juliana Sterli (CONICET, Museo Paleontológico Egidio Feruglio, Trelew) Lépidosauromorphes/Lepidosauromorphs Hussam Zaher (Universidade de São Paulo) Oiseaux/Birds Eric Buffetaut (CNRS, École Normale Supérieure, Paris) Paléomammalogie (mammifères de moyenne et grande taille)/Palaeomammalogy (large and mid-sized mammals) Lorenzo Rook* (Università degli Studi di Firenze, Firenze) Paléomammalogie (petits mammifères sauf Euarchontoglires)/Palaeomammalogy (small mammals except for Euarchontoglires) Robert Asher (Cambridge University, Cambridge) Paléomammalogie (Euarchontoglires)/Palaeomammalogy (Euarchontoglires) K. -
Jason P. Schein
Curriculum Vitae JASON P. SCHEIN EXECUTIVE DIRECTOR BIGHORN BASIN PALEONTOLOGICAL INSTITUTE 3959 Welsh Road, Ste. 208 Willow Grove, Pennsylvania 19090 Office: (406) 998-1390 Cell: (610) 996-1055 [email protected] EDUCATION Ph.D. Student Drexel University, Department of Biology, Earth and Environmental Science, 2005-2013 M.Sc., Auburn University, Department of Geology and Geography, 2004 B.Sc., Auburn University, Department of Geology and Geography, 2000 RESEARCH AND PROFESSIONAL INTERESTS Mesozoic vertebrate marine and terrestrial faunas, paleoecology, paleobiogeography, faunistics, taphonomy, biostratigraphy, functional morphology, sedimentology, general natural history, education and outreach, paleontological resource assessment, and entrepreneurial academic paleontology. ACADEMIC, PROFESSIONAL, & BOARD POSITIONS 2019-Present Member of the Board, Yellowstone-Bighorn Research Association 2017-Present Founding Executive Director, Bighorn Basin Paleontological Institute 2017-Present Member of the Board, Delaware Valley Paleontological Society 2016-Present Scientific and Educational Consultant, Field Station: Dinosaurs 2015-Present Graduate Research Associate, Academy of Natural Sciences of Drexel University 2007-2017 Assistant Curator of Natural History Collections and Exhibits, New Jersey State Museum 2015-2017 Co-founder, Co-leader, Bighorn Basin Dinosaur Project 2010-2015 International Research Associate, Palaeontology Research Team, University of Manchester 2010-2014 Co-leader, New Jersey State Museum’s Paleontology Field Camp 2007-2009 Interim Assistant Curator of Natural History, New Jersey State Museum 2006-2007 Manager, Dinosaur Hall Fossil Preparation Laboratory 2004-2005 Staff Environmental Geologist, Cobb Environmental and Technical Services, Inc. 1 FIELD EXPERIENCE 2010-2019 Beartooth Butte, Morrison, Lance, and Fort Union formations, Bighorn Basin, Wyoming and Montana, U.S.A. (Devonian, Jurassic, Late Cretaceous, and earliest Paleocene, respectively) 2010 Hell Creek Formation, South Dakota, U.S.A. -
Mosasaurs Continuing from Last Time…
Pliosaurs and Mosasaurs Continuing From Last Time… • Pliosauridae: the big marine predators of the Jurassic Pliosauridae • Some of the largest marine predators of all time, these middle Jurassic sauropterygians include such giants as Kronosaurus, Liopleurodon, Macroplata, Peloneustes, Pliosaurus, and Brachauchenius Pliosaur Mophology • While the number of cervical vertebrae is less than in plesiosaurs, there is still variation: Macroplata (29) vs. Kronosaurus (13) Pliosaur Morphology • Larger pliosaurs adopted a more streamlined body shape, like modern whales, with a large skull and compact neck, and generally the hind limbs were larger than the front, while plesiosaurs had larger forelimbs Pliosaur Morphology • Powerful limb girdles and large (banana sized) conical teeth helped pliosaurs eat larger, quicker prey than the piscivorous plesiosaurs Liopleurodon • NOT 25 m long in general (average of 40 feet), though perhaps certain individuals could reach that size, making Liopleurodon ferox the largest carnivore to ever live • Recent skull studies indicate that Liopleurodon could sample water in stereo through nostrils, locating scents much as we locate sound Cretaceous Seas • Breakup of Gondwana causes large undersea mountain chains to form, raising sea levels everywhere • Shallow seas encourage growth of corals, which increases calcium abundance and chalk formation • Warm seas and a gentle thermal gradient yield a hospitable environment to rays, sharks, teleosts, and the first radiation of siliceous diatoms Kronosaurus • Early Cretaceous -
Papers Resulting from the First Moasaur Meeting, Maastricht, the Netherlands, May 2004
Papers resulting from the First Moasaur Meeting, Maastricht, The Netherlands, May 2004. Bardet, N., Pereda Suberbiola, X., Iarochène, M., Amalik M., and Bouya, B. 2005. Durophagous Mosasauridae (Squamata) from the Upper Cretaceous phosphates of Morocco, with description of a new species of Globidens. Netherlands Journal of Geosciences / Geologie en Mijnbouw, 84(3), p. 167-176. Bell, G.L. Jr. and Polcyn, M.J. 2005. Dallasaurus turneri, a new primitive mosasauroid from the Middle Turonian of Texas and comments on the phylogeny of Mosasauridae (Squamata). Netherlands Journal of Geosciences / Geologie en Mijnbouw, 84(3), p. 177-194. Buchy, M.-C., Smith, K.T., Frey, E., Stinnesbeck, W., González González, A.H., Ifrim, C., López-Oliva, J.G. and Porras-Muzquiz, H. 2005. Annotated catalogue of marine squamates (Reptilia) from the Upper Cretaceous of northeastern Mexico. Netherlands Journal of Geosciences / Geologie en Mijnbouw, 84(3), p. 195-206. Caldwell, M.W. and Bell, G.L. Jr. 2005. Of German princes and North American rivers: Harlan’s lost mosasaur snout rediscovered. Netherlands Journal of Geosciences / Geologie en Mijnbouw, 84(3), p. 207-212. Caldwell, M.W. and Diedrich, C. G. 2005. Remains of Clidastes Cope, 1868, an unexpected mosasaur in the upper Campanian of NW Germany. Netherlands Journal of Geosciences / Geologie en Mijnbouw, 84(3), p. 213-220. Dutchak, A.R. 2005. A review of the taxonomy and systematics of aigialosaurs. Netherlands Journal of Geosciences / Geologie en Mijnbouw, 84(3), p. 221-230. Everhart. M.J. 2005. Tylosaurus kansasensis, a new species of tylosaurine (Squamata, Mosasauridae) from the Niobrara Chalk of western Kansas, USA. -
Microsoft Word
LIST OF EXTANT INGROUP TAXA: Agamidae: Agama agama, Pogona vitticeps, Calotes emma, Physignathus cocincinus. Chamaeleonidae: Brookesia brygooi, Chamaeleo calyptratus. Corytophanidae: Basiliscus basiliscus, Corytophanes cristatus. Crotaphytidae: Crotaphytus collaris, Gambelia wislizenii. Hoplocercidae: Enyalioides laticeps, Morunasaurus annularis. Iguanidae: Brachylophus fasciatus, Dipsosaurus dorsalis, Sauromalus ater. Leiolepidae: Leiolepis rubritaeniata, Uromastyx hardwicki. Leiosauridae: Leiosaurus catamarcensis, Pristidactylus torquatus, Urostrophus vautieri. Liolaemidae: Liolaemus elongatus, Phymaturus palluma. Opluridae: Chalarodon madagascariensis, Oplurus cyclurus. Phrynosomatidae: Petrosaurus mearnsi, Phrynosoma platyrhinos, Sceloporus variabilis, Uma scoparia, Uta stansburiana. Polychrotidae: Anolis carolinensis, Polychrus marmoratus. Tropiduridae: Leiocephalus barahonensis, Stenocercus guentheri, Tropidurus plica, Uranoscodon superciliosus. Anguidae: Ophisaurus apodus, Anniella pulchra, Diploglossus enneagrammus, Elgaria multicarinata. Cordylidae: Chamaesaura anguina, Cordylus mossambicus. Dibamidae: Anelytropsis papillosus, Dibamus novaeguineae. Eublepharidae: Aeluroscalobates felinus, Coleonyx variegatus, Eublepharis macularius. "Gekkonidae": Teratoscincus przewalski, Diplodactylus ciliaris, Phyllurus cornutus, Rhacodactylus auriculatus, Gekko gecko, Phelsuma lineata. Gonatodes albogularis. Gerrhosauridae: Cordylosaurus subtesselatus, Zonosaurus ornatus. Gymnophthalmidae: Colobosaura modesta, Pholidobolus montium. Helodermatidae: -
A New Addition to the Cretaceous Seaway of ND
A New Addition to the Cretaceous Seaway of North Dakota Clint A. Boyd In July of 2015, 17-year-old Deborah Shepherd from Green Cove Springs, Florida was visiting the Pembina Gorge State Recreation Area in northeastern North Dakota (Cavalier County) with her family. One member of Deborah’s family had previously attended the Pembina Gorge public fossil dig, and they had brought the family up to the roadside marker near the fossil site to see the area. The group was exploring the area and had dispersed a bit when they heard Deborah excitedly call out. She came running up to the group holding a fist-sized piece of white bone encased in a crust of black shale (fig. 1). Along one side of the bone four large teeth were present. Deborah had found part of the jaw of an ancient sea monster: a mosasaur. Mosasaurs were large aquatic reptiles that lived in the oceans during the Mesozoic while dinosaurs were ruling the land. Though they lived at the same time as the dinosaurs, they are actually more closely related to snakes and monitor lizards (like the Komodo dragon) than they are to dinosaurs. They swam using four large flippers and an extremely long, stiff tail, and had to return to the surface to breathe (fig. 2), just like modern whales and dolphins. They were the top predators of the seas during their time, with some species reaching lengths Figure 2. Reconstruction of a mosasaur. Painting by Becky Barnes. of close to 50 feet and displaying teeth as large as whom, and took temporary possession of the fossil.